Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Exhibition of Novel Photocatalytic Activity and Photoluminescence Properties with High Inhibition Towards Bacterial Growth by Hydrothermally Grown ZnO Nanorods

Author(s): Dojalisa Sahu and Nihar Ranjan Panda*

Volume 17, Issue 1, 2021

Published on: 28 July, 2020

Page: [162 - 169] Pages: 8

DOI: 10.2174/1573413716999200728175722

Price: $65

Abstract

Background: Metal oxide nanomaterial such as ZnO shows novel structural, optical, electrical and antibacterial properties due to its wide bandgap (3.37 eV) and high excitonic binding energy (60 meV). Probing these inherent properties of nanosized ZnO with different morphologies has generated new interest among researchers.

Objective: To investigate the size-dependent functional attributes, ZnO nanorods were prepared by hydrothermal method and the photocatalytic (PC) efficiency was studied. The photoluminescence (PL) property of ZnO nanorods was also studied by recording the emission spectrum under photoexcitation. These nanorods (NRs) were coated on cotton fabric to study the effectiveness of these NRs in defending and inhibiting the growth of different bacteria.

Methods: The crystallographic structure and morphology of the ZnO samples were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopic (FESEM) measurements. PL measurement at room temperature was undertaken by exciting the sample with light of wavelength 350 nm. The PC property of ZnO NRs was studied in degrading organic dyes like methylene blue. Bacteria like Staphylococcus aureus, Escherichia coli and Bacillus subtilis were cultured and the inhibition of growth of these bacteria was studied by the application of ZnO. To enhance the microbe defence mechanism of fabric, we coated these NRs on fabric test samples and investigated the bacterial growth on it.

Results: XRD and FESEM studies reveal the dimension of the synthesized products in the nano range. These nanorods are of high density and have surface roughness as per the FESEM study. PL measurement shows the presence of strong UV emission at 382 nm with defect emissions in the bluegreen region opening up the path for ZnO to be used in the fabrication of optoelectronic devices. PC study reveals that 89% degradation of methylene blue (MB) dye is achievable in 180 min using these ZnO catalysts. The anti-bacterial study shows that the minimum inhibitory concentration (MIC) of ZnO nanorods coated on the fabric against S. aureus is found to be 3.5 mg/ml which is the minimum as compared to E. coli (7.5 mg/ml) and B. subtilis (5.5 mg/ml). The study further enunciates that fabric coated with ZnO samples exhibited considerably high inhibition activity towards S. aureus.

Conclusion: The study shows that ZnO NRs can be effectively used for the fabrication of UVLASER/ LED. The photocatalytic efficiency of ZnO will be useful for the degradation of organic dyes controlling environmental pollution. It further enunciates that fabric coated with ZnO samples exhibited considerably high inhibition activity toward S. aureus (skin bacteria) which will be helpful in defending microbes if used in surgical cotton bandages.

Keywords: Zinc oxide, nanorod arrays, antibacterial property, cotton fabric, photocatalysis, photoluminescence.

Graphical Abstract
[1]
Fryxell, G.E.; Cao, G., Eds.; Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors; World Scientific: Singapore, 2007.
[http://dx.doi.org/10.1142/p454]
[2]
Siddiqi, K.S.; Ur Rahman, A. Tajuddin; Husen, A. Tajuddin; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[3]
Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett., 2008, 279(1), 71-76.
[http://dx.doi.org/10.1111/j.1574-6968.2007.01012.x] [PMID: 18081843]
[4]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[5]
Wang, Y.; Yu, L.; Wang, R.; Wang, Y.; Zhang, X. A novel cellulose hydrogel coating with nanoscale Fe0 for Cr(VI) adsorption and reduction. Sci. Total Environ., 2020, 726138625
[http://dx.doi.org/10.1016/j.scitotenv.2020.138625] [PMID: 32315860]
[6]
Wang, Y.; Yu, L.; Wang, R.; Wang, Y.; Zhang, X. Reactivity of carbon spheres templated Ce/LaCo0.5Cu0.5O3 in the microwave induced H2O2 catalytic degradation of salicylic acid: Characterization, kinetic and mechanism studies. J. Colloid Interface Sci., 2020, 574, 74-86.
[http://dx.doi.org/10.1016/j.jcis.2020.04.042] [PMID: 32305730]
[7]
Wang, L.; Yin, G.; Yang, Y.; Zhang, X. Enhanced CO oxidation and toluene oxidation on CuCeZr catalysts derived from UiO-66 metal organic frameworks. React. Kinet. Mech. Catal., 2019, 128, 193-204.
[http://dx.doi.org/10.1007/s11144-019-01623-8]
[8]
Bi, F.; Zhang, X.; Chen, J.; Yang, Y.; Wang, Y. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Appl. Catal. B, 2020, 269118767
[http://dx.doi.org/10.1016/j.apcatb.2020.118767]
[9]
Zhang, X.; Song, L.; Bi, F.; Zhang, D.; Wang, Y.; Cui, L. Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative. J. Colloid Interface Sci., 2020, 571, 38-47.
[http://dx.doi.org/10.1016/j.jcis.2020.03.031] [PMID: 32179307]
[10]
Chen, J.; Zhang, X.; Bi, F.; Zhang, X.; Yang, Y.; Wang, Y. A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J. Colloid Interface Sci., 2020, 571, 275-284.
[http://dx.doi.org/10.1016/j.jcis.2020.03.055] [PMID: 32203764]
[11]
Bi, F.; Zhang, X.; Xiang, S.; Wang, Y. Effect of Pd loading on ZrO2 support resulting from pyrolysis of UiO-66: Application to CO oxidation. J. Colloid Interface Sci., 2020, 573, 11-20.
[http://dx.doi.org/10.1016/j.jcis.2020.03.120] [PMID: 32272298]
[12]
Wang, Y.; Wang, Y.; Yu, L.; Wang, R.; Zhang, X. Highly effective microwave-induced catalytic degradation of Bisphenol A in aqueous solution using double-perovskite intercalated montmorillonite nanocomposite. Chem. Eng. J., 2020, 390124550
[http://dx.doi.org/10.1016/j.cej.2020.124550]
[13]
Yang, Y.; Yang, M.; Zheng, Z.; Zhang, X. Highly effective adsorption removal of perfluorooctanoic acid (PFOA) from aqueous solution using calcined layer-like Mg-Al hydrotalcites nanosheets. Environ. Sci. Pollut. Res. Int., 2020, 27(12), 13396-13408.
[http://dx.doi.org/10.1007/s11356-020-07892-4] [PMID: 32026363]
[14]
Wang, Z.; Sun, Q.; Wang, D.; Hong, Z.; Qu, Z.; Li, X. Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen. Separ. Purif. Tech., 2019, 209, 1016-1026.
[http://dx.doi.org/10.1016/j.seppur.2018.09.045]
[15]
Zhou, M.; Wang, Z.; Sun, Q.; Wang, J.; Zhang, C.; Chen, D.; Li, X. High-performance Ag–Cu nanoalloy catalyst for the selective catalytic oxidation of ammonia. ACS Appl. Mater. Interfaces, 2019, 11(50), 46875-46885.
[http://dx.doi.org/10.1021/acsami.9b16349] [PMID: 31763815]
[16]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[17]
Jahanshahi, M.; Babaei, Z. Protein nanoparticle: A unique system as drug delivery vehicles. Afr. J. Biotechnol., 2008, 7, 4926-4934.
[18]
Dash, D.; Panda, N.R.; Sahu, D. Photoluminescence and photocatalytic properties of europium doped ZnO nanoparticles. Appl. Surf. Sci., 2019, 494, 666-674.
[http://dx.doi.org/10.1016/j.apsusc.2019.07.089]
[19]
Khataee, A.R.; Karimi, A.; Soltani, R.D.C.; Safarpour, M.; Hanifehpour, Y.; Joo, S.W. Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis, characterization and response surface modeling of photocatalytic process. Appl. Catal. A Gen., 2014, 488, 160-170.
[http://dx.doi.org/10.1016/j.apcata.2014.09.039]
[20]
Trandafilovic, L.V.; Jovanovic, D.J.; Zhang, X.; Ptasinska, S.; Dramicanin, M.D. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. Appl. Catal. B, 2017, 203, 740-752.
[http://dx.doi.org/10.1016/j.apcatb.2016.10.063]
[21]
Adams, L.K.; Lyon, D.Y.; Alvarez, P.J.J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res., 2006, 40(19), 3527-3532.
[http://dx.doi.org/10.1016/j.watres.2006.08.004] [PMID: 17011015]
[22]
Sawai, J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods, 2003, 54(2), 177-182.
[http://dx.doi.org/10.1016/S0167-7012(03)00037-X] [PMID: 12782373]
[23]
Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett., 2007, 90(213902), 2139021-2139023.
[http://dx.doi.org/10.1063/1.2742324] [PMID: 18160973]
[24]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[25]
Koper, O.B.; Klabunde, J.S.; Marchin, G.L.; Klabunde, K.J.; Stoimenov, P.; Bohra, L. Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr. Microbiol., 2002, 44(1), 49-55.
[http://dx.doi.org/10.1007/s00284-001-0073-x] [PMID: 11727041]
[26]
Kühn, K.P.; Chaberny, I.F.; Massholder, K.; Stickler, M.; Benz, V.W.; Sonntag, H-G.; Erdinger, L. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere, 2003, 53(1), 71-77.
[http://dx.doi.org/10.1016/S0045-6535(03)00362-X] [PMID: 12892668]
[27]
Bhunia, A.K.; Pradhan, S.S.; Saha, S. Effect of annealing time on the optical and structural properties of ZnO nanorods. J. Nano- Electron. Phys., 2019, 11, 06003.
[28]
Dagdeviren, C.; Hwang, S.W.; Su, Y.; Kim, S.; Cheng, H.; Gur, O.; Haney, R.; Omenetto, F.G.; Huang, Y.; Rogers, J.A. Transient, biocompatible electronics and energy harvesters based on ZnO. Small, 2013, 9(20), 3398-3404.
[http://dx.doi.org/10.1002/smll.201300146] [PMID: 23606533]
[29]
Taourati, R.; Khaddor, M.; Kasmi, A.E. Stable ZnO nanocatalysts with high photocatalytic activity for textile dye treatment. Nano-Struct. Nano-Obj., 2019, 18100303
[30]
Wannapop, S.; Somdee, A. Effect of citric acid on the synthesis of ZnWO4/ZnO nanorods for photoelectrochemical water splitting. Inorg. Chem. Commun., 2020, 115107857
[http://dx.doi.org/10.1016/j.inoche.2020.107857]
[31]
Wannapop, S.; Somdee, A.; Thongtem, T.; Thongtem, S. Synthesis of ZnO nanostructures by microwave irradiation for energy conversion material in for dye sensitized solar cells and materials for photocatalytic dye degradation applications. J. Ceram. Soc. Jpn., 2019, 127, 428-434.
[http://dx.doi.org/10.2109/jcersj2.19015]
[32]
Perillo, P.M.; Atia, M.N. C-doped ZnO nanorods for photocatalytic degradation of p-aminobenzoic acid under sunlight. Nano-Struct. Nano-Obj., 2017, 10, 125-130.
[33]
de Romana, D.L.; Brown, K.H.; Guinard, J.X. Sensory trial to assess the acceptability of zinc fortificants added to iron‐fortified wheat products. J. Food Sci., 2002, 67, 461-465.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb11429.x]
[34]
Gouda, M. Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration. J. Ind. Text., 2011, 41, 222-240.
[http://dx.doi.org/10.1177/1528083711414960]
[35]
Seshadri, D.T.; Bhat, N.V. Synthesis and properties of cotton fabrics modified with polypyrrole. Seni Gakkaishi, 2005, 61, 103-108.
[http://dx.doi.org/10.2115/fiber.61.103]
[36]
Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater., 2008, 9(3)035004
[http://dx.doi.org/10.1088/1468-6996/9/3/035004] [PMID: 27878001]
[37]
Halioua, B.; Ziskind, B. Medicine in the days of the pharaohs; Harvard University Press: Cambridge, 2005.
[38]
Jaisai, M.; Baruah, S.; Dutta, J. Paper modified with ZnO nanorods - antimicrobial studies. Beilstein J. Nanotechnol., 2012, 3, 684-691.
[http://dx.doi.org/10.3762/bjnano.3.78] [PMID: 23213632]
[39]
Yayapao, O.; Thongtem, T.; Phuruangrat, A.; Thongtem, S. Synthesis and characterization of highly efficient Gd doped ZnO photocatalyst irradiated with ultraviolet and visible radiations. Mater. Sci. Semicond. Process., 2015, 39, 786-792.
[http://dx.doi.org/10.1016/j.mssp.2015.06.039]
[40]
Chen, W.; Malm, J.O.; Zwiller, V.; Huang, Y.N.; Liu, S.M.; Wallenberg, R.; Bovin, J.O.; Samuelson, L. Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles. Phys. Rev. B Condens. Matter Mater. Phys., 2000, 61, 11021-11024.
[http://dx.doi.org/10.1103/PhysRevB.61.11021]
[41]
Lee, H.J.; Kim, J.H.; Park, S.S.; Hong, S.S.; Lee, G.D. Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. J. Ind. Eng. Chem., 2015, 25, 199-206.
[http://dx.doi.org/10.1016/j.jiec.2014.10.035]
[42]
Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Lee, J.; Cho, M.H. Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C, 2013, 117, 27023-27030.
[http://dx.doi.org/10.1021/jp410063p]
[43]
Zhang, X.; Wang, Y.; Hou, F.; Li, H.; Yang, Y.; Zhang, X.; Yang, Y.; Wang, Y. Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl. Surf. Sci., 2017, 391, 476-483.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.109]
[44]
Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett., 2017, 12(1), 143.
[http://dx.doi.org/10.1186/s11671-017-1904-4] [PMID: 28235375]
[45]
Rekaby, M. Photoluminescence and magnetic properties of undoped and (Mn, Co) co-doped ZnO nanoparticles. Curr. Nanosci., 2020, 16, 655-666.
[46]
Santiago, A.A.G.; Gondim, J.G.S.; Tranquilin, R.L.; Silva, F.S.; Fernandez, F.F.; Costa, M.C.B.; Motta, F.V.; Bomio, M.R.D. Development of ZnO/PDMS nanocomposite with photocatalytic/hydrophobic multifunction. Chem. Phys. Lett., 2020, •••740137051
[http://dx.doi.org/10.1016/j.cplett.2019.137051]
[47]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[48]
Singh, G.; Joyce, E.M.; Beddow, J.; Mason, T.J. Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. J. Microbiol. Biotechnol. Food Sci., 2012, 2(1), 106-120.
[49]
Karimi, E.Z.; Ansari, M. Comparison of antibacterial activity of ZnO nanoparticles fabricated by two different methods and coated on tetron fabric. Open Biotechnol. J., 2018, 12, 166-175.
[http://dx.doi.org/10.2174/1874070701812010166]
[50]
Tanasa, D.; Vrinceanu, N.; Nistor, A.; Hristodor, C.M.; Popovici, E.L.; Bistricianu, I.L. Brinza1, F.; Chicet, D.-L; Coman, D.; Pui, A.; Grigoriu, A.M.; Broasca, G. Zinc oxide-linen fibrous composites: Morphological, structural, chemical and humidity adsorptive attributes. Text. Res. J., 2012, 82(8), 832-844.
[http://dx.doi.org/10.1177/0040517511435068]
[51]
Gardner, J.; Oporto, S.; Mills, R.; Samir, A. Adhesion and surface issues in cellulose and nanocellulose. Adhes. J. Sci. Technol., 2008, 22, 545-567.
[http://dx.doi.org/10.1163/156856108X295509]
[52]
Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomedicine, 2012, 7, 6003-6009.
[http://dx.doi.org/10.2147/IJN.S35347] [PMID: 23233805]
[53]
Hanif, Md. A.; Lee, I.; Akter, J.; Md. Islam, A.; Zahid, A.A.S.M.; Sapkota K.P.; Hahn, J.R. Enhanced photocatalytic and antibacterial performance of ZnO nanoparticles prepared by an efficient thermolysis method. Catalysts, 2019, 9, 608.
[http://dx.doi.org/10.3390/catal9070608]
[54]
Zhou, G.; Li, Y.; Xiao, W.; Zhang, L.; Zuo, Y.; Xue, J.; Jansen, J.A. Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J. Biomed. Mater. Res. A, 2008, 85(4), 929-937.
[http://dx.doi.org/10.1002/jbm.a.31527] [PMID: 17896772]
[55]
Rao, V.U.; Nagababu, P. Pharmacological evaluation of Ceriops decandra (Griff.) ding hou stem extracts. Int. J. Recent Sci. Res., 2015, 6, 2783-2789.
[56]
Emami-Karvani, Z.; Chehrazi, P. Afr. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. J. Microbiol. Res. (Rosemead Calif.), 2011, 5, 1368-1173.
[57]
Schwartz, V.B.; Thetiot, F.; Ritz, S.; Putz, S.; Choritz, L.; Lappas, A.; Forch, R.; Landfester, K.; Jonas, U. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(N-isopropylacrylamide) hydrogel surface layers. Adv. Funct. Mater., 2012, 22(11), 2376-2386.
[http://dx.doi.org/10.1002/adfm.201102980]
[58]
Li, X.; Wang, J.; Yang, J.; Lang, J.; Cao, J.; Liu, F.; Fan, H.; Gao, M.; Jiang, Y. Size-controlled fabrication of ZnO micro/nanorod arrays and their photocatalytic performance. Mater. Chem. Phys., 2013, 141, 929-935.
[http://dx.doi.org/10.1016/j.matchemphys.2013.06.028]
[59]
Hinda, L.; Eric, P.; Ammar, H.; Mohamed, K.; Elimame, E.; Chantal, G.; Jean-Marie, H. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B, 2002, 39, 75-90.
[http://dx.doi.org/10.1016/S0926-3373(02)00078-4]
[60]
Chen, F.; Xie, Y.; Zhao, J.; Lu, G. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere, 2001, 44(5), 1159-1168.
[http://dx.doi.org/10.1016/S0045-6535(00)00277-0] [PMID: 11513404]
[61]
Ajoudanian, N.; Nezamzadeh-Ejhieh, A. Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Mater. Sci. Semicond. Process., 2015, 36, 162-169.
[http://dx.doi.org/10.1016/j.mssp.2015.03.042]
[62]
Sahu, D.; Panda, N.R.; Acharya, B.S.; Panda, A.K. Enhanced UV absorbance and photoluminescence properties of ultrasound assisted synthesized gold doped ZnO nanorods. Opt. Mater., 2014, 36, 1402-1407.
[http://dx.doi.org/10.1016/j.optmat.2014.03.041]
[63]
Soni, B.H.; Deshpande, M.P.; Bhatt, S.V.; Garg, N.; Chaki, S.H. Studies on ZnO nanorods synthesized by hydrothermal method and their characterization. J. Nano- Electron. Phys., 2013, 5(4), 04077.
[64]
Fiedler, S.; Lem, L.O.L.C.; Ton-That, C.; Schleuning, M.; Hoffmann, A.; Phillips, M.R. Correlative study of enhanced excitonic emission in ZnO coated with Al nanoparticles using electron and laser excitation. Sci. Rep., 2020, 10(1), 2553.
[http://dx.doi.org/10.1038/s41598-020-59326-3] [PMID: 32054905]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy