Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Characterization of GeSbSe Based Slot Optical Waveguides

Author(s): Muddassir Iqbal*, YouQiao Ma, Delin Zhao and Babak Parvaei

Volume 17, Issue 2, 2021

Published on: 28 July, 2020

Page: [257 - 265] Pages: 9

DOI: 10.2174/1573413716999200728173529

open access plus

Abstract

Background: Among various chalcogenides, GeSbSe shows a good transmittance in the visible, NIR and, midIR spectrum from 1-20 μm and also demonstrates excellent moldability.

Objective: In current work, we have characterized GeSbSe glass for use in sensor mechanism and for adaptive polarization control.

Methods: After analysing an earlier work regarding GeSbSe based Silicon on insulator optical waveguide, we implemented GeSbSe in a low refractive index slot region of SOI slot optical waveguide. Change in waveguide geometry can cause a shift in the dispersion profile, but a relatively distinct pattern has been observed. T-slot waveguide structure has also been analysed, where GeSbSe has been implemented in low refractive index slot regions with the Graphene layer beneath the horizontal slot region for enhancement in tailoring ability of the birefringence parameters.

Results: Literature review led to the presence of absorption resonance wavelength in SOI slot optical waveguide with our proposed composition, which is attributed to the single average harmonic oscillator property of the chalcogenides. In the T-slot waveguide structure, it was found that a shift in Fermi energy and Mobility values can bring a change in birefringence, even with constant waveguide geometry and operating wavelength.

Conclusion: Absorption resonance wavelength in GeSbSe slot optical waveguide has been exploited for proposing the refractive index dispersion sensor. Our design approach regarding T-slot waveguide may lead to the provision of automated polarization management sources for the light on chip circuits.

Keywords: Chalcogenides, silicon on insulator, slot optical waveguide, refractive index, modal effective index, single average harmonic oscillator.

Graphical Abstract
[1]
Park, J. Application of chalcogenide Ge-Sb-Se glass used for the molded lens of thermal camera using far infrared. 8th International Conference on Material Science & Engineering, May 29-31, 2017Osaka, Japan, pp. 45-45.
[2]
Zhou, T.; Zhu, Z.; Liu, X.; Liang, Z.; Wang, X. A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics. Micromachines (Basel), 2018, 9(7), 337.
[http://dx.doi.org/10.3390/mi9070337] [PMID: 30424270]
[3]
Kleine, T.S.; Glass, R.S.; Lichtenberger, D.L.; Mackay, M.E.; Char, K.; Norwood, R.A.; Pyun, J. 100th anniversary of macromolecular science viewpoint: high refractive index polymers from elemental sulfur for infrared thermal imaging and optics. ACS Macro Lett., 2020, 9, 245-259.
[http://dx.doi.org/10.1021/acsmacrolett.9b00948]
[4]
Kim, J.H.; Park, J.H.; Ko, D.H. Phase-change characteristics of carbon-doped GeSbSe thin films for PRAM applications. J. Mater. Sci. Mater. Electron., 2019, 30, 20751-20757.
[http://dx.doi.org/10.1007/s10854-019-02442-2]
[5]
Gu, Y.F.; Song, Z.; Zhang, T.; Liu, B.; Feng, S.L. Novel phase-change material GeSbSe for application of three-level phase-change random access memory. Solid-State Electron., 2010, 54, 443-446.
[http://dx.doi.org/10.1016/j.sse.2009.11.002]
[6]
Noé, P.; Verdy, A.; d’Acapito, F.; Dory, J.B.; Bernard, M.; Navarro, G.; Jager, J.B.; Gaudin, J.; Raty, J.Y. Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed. Sci. Adv., 2020, 6(9), eaay2830.
[http://dx.doi.org/10.1126/sciadv.aay2830] [PMID: 32158940]
[7]
Kadomina, E.A.; Bezus, E.A.; Doskolovich, L.L. Resonant photonic-crystal structures with a diffraction grating for refractive index sensing. Comput. Opt., 2016, 40(2), 164-172.
[http://dx.doi.org/10.18287/2412-6179-2016-40-2-164-172]
[8]
Rashed, A.R.; Gudulluoglu, B.; Yun, H.W.; Habib, M.; Boyaci, I.H.; Hong, S.H.; Ozbay, E.; Caglayan, H. Highly sensitive refractive index sensing by near-infrared metatronic nanocircuits. Sci. Rep., 2018, 8(1), 11457.
[http://dx.doi.org/10.1038/s41598-018-29623-z] [PMID: 30061578]
[9]
Hermannsson, P.G.; Vannahme, C.; Cameron, L.C.; Sorensen, K.T.; Kristensen, A. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors. Appl. Phys. Lett., 2015, 107, 061101.
[http://dx.doi.org/10.1063/1.4928548]
[10]
Ng, R.T.L.; Hassim, M.H.; Hurme, M. A hybrid approach for estimating fugitive emission rates in process development and design under incomplete knowledge. Process Saf. Environ. Prot., 2017, 109, 365-373.
[http://dx.doi.org/10.1016/j.psep.2017.04.003]
[11]
Frey, H.C.; Small, M.J. Integrated environmental assessment, part I Estimating Emissions. J. Ind. Ecol., 2003, 7(1), 9-11.
[http://dx.doi.org/10.1162/108819803766729159]
[12]
Air dispersion modeling guidelines for Arizona air quality permits. Prepared by Arizona department of environmental quality, 2020.https://legacy.azdeq.gov/environ/air/download/ modeling.pdf.
[13]
Tan, W.C.; Koughia, K.; Singh, J.; Kasap, S.O. Fundamental Optical Properties of Materials. Singh, J., Ed. Optical Properties of Condensed Matter and Applications; Wiley & Sons Ltd., 2006, pp. 10-31.
[14]
Martienssen, W.; Warlimont, H. Handbook of condensed matter and materials data; Springer-Verlag Berlin Heidelberg, 2005.
[http://dx.doi.org/10.1007/3-540-30437-1]
[15]
Halim, J.; Persson, I.; Moon, E.J.; Kühne, P.; Darakchieva, V.; Persson, P.O.A.; Eklund, P.; Rosen, J.; Barsoum, M.W. Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films. J. Phys. Condens. Matter, 2019, 31(16), 165301.
[http://dx.doi.org/10.1088/1361-648X/ab00a2] [PMID: 30669136]
[16]
Jiang, Y.; Ding, W. Recent developments in fiber optic spectral white-light Interferometry. Photonic Sens., 2010, 1(1), 62-71.
[http://dx.doi.org/10.1007/s13320-010-0014-z]
[17]
Tosi, D. Review and analysis of peak tracking techniques for fiber bragg grating sensors. Sensors (Basel), 2017, 17(10), 2368.
[http://dx.doi.org/10.3390/s17102368] [PMID: 29039804]
[18]
Lawson, N.J.; Correia, R.; James, S.W.; Partridge, M.; Staines, S.E.; Gautrey, J.E.; Garry, K.P.; Holt, J.C.; Tatum, R.P. Development and application of optical fibre strain and pressure sensors for in-flight measurements. Meas. Sci. Technol., 2016, 27, 104001.
[http://dx.doi.org/10.1088/0957-0233/27/10/104001]
[19]
Sultanova, N.; Kasarova, S.; Nikolov, I. Dispersion properties of optical polymers. Acta Phys. Pol. A, 2009, 116, 585-587.
[http://dx.doi.org/10.12693/APhysPolA.116.585]
[20]
Sultanova, N.G.; Kasarova, S.N.; Nikolov, I.D. Characterization of optical properties of optical polymers. J. Opt. Quant. Electron., 2013, 45, 221-232.
[http://dx.doi.org/10.1007/s11082-012-9616-6]
[21]
Socorro-Leranoz, A.B.; Santano, D.; Villar, I.D.; Matias, I.R. Trends in the design of wavelength-based optical fibre biosensors (2008-2018). Biosens. Bioelectron., 2019, 1, 100015.
[22]
Zhao, Y.; Tong, R.J.; Xia, F.; Peng, Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron., 2019, 142, 111505.
[http://dx.doi.org/10.1016/j.bios.2019.111505] [PMID: 31357154]
[23]
Robertson, W.M.; Wright, S.M.; Friedli, A.; Summers, J.; Kaszynski, A. Design and characterization of an ultra-low-cost 3D printed optical sensor based on Bloch surface wave resonance. Biosens. Bioelectron., 2020, 5, 100049.
[24]
Guo, Y.; Jafari, Z.; Xu, L.; Bao, C.; Liao, P.; Li, G.; Agrawal, A.M.; Kimerling, L.C.; Michel, J.; Willner, A.E.; Zhang, L. Ultra flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photon. Res., 2019, 7(11), 1279-1286.
[http://dx.doi.org/10.1364/PRJ.7.001279]
[25]
Guo, Y.; Xu, L.; Jafari, Z.; Agrawal, A.M.; Kimerling, L.C.; Li, G.; Michel, J.; Zhang, L. Two octave dispersion flattening with five zero- dispersion wavelengths in the deep mid-IR. Proceedings Volume 10541, Photonic and Phononic Properties of Engineered Nanostructures VIII; 105412E (2018), SPIE OPTO, 2018, San Francisco, California, United States, 105412E, 2018, 1-6.
[26]
Yao, Z.; Wan, Y.; Bu, R.; Zheng, Z. Improved broadband dispersion engineering in coupled silicon nitride waveguides with a partially etched gap. Appl. Opt., 2019, 58(29), 8007-8012.
[http://dx.doi.org/10.1364/AO.58.008007] [PMID: 31674354]
[27]
Guo, Y.; Wang, J.; Han, Z.; Wada, K.; Kimerling, L.C.; Agarwal, A.M.; Michel, J.; Zheng, Z.; Li, G.; Zhang, L. Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics, 2018, 7(8), 1461-1467.
[http://dx.doi.org/10.1515/nanoph-2017-0131]
[28]
Singh, N.; Hudson, D.D.; Eggleton, B.J. Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation. Opt. Express, 2015, 23(13), 17345-17354.
[http://dx.doi.org/10.1364/OE.23.017345] [PMID: 26191744]
[29]
Yuan, J.; Kang, Z.; Li, F.; Zhang, X.; Sang, X.; Wu, Q.; Yan, B.; Wang, K.; Xian, Z.; Zhong, K.; Zhou, G.; Yu, C.; Lu, C.; Tam, H.Y.; Wai, P.K.A. Mid Infrared octave-spanning supercontinuum and frequency comb generation in a suspended Germanium-membrane ridge waveguide. J. Lit. Technol., 2017, 35(14), 2994-3002.
[http://dx.doi.org/10.1109/JLT.2017.2703644]
[30]
Petersen, C.R.; Møller, U.; Kubat, I.; Zhou, B.; Dupont, S.; Ramsay, J.; Benson, T.; Sujecki, S.; Abdel-Moneim, N.; Tang, Z.; Furniss, D.; Seddon, A.; Bang, O. Mid-infrared super-continuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 2014, 8, 830-834.
[http://dx.doi.org/10.1038/nphoton.2014.213]
[31]
Saini, T.S.; Nguyen, H.P.T.; Luo, X.; Tuan, T.H.; Suzuki, T.; Ohishi, Y. Broadband high-power mid-IR supercontinuum generation in tapered chalcogenide step-index optical fiber. OSA Continuum, 2019, 2(15), 1652-1666.
[http://dx.doi.org/10.1364/OSAC.2.001652]
[32]
Michalska, M.; Mikolajczyk, J.; Wojtas, J.; Swiderski, J. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses. Sci. Rep., 2016, 6, 39138.
[http://dx.doi.org/10.1038/srep39138] [PMID: 27974816]
[33]
Yang, M.; Xu, L.; Wang, J.; Liu, H.; Zhou, X.; Li, G.; Zhang, L. An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide. IEEE J. Sel. Top. Quantum Electron., 2018, 24(6), 8300607.
[http://dx.doi.org/10.1109/JSTQE.2018.2836992]
[34]
Ng, D.K.T.; Wang, Q.; Wang, T.; Ng, S.K.; Toh, Y.T.; Lim, K.P.; Yang, Y.; Tan, D.T.H. Exploring high refractive index silicon-rich nitride films by low temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides. ACS Appl. Mater. Interfaces, 2015, 7(39), 21884-21889.
[http://dx.doi.org/10.1021/acsami.5b06329] [PMID: 26375453]
[35]
Guo, Y.; Jafari, Z.; Xu, L.; Bao, C.; Liao, P.; Li, G.; Agrawal, A.M.; Kimerling, L.C.; Michel, J.; Willner, A.E.; Zhang, L. Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photon. Res., 2019, 7(11), 1279-1286.
[http://dx.doi.org/10.1364/PRJ.7.001279]
[36]
Castillo, L.E.G.; Genoves, A.J.R.; Revuelto, I.G.; Palma, M.S.; Sarkar, T.K. Third-order Nedelec curl-conforming finite element. IEEE Trans. Magn., 2002, 38(5), 2370-2372.
[http://dx.doi.org/10.1109/TMAG.2002.803577]
[37]
Hiptmair, R.; Hoppe, R.H.W. Multilevel methods for mixed finite elements in three dimensions. Numer. Math., 1999, 82, 253-279.
[http://dx.doi.org/10.1007/s002110050419]
[38]
Sarmany, D.; Bochev, M.A.; van der Vegt, J.J.W.; Verwer, J.G. Comparing DG and Nedelec finite element discretisations of the second-order time-domain Maxwell equation. (Memorandum/ Department of Applied Mathematics; No. 1912) Enschede: Numerical Analysis and Computational Mechanics (NACM), 2009.
[39]
Koshiba, M.; Tsuji, Y. Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. J. Lit. Technol., 2000, 18(5), 737-743.
[http://dx.doi.org/10.1109/50.842091]
[40]
Haddouche, I.; Cherbi, L. Comparison of finite element and transfer matrix methods for numerical investigation of surface plasmon waveguides. Opt. Commun., 2017, 382, 132-137.
[http://dx.doi.org/10.1016/j.optcom.2016.07.068]
[41]
Hadley, G.R. Numerical simulation of waveguides of arbitrary cross-section. Int. J. Electron. Commun., 2004, 58, 86-92.
[http://dx.doi.org/10.1078/1434-8411-54100212]
[42]
Jin, J. The Finite Element Method in Electromagnetics, 2nd ed; Wiley & Sons: New York, 2002.
[43]
Guo, Y.; Jafari, Z.; Agarwal, A.M.; Kimerling, L.C.; Li, G.; Michel, J.; Zhang, L. Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths. Opt. Lett., 2016, 41(21), 4939-4942.
[http://dx.doi.org/10.1364/OL.41.004939] [PMID: 27805655]
[44]
Bian, Y.; Zheng, Z.; Zhao, X.; Su, Y.; Liu, L.; Liu, J.; Zhu, J.; Zhou, T. T-shaped dielectric slot waveguides for efficient control of birefringence and polarization independent directional coupling. Opt. Commun., 2012, 285, 5118-5121.
[http://dx.doi.org/10.1016/j.optcom.2012.07.104]
[45]
Zhang, L.; Agarwal, A.M.; Kimerling, L.C.; Michel, J. Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 2014, 3(4-5), 247-268.
[http://dx.doi.org/10.1515/nanoph-2013-0020]
[46]
Krogstad, M.R.; Ahn, S.; Park, W.; Gopinath, J.T. Optical characterization of chalcogenide Ge-Sb-Se waveguides at telecom wavelengths. IEEE Photonics Technol. Lett., 2016, 28(23), 2720-2723.
[http://dx.doi.org/10.1109/LPT.2016.2615189]
[47]
Iqbal, M. Dispersion modified slot optical waveguides. Optik (Stuttg.), 2014, 125(14), 3549-3554.
[http://dx.doi.org/10.1016/j.ijleo.2014.01.053]
[48]
Agrawal, G.P. Nonlinear Fiber Optics, 5th ed; Elsevier: Academic Press, 2013.
[49]
Eggleton, B.J.; Davies, B.L.; Richardson, K. Chalcogenide photonics. Nat. Photonics, 2011, 5, 141-148.
[http://dx.doi.org/10.1038/nphoton.2011.309]
[50]
Anne, M.L.; Keirsse, J.; Nazabal, V.; Hyodo, K.; Inoue, S.; Boussard-Pledel, C.; Lhermite, H.; Charrier, J.; Yanakata, K.; Loreal, O.; Le Person, J.; Colas, F.; Compère, C.; Bureau, B. Chalcogenide glass optical waveguides for infrared biosensing. Sensors (Basel), 2009, 9(9), 7398-7411.
[http://dx.doi.org/10.3390/s90907398] [PMID: 22423209]
[51]
Lee, J.H.; Choi, J.H.; Yi, J.H.; Lee, W.H.; Lee, E.S.; Choi, Y.G. Unravelling interrelations between chemical composition and refractive index dispersion of infrared-transmitting chalcogenide glasses. Sci. Rep., 2018, 8(1), 15482.
[http://dx.doi.org/10.1038/s41598-018-33824-x] [PMID: 30341331]
[52]
Lipson, M.; Barrios, C.A.; Almeida, V. R.; Panepucci, R.R.; Xu, Q. Waveguide structure for guiding light in low index material US7519257 B2, 2009.
[53]
Mikhailov, E.E.; Sautenkov, V.A.; Rostovtsev, Y.V.; Welch, G.R. Absorption resonance and large negative delay in rubidium vapor with a buffer gas. J. Opt. Soc. Am. B, 2004, 21(2), 425-428.
[http://dx.doi.org/10.1364/JOSAB.21.000425]
[54]
Ye, D.; Zheng, G.; Wang, J.; Wang, Z.; Qiao, S.; Huangfu, J.; Ran, L. Negative group velocity in the absence of absorption resonance. Sci. Rep., 2013, 3, 1628.
[http://dx.doi.org/10.1038/srep01628] [PMID: 23568139]

© 2024 Bentham Science Publishers | Privacy Policy