Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Efficient Wormlike Micelles for the Controlled Delivery of Anticancer Drugs

Author(s): P. Sharmiladevi, M. Breghatha, K. Dhanavardhini, R. Priya, K. Girigoswami and A. Girigoswami*

Volume 11, Issue 3, 2021

Published on: 28 July, 2020

Page: [350 - 356] Pages: 7

DOI: 10.2174/2210681210999200728115601

Price: $65

Abstract

Background: In order to improve the solubility and carrying capacity of anticancer drugs to the targeted cells, a potential nanoformulation is needed.

Objective: Viscoelastic wormlike micelles (WLM) have been reported in the present study.

Methods: The elongated and flexible aggregates of amphiphiles were formed due to the selforganization when the amphiphile concentration was fixed at its CMC and the sodium salicylate concentration was varied for the optimization.

Results: The stable structure, higher density, higher viscosity and potent cell killing effect at lower concentration of the drug was observed at 480 μM concentration of sodium salicylate. The doxorubicin release profile showed a clear sustained release after 20 h, and 82% of the drug has been released after 72 h.

Conclusion: Therefore, the designed WLMs can be used as efficient drug delivery vehicles for the treatment of cancer.

Keywords: Wormlike micelles, drug delivery system, doxorubicin, drug release kinetics, encapsulation, nanoformulations.

Graphical Abstract
[1]
Haribabu, V.; Farook, A.S.; Goswami, N.; Murugesan, R.; Girigoswami, A. Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(4), 817-824.
[http://dx.doi.org/10.1002/jbm.b.33550] [PMID: 26460478]
[2]
Haribabu, V.; Sharmiladevi, P.; Akhtar, N.; Farook, A.S.; Girigoswami, K.; Girigoswami, A. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr. Drug Deliv., 2019, 16(3), 233-241.
[http://dx.doi.org/10.2174/1567201816666181119112410] [PMID: 30451110]
[3]
Sharmiladevi, P.; Haribabu, V.; Girigoswami, K.; Sulaiman Farook, A.; Girigoswami, A. Effect of mesoporous nano water reservoir on MR relaxivity. Sci. Rep., 2017, 7(1), 11179.
[http://dx.doi.org/10.1038/s41598-017-11710-2] [PMID: 28894269]
[4]
Thendral, V.; Dharshni, T.; Ramalakshmi, M.; Girigoswami, A.; Girigoswami, K. Cerium oxide nanocluster based nanobiosensor for ROS detection. Biocatal. Agric. Biotechnol., 2019., 19101124.
[http://dx.doi.org/10.1016/j.bcab.2019.101124]
[5]
Akhtar, N.; Metkar, S.K.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater. Sci. Eng. C, 2017, 78, 960-968.
[http://dx.doi.org/10.1016/j.msec.2017.04.118] [PMID: 28576073]
[6]
Mohammad, A.; Khan, M.E.; Karim, M.R.; Cho, M.H. Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostruc-tures for improved photocatalytic and photoelectrochemical performance. Appl. Surf. Sci., 2019, 495, 143432.
[http://dx.doi.org/10.1016/j.apsusc.2019.07.174]
[7]
Mohammad, A.; Karim, M.R.; Khan, M.E.; Khan, M.M.; Cho, M.H. Biofilm-assisted fabrication of Ag@ SnO2-g-C3N4 nanostructures for visible light-induced photocatalysis and photoelectrochemical performance. J. Phys. Chem. C, 2019, 123(34), 20936-20948.
[http://dx.doi.org/10.1021/acs.jpcc.9b05105]
[8]
Khan, M.E. Cho, M.H. Advanced Nanostructured Materials for Environmental Remediation; Springer, 2019, pp. 173-187.
[http://dx.doi.org/10.1007/978-3-030-04477-0_7]
[9]
Khan, M.E.; Khan, M.M.; Cho, M.H. Recent progress of metal-graphene nanostructures in photocatalysis. Nanoscale, 2018, 10(20), 9427-9440.
[http://dx.doi.org/10.1039/C8NR03500H] [PMID: 29762624]
[10]
Yamini, S.; Gunaseelan, M.; Kumar, G.A.; Singh, S.; Dannangoda, G.C.; Martirosyan, K.S.; Sardar, D.K.; Sivakumar, S.; Girigoswami, A.; Senthilselvan, J. NaGdF4:Yb,Er-Ag nanowire hybrid nanocomposite for multifunctional upconversion emission, optical imaging, MRI and CT imaging applications. Mikrochim. Acta, 2020, 187(6), 317.
[http://dx.doi.org/10.1007/s00604-020-04285-9] [PMID: 32385722]
[11]
Khan, M.E.; Khan, M.M.; Cho, M.H. Fabrication of WO 3 nanorods on graphene nanosheets for improved visible light-induced photoca-pacitive and photocatalytic performance. RSC Adv., 2016, 6(25), 20824-20833.
[http://dx.doi.org/10.1039/C5RA24575C]
[12]
Jaiganesh, T.; Rani, J.D.V.; Girigoswami, A. Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 92, 29-32.
[http://dx.doi.org/10.1016/j.saa.2012.02.044] [PMID: 22407211]
[13]
Kavya, J.; Amsaveni, G.; Nagalakshmi, M.; Girigoswami, K.; Murugesan, R.; Girigoswami, A. Silver nanoparticles induced lowering of BCl2/Bax causes dalton’s lymphoma tumour cell death in mice. J. Bionanosci., 2013, 7(3), 276-281.
[http://dx.doi.org/10.1166/jbns.2013.1135]
[14]
Girigoswami, K.; Viswanathan, M.; Murugesan, R.; Girigoswami, A. Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity. Mater. Sci. Eng. C, 2015, 56, 501-510.
[http://dx.doi.org/10.1016/j.msec.2015.07.017] [PMID: 26249620]
[15]
Ghosh, D.; Sarkar, D.; Girigoswami, A.; Chattopadhyay, N. A fully standardized method of synthesis of gold nanoparticles of desired dimension in the range 15 nm-60 nm. J. Nanosci. Nanotechnol., 2011, 11(2), 1141-1146.
[http://dx.doi.org/10.1166/jnn.2011.3090] [PMID: 21456151]
[16]
Girigoswami, A.; Yassine, W.; Sharmiladevi, P.; Haribabu, V.; Girigoswami, K. Camouflaged nanosilver with excitation wavelength de-pendent high quantum yield for targeted theranostic. Sci. Rep., 2018, 8(1), 16459.
[http://dx.doi.org/10.1038/s41598-018-34843-4] [PMID: 30405190]
[17]
Sharmiladevi, P.; Akhtar, N.; Haribabu, V.; Girigoswami, K.; Chattopadhyay, S.; Girigoswami, A. Excitation wavelength independent car-bon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl. Bio. Mater., 2019, 2(4), 1634-1642.
[http://dx.doi.org/10.1021/acsabm.9b00039]
[18]
Ghosh, S.; Girigoswami, K.; Girigoswami, A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine (Lond.), 2019, 14(15), 2067-2082.
[http://dx.doi.org/10.2217/nnm-2019-0155] [PMID: 31355709]
[19]
Chu, Z.; Dreiss, C.A.; Feng, Y. Smart wormlike micelles. Chem. Soc. Rev., 2013, 42(17), 7174-7203.
[http://dx.doi.org/10.1039/c3cs35490c] [PMID: 23545844]
[20]
De, S.; Girigoswami, A.; Mandal, S. Enhanced fluorescence of triphenylmethane dyes in aqueous surfactant solutions at supramicellar concentrations--effect of added electrolyte. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2002, 58(12), 2547-2555.
[http://dx.doi.org/10.1016/S1386-1425(02)00026-4] [PMID: 12396036]
[21]
De, S.; Girigoswami, A.; Das, S. Fluorescence probing of albumin-surfactant interaction. J. Colloid Interface Sci., 2005, 285(2), 562-573.
[http://dx.doi.org/10.1016/j.jcis.2004.12.022] [PMID: 15837473]
[22]
De, S.; Girigoswami, A. Fluorescence resonance energy transfer-a spectroscopic probe for organized surfactant media. J. Colloid Interface Sci., 2004, 271(2), 485-495.
[http://dx.doi.org/10.1016/j.jcis.2003.10.021] [PMID: 14972626]
[23]
Girigoswami, A.; Das, S.; De, S. Fluorescence and dynamic light scattering studies of niosomes-membrane mimetic systems. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 64(4), 859-866.
[http://dx.doi.org/10.1016/j.saa.2005.08.015] [PMID: 16330244]
[24]
Kavya, J.; Amsaveni, G.; Yasmin, H.; Murugesan, R.; Girigoswami, A. Gene expression profile induced by liposomal nanoformulation of anticancer agents: Insight into cell death mechanism. Adv. Sci. Eng. Med., 2014, 6(2), 159-165.
[http://dx.doi.org/10.1166/asem.2014.1476]
[25]
Vimaladevi, M.; Divya, K.C.; Girigoswami, A. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of mul-tidrug resistant gram negative bacteria in sewage treatment plant. J. Photochem. Photobiol. B, 2016, 162, 146-152.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.034] [PMID: 27371913]
[26]
Caminade, A-M.; Turrin, C-O. Dendrimers for drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(26), 4055-4066.
[http://dx.doi.org/10.1039/C4TB00171K] [PMID: 32261736]
[27]
Amsaveni, G.; Farook, A.S.; Haribabu, V.; Murugesan, R.; Girigoswami, A. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv. Sci. Eng. Med., 2013, 5(12), 1340-1348.
[http://dx.doi.org/10.1166/asem.2013.1425]
[28]
Deepika, R.; Girigoswami, K.; Murugesan, R.; Girigoswami, A. Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Curr. Drug Deliv., 2018, 15(5), 652-657.
[http://dx.doi.org/10.2174/1567201814666170825160617] [PMID: 28847271]
[29]
Dreiss, C.A. Wormlike micelles: Where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter, 2007, 3(8), 956-970.
[http://dx.doi.org/10.1039/b705775j]
[30]
Gharebaghi, F.; Dalali, N.; Ahmadi, E.; Danafar, H. Preparation of wormlike polymeric nanoparticles coated with silica for delivery of methotrexate and evaluation of anticancer activity against MCF7 cells. J. Biomater. Appl., 2017, 31(9), 1305-1316.
[http://dx.doi.org/10.1177/0885328217698063] [PMID: 28447548]
[31]
Mahata, A.; Sarkar, D.; Bose, D.; Ghosh, D.; Girigoswami, A.; Das, P.; Chattopadhyay, N. Photophysics and rotational dynamics of a β-carboline analogue in nonionic micelles: effect of variation of length of the headgroup and the tail of the surfactant. J. Phys. Chem. B, 2009, 113(21), 7517-7526.
[http://dx.doi.org/10.1021/jp900575e] [PMID: 19413359]
[32]
Bose, D.; Sarkar, D.; Girigoswami, A.; Mahata, A.; Ghosh, D.; Chattopadhyay, N. Photophysics and rotational relaxation dynamics of cationic phenazinium dyes in anionic reverse micelles: Effect of methyl substitution. J. Chem. Phys., 2009, 131(11), 114707.
[http://dx.doi.org/10.1063/1.3225476] [PMID: 19778142]
[33]
Hoffmann, H. Fascinating phenomena in surfactant chemistry. Adv. Mater., 1994, 6(2), 116-129.
[http://dx.doi.org/10.1002/adma.19940060204]
[34]
Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci., 2008, 33(11), 1088-1118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[35]
Kang, W.; Wang, P.; Fan, H.; Yang, H.; Dai, C.; Yin, X.; Zhao, Y.; Guo, S. A pH-responsive wormlike micellar system of a noncovalent interaction-based surfactant with a tunable molecular structure. Soft Matter, 2017, 13(6), 1182-1189.
[http://dx.doi.org/10.1039/C6SM02655A] [PMID: 28098315]
[36]
Jain, D. Cardiotoxicity of doxorubicin and other anthracycline derivatives. J. Nucl. Cardiol., 2000, 7(1), 53-62.
[http://dx.doi.org/10.1067/mnc.2000.103324] [PMID: 10698235]
[37]
Tahover, E.; Patil, Y.P.; Gabizon, A.A. Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anticancer Drugs, 2015, 26(3), 241-258.
[http://dx.doi.org/10.1097/CAD.0000000000000182] [PMID: 25415656]
[38]
Ghosh, R.; Girigoswami, K.; Guha, D. Suppression of apoptosis leads to cisplatin resistance in V79 cells subjected to chronic oxidative stress. Indian J. Biochem. Biophys., 2012, 49, 363-370.
[39]
Metkar, S.K.; Girigoswami, A.; Murugesan, R.; Girigoswami, K. In vitro and in vivo insulin amyloid degradation mediated by Serratiopep-tidase. Mater. Sci. Eng. C, 2017, 70(Pt 1), 728-735.
[http://dx.doi.org/10.1016/j.msec.2016.09.049] [PMID: 27770948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy