Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Applications of Iron Oxide Nanoparticles in Magnetic Resonance Imaging (MRI)

Author(s): Pratima Chauhan* and Pratishtha Kushwaha

Volume 11, Issue 3, 2021

Published on: 28 July, 2020

Page: [290 - 299] Pages: 10

DOI: 10.2174/2210681210999200728102036

Price: $65

Abstract

Iron Oxide nanoparticles, by the help of legitimate surface science, have been broadly utilized tentatively in many living organism applications, for example, magnetic resonance imaging (MRI), drug delivery, repair of tissue, immunobiology, hyperthermia, detoxification of natural liquids, to differentiate improvement between low and high contrast tissues, in cell partition and so on. Moreover, these applications need exceptional non-toxic and biocompatible surface covering of the attractive particles to permit a targetable conveyance with molecular restriction in a particular territory. The general size of the colloid can be estimated ordinarily of the surface covering and the resulting spatial course of action adjacent to the nanoparticles, and it additionally assumes a critical job in bio-kinetics and bio-distribution of nanoparticles in the body. The kinds of surface coatings, for this sort of nanoparticles, rely upon the kind of application and ought to be picked by remembering a specific application, regardless of whether it is gone for aggravation reaction or anti-cancer agents. In this paper, the manufactured science, liquid adjustment, and surface change of Iron Oxide nanoparticles, just as their utilization for biomedical applications, are examined.

Keywords: Anticancer, tissue repair, magnetic resonance imaging, nanoparticles, biological fluids, hyperthermia.

Graphical Abstract
[1]
Moghimi, S.M.; Hunter, A.C.H.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[2]
Curtis, A.; Wilkinson, C. Nantotechniques and approaches in biotechnology. Trends Biotechnol., 2001, 19(3), 97-101.
[http://dx.doi.org/10.1016/S0167-7799(00)01536-5] [PMID: 11179802]
[3]
Wilkinson, J.M. Nanotechnology applications in medicine. Med. Device Technol., 2003, 14(5), 29-31.
[PMID: 12852120]
[4]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[5]
Siegel, R.W.; Hu, E.; Roco, M.C. Nanostructure science and technology: A worldwide study. WTEC; Loyola College in Maryland, 1999.
[http://dx.doi.org/10.1007/978-94-015-9185-0]
[6]
Uchegbu, I.F.; Florence, A.T. Adverse drug events related to dosage forms and delivery systems. Drug Saf., 1996, 14(1), 39-67.
[http://dx.doi.org/10.2165/00002018-199614010-00005] [PMID: 8713487]
[7]
Gilchrist, R.K.; Medal, R.; Shorey, W.D.; Hanselman, R.C.; Parrott, J.C.; Taylor, C.B. Selective inductive heating of lymph nodes. Ann. Surg., 1957, 146(4), 596-606.
[http://dx.doi.org/10.1097/00000658-195710000-00007] [PMID: 13470751]
[8]
Schwertmann, U.; Cornell, R.M. Iron Oxides in the laboratory: Preparation and characterization 1991, 104(11), 1569-1569.
[9]
Cornelis, K.; Hurlburt, C.S. Manual of Mineralogy; Wiley: New York, 1977.
[10]
Kwei, G.H.; Von, D.R.B.; Williams, A.; Goldstone, J.A.; Lawson II, A.C.; Warburton, W.K. Structure and valence from complementary anomalous X-ray and neutron powder diffraction. J. Mol. Struct., 1990, 223, 383-406.
[http://dx.doi.org/10.1016/0022-2860(90)80482-Y]
[11]
Babincová, M.; Babinec, P.; Bergemann, C. High-gradient magnetic capture of ferrofluids: Implications for drug targeting and tumor embolization. Z. Natforsch. C J. Biosci., 2001, 56(9-10), 909-911. [Sect C].
[http://dx.doi.org/10.1515/znc-2001-9-1039] [PMID: 11724405]
[12]
Wang, Y.X.; Hussain, S.M.; Krestin, G.P. Superparamagnetic Iron Oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur. Radiol., 2001, 11(11), 2319-2331.
[http://dx.doi.org/10.1007/s003300100908] [PMID: 11702180]
[13]
Bonnemain, B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J. Drug Target., 1998, 6(3), 167-174.
[http://dx.doi.org/10.3109/10611869808997890] [PMID: 9888302]
[14]
Maurizi, L.; Bouyer, F.; Paris, J.; Demoisson, F.; Saviot, L.; Millot, N. One step continuous hydrothermal synthesis of very fine stabilized superparamagnetic nanoparticles of magnetite. Chem. Commun. (Camb.), 2011, 47(42), 11706-11708.
[http://dx.doi.org/10.1039/c1cc15470b] [PMID: 21952422]
[15]
Chambon, C.; Clement, O.; Le Blanche, A.; Schouman-Claeys, E.; Frija, G. Superparamagnetic Iron Oxides as positive MR contrast agents: In vitro and in vivo evidence. Magn. Reson. Imaging, 1993, 11(4), 509-519.
[http://dx.doi.org/10.1016/0730-725X(93)90470-X] [PMID: 8316064]
[16]
Thomas, G.; Demoisson, F.; Chassagnon, R.; Popova, E.; Millot, N. One-step continuous synthesis of functionalized magnetite nanoflowers. Nanotechnology, 2016, 27(13)135604
[http://dx.doi.org/10.1088/0957-4484/27/13/135604] [PMID: 26900748]
[17]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of Iron Oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[18]
Perez, J.M.; Josephson, L.; Weissleder, R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem, 2004, 5(3), 261-264.
[http://dx.doi.org/10.1002/cbic.200300730] [PMID: 14997516]
[19]
Sun, C.; Sze, R.; Zhang, M.Q. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J. Biomed. Mater. Res., 2006, 78(A), 550-557.
[http://dx.doi.org/10.1002/jbm.a.30781]
[20]
Di Corato, R.; Bigall, N.C.; Ragusa, A.; Dorfs, D.; Genovese, A.; Marotta, R.; Manna, L.; Pellegrino, T. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: Synthesis and cancer cell targeting and sorting. ACS Nano, 2011, 5(2), 1109-1121.
[http://dx.doi.org/10.1021/nn102761t] [PMID: 21218823]
[21]
Huang, Y.W.; Cambre, M.; Lee, H.J. The Toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci., 2017, 18(12), 18.
[http://dx.doi.org/10.3390/ijms18122702] [PMID: 29236059]
[22]
Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small, 2008, 4(1), 26-49.
[http://dx.doi.org/10.1002/smll.200700595] [PMID: 18165959]
[23]
Howes, P.; Green, M.; Bowers, A.; Parker, D.; Varma, G.; Kallumadil, M.; Hughes, M.; Warley, A.; Brain, A.; Botnar, R. Magnetic conjugated polymer nanoparticles as bimodal imaging agents. J. Am. Chem. Soc., 2010, 132(28), 9833-9842.
[http://dx.doi.org/10.1021/ja1031634] [PMID: 20572665]
[24]
Boudon, J.; Paris, J.; Bernhard, Y.; Popova, E.; Decréau, R.A.; Millot, N. Magneto-optical nanomaterials: A SPIO-phthalocyanine scaffold built step-by-step towards bimodal imaging. Chem. Commun. (Camb.), 2013, 49(67), 7394-7396.
[http://dx.doi.org/10.1039/c3cc41898g] [PMID: 23857541]
[25]
Altamura, S.; Muckenthaler, M.U. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J. Alzheimers Dis., 2009, 16(4), 879-895.
[http://dx.doi.org/10.3233/JAD-2009-1010] [PMID: 19387120]
[26]
Zecca, L.; Youdim, M.B.H.; Riederer, P.; Connor, J.R.; Crichton, R.R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci., 2004, 5(11), 863-873.
[http://dx.doi.org/10.1038/nrn1537] [PMID: 15496864]
[27]
Chin, A.B.; Yaacob, I.I. Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J. Mater. Process. Technol., 2007, 191, 235-237.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.03.011]
[28]
Albornoz, C.; Jacobo, S.E. Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J. Magn. Magn. Mater., 2006, 12, 305.
[29]
Kim, E.H.; Lee, H.S.; Kwak, B.K.; Kim, B.K. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater., 2005, 289, 328.
[http://dx.doi.org/10.1016/j.jmmm.2004.11.093]
[30]
Wan, J.; Chen, X.; Wang, Z.; Yang, X.; Qian, Y. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J. Cryst. Growth, 2005, 276, 571.
[http://dx.doi.org/10.1016/j.jcrysgro.2004.11.423]
[31]
Kimata, M.; Nakagawa, D.; Hasegawa, M. Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide. Powder Technol., 2003, 132, 112.
[http://dx.doi.org/10.1016/S0032-5910(03)00046-9]
[32]
Alvarez, G.S.; Muhammed, M.; Zagorodni, A.A. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci., 2006, 61, 4625.
[http://dx.doi.org/10.1016/j.ces.2006.02.032]
[33]
Basak, S.; Chen, D.R.; Biswas, P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: Modified scaling law. Chem. Eng. Sci., 2007, 62, 1263.
[http://dx.doi.org/10.1016/j.ces.2006.11.029]
[34]
Sjögren, C.E.; Johansson, C.; Naevestad, A.; Sontum, P.C.; Briley-Saebø, K.; Fahlvik, A.K. Crystal size and properties of superparamagnetic Iron Oxide (SPIO) particles. Magn. Reson. Imaging, 1997, 15(1), 55-67.
[http://dx.doi.org/10.1016/S0730-725X(96)00335-9] [PMID: 9084026]
[35]
Nunes, A.C.; Yu, Z.C. Fractionation of a water-based ferrofluid. J. Magn. Magn. Mater., 1987, 65, 265.
[http://dx.doi.org/10.1016/0304-8853(87)90047-3]
[36]
Thurm, S.; Odenbach, S. Magnetic separation of ferrofluids. J. Magn. Magn. Mater., 2002, 252, 247.
[http://dx.doi.org/10.1016/S0304-8853(02)00679-0]
[37]
Martinez, M.I.; Espinosa, M.E.; Perez, H.R.; Alatorre, A. Preparation and magnetic properties of magnetite nanoparticles. J. Mater. Lett, 2007, 61, 4447-4451.
[http://dx.doi.org/10.1016/j.matlet.2007.02.018]
[38]
Morisson, S.A.; Cahill, C.L.; Carpenter, E.; Calvin, S.; Harris, V.G. Atomic engineering of mixed ferrite and core-shell nanoparticles. J. Nanosci. Nanotechnol., 2005, 5, 1323.
[http://dx.doi.org/10.1166/jnn.2005.303] [PMID: 16193949]
[39]
Sun, Y.K.; Ma, M.; Zhang, Y.; Gu, N. Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf. A Physicochem. Eng. Asp., 2004, 245, 15.
[http://dx.doi.org/10.1016/j.colsurfa.2004.05.009]
[40]
Qiu, J.; Yang, R.; Li, M.; Jiang, N. Preparation and characterization of porous ultrafine Fe2O3 particles. Mater. Res. Bull., 2005, 40, 1968.
[http://dx.doi.org/10.1016/j.materresbull.2005.05.025]
[41]
Lee, S.J.; Jeong, J.R.; Shin, S.C.; Kim, J.C.; Kim, J.D. Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique. J. Magn. Magn. Mater., 2004, 282, 147.
[http://dx.doi.org/10.1016/j.jmmm.2004.04.035]
[42]
Cornell, R.M.; Schwertmann, U. The Iron Oxides; VCH Publishers: Weinheim, Germany, 1996.
[43]
Boistelle, R.; Astier, J.P. Crystallization mechanisms in solution. J. Cryst. Growth, 1988, 90, 14.
[http://dx.doi.org/10.1016/0022-0248(88)90294-1]
[44]
Sugimoto, T. Formation of monodispersed nano‐and micro‐particles controlled in size, shape, and internal structure. Chem. Eng. Technol., 2003, 26, 3.
[http://dx.doi.org/10.1002/ceat.200390048]
[45]
Schwarzer, H.C.; Peukert, W. Tailoring particle size through nanoparticle precipitation. Chem. Eng. Commun., 2004, 191, 580.
[http://dx.doi.org/10.1080/00986440490270106]
[46]
Cornell, R.M.; Schertmann, U. Iron Oxides in the Laboratory: Preparation and Characterization; VCH Publishers: Weinheim, Germany, 1991.
[47]
Gribanow, N.M.; Bibik, E.E.; Buzunov, O.V.; Naumov, V.N. Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J. Magn. Magn. Mater., 1990, 85, 7.
[http://dx.doi.org/10.1016/0304-8853(90)90005-B]
[48]
Tartaj, P.; Morales, M.P.; Veintemillas, V.S.; Gonzalez, C.T.; Serna, C.J. Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook of Magnetic Materials; Elsevier: Amsterdam, The Netherlands, 2006, p. 403.
[49]
Sahoo, B.; Devi, K.S.; Dutta, S.; Maiti, T.K.; Pramanik, P.; Dhara, D.; Dhara, D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J. Colloid Interface Sci., 2014, 431, 31-41.
[http://dx.doi.org/10.1016/j.jcis.2014.06.003] [PMID: 24980623]
[50]
Zhao, X.; Zhao, H.; Chen, Z.; Lan, M. Ultrasmall superparamagnetic Iron Oxide nanoparticles for magnetic resonance imaging contrast agent. J. Nanosci. Nanotechnol., 2014, 14(1), 210-220.
[http://dx.doi.org/10.1166/jnn.2014.9192] [PMID: 24730260]
[51]
Vallabani, N.V.S.; Singh, S. Recent advances and future prospects of Iron Oxide nanoparticles in biomedicine and diagnostics 3 biotech, 2018, >8, 279.
[52]
Bae, H.; Ahmad, T.; Rhee, I.; Chang, Y.; Jin, S.U.; Hong, S. Carbon-coated Iron Oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res. Lett., 2012, 7, 44.
[http://dx.doi.org/10.1186/1556-276X-7-44] [PMID: 22221912]
[53]
Wang, Y.; Xu, C.; Chang, Y.; Zhao, L.; Zhang, K.; Zhao, Y.; Gao, F.; Gao, X. Ultrasmall superparamagnetic iron oxide nanoparticle for T2-weighted magnetic resonance imaging. ACS Appl. Mater. Interfaces, 2017, 9(34), 28959-28966.
[http://dx.doi.org/10.1021/acsami.7b10030] [PMID: 28786283]
[54]
Monaco, I.; Arena, F.; Biffi, S.; Locatelli, E.; Bortot, B.; La Cava, F.; Marini, G.M.; Severini, G.M.; Terreno, E.; Comes Franchini, M. Synthesis of lipophilic core-shell Fe3O4@SiO2@Au nanoparticles and polymeric entrapment into nanomicelles: A novel nanosystem for in vivo active targeting and magnetic resonance-photoacoustic dual imaging. Bioconjug. Chem., 2017, 28(5), 1382-1390.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00076] [PMID: 28453929]
[55]
Yan, J.; Li, S.; Cartieri, F.; Wang, Z.; Hitchens, T.K.; Leonardo, J.; Averick, S.E.; Matyjaszewski, K. Iron Oxide nanoparticles with grafted polymeric analogue of dimethyl sulfoxide as potential magnetic resonance imaging contrast agents. ACS Appl. Mater. Interfaces, 2018, 10(26), 21901-21908.
[http://dx.doi.org/10.1021/acsami.8b06416] [PMID: 29889490]
[56]
Unterweger, H.; Dézsi, L.; Matuszak, J.; Janko, C.; Poettler, M.; Jordan, J.; Bäuerle, T.; Szebeni, J.; Fey, T.; Boccaccini, A.R.; Alexiou, C.; Cicha, I. Dextran-coated superparamagnetic Iron Oxide nanoparticles for magnetic resonance imaging: Evaluation of size-dependent imaging properties, storage stability and safety. Int. J. Nanomedicine, 2018, 13, 1899-1915.
[http://dx.doi.org/10.2147/IJN.S156528] [PMID: 29636608]
[57]
Kania, G.; Sternak, M.; Jasztal, A.; Chlopicki, S.; Błażejczyk, A.; Nasulewicz-Goldeman, A.; Wietrzyk, J.; Jasiński, K.; Skórka, T.; Zapotoczny, S.; Nowakowska, M. Uptake and bioreactivity of charged chitosan-coated superparamagnetic nanoparticles as promising contrast agents for magnetic resonance imaging. Nanomedicine, 2017, 09, 004.
[58]
Stepanov, A.; Fedorenko, S.; Amirov, R.; Nizameev, I.; Kholin, K.; Voloshina, A.; Sapunova, A.; Mendes, R.; Rummeli, M.; Gemming, T.; Mustafina, A.; Odintsov, B. Silica-coated iron-oxide nanoparticles doped with Gd(III) complexes as potential double contrast agents for magnetic resonance imaging at different field strengths. J. Chem. Sci., 2018, 130, 125.
[http://dx.doi.org/10.1007/s12039-018-1527-z]
[59]
Huang, J.; Wang, L.; Lin, R.; Wang, A.Y.; Yang, L.; Kuang, M.; Qian, W.; Mao, H. Casein-coated Iron Oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl. Mater. Interfaces, 2013, 5(11), 4632-4639.
[http://dx.doi.org/10.1021/am400713j] [PMID: 23633522]
[60]
Chan, N.; Laprise-Pelletier, M.; Chevallier, P.; Bianchi, A.; Fortin, M.A.; Oh, J.K. Multidentate block-copolymer-stabilized ultrasmall superparamagnetic Iron Oxide nanoparticles with enhanced colloidal stability for magnetic resonance imaging. Biomacromolecules, 2014, 15(6), 2146-2156.
[http://dx.doi.org/10.1021/bm500311k] [PMID: 24785001]
[61]
Kumar, M.; Singh, G.; Arora, V.; Mewar, S.; Sharma, U.; Jagannathan, N.R.; Sapra, S.; Dinda, A.K.; Kharbanda, S.; Singh, H. Cellular interaction of folic acid conjugated superparamagnetic Iron Oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. Int. J. Nanomedicine, 2012, 7, 3503-3516.
[PMID: 22848174]
[62]
Liao, Z.; Wang, H.; Lv, R.; Zhao, P.; Sun, X.; Wang, S.; Su, W.; Niu, R.; Chang, J. Polymeric liposomes-coated superparamagnetic Iron Oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells. Langmuir, 2011, 27(6), 3100-3105.
[http://dx.doi.org/10.1021/la1050157] [PMID: 21341768]
[63]
Xie, J.; Chen, K.; Huang, J.; Lee, S.; Wang, J.; Gao, J.; Li, X.; Chen, X. PET/NIRF/MRI triple functional Iron Oxide nanoparticles. Biomaterials, 2010, 31(11), 3016-3022.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.010] [PMID: 20092887]
[64]
Yang, X.; Hong, H.; Grailer, J.J.; Rowland, I.J.; Javadi, A.; Hurley, S.A.; Xiao, Y.; Yang, Y.; Zhang, Y.; Nickles, R.J.; Cai, W.; Steeber, D.A.; Gong, S. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic Iron Oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 2011, 32(17), 4151-4160.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.006] [PMID: 21367450]
[65]
Sreeja, V.; Jayaprabha, K.N.; Joy, P.A. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI. Appl. Nanosci., 2014, 5, 435-441.
[http://dx.doi.org/10.1007/s13204-014-0335-0]
[66]
Sanjai, C.; Kothan, S.; Gonil, P.; Saesoo, S.; Sajomsang, W. Chitosan-triphosphate nanoparticles for encapsulation of super-paramagnetic Iron Oxide as an MRI contrast agent. Carbohydr. Polym., 2014, 104, 231-237.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.012] [PMID: 24607182]
[67]
Ma, D.; Shi, M.; Li, X.; Zhang, J.; Fan, Y.; Sun, K.; Jiang, T.; Peng, C.; Shi, X. Redox-sensitive clustered ultrasmall iron oxide nanoparticles for switchable T2/T1-weighted magnetic resonance imaging applications. Bioconjug. Chem., 2020, 31(2), 352-359.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00659] [PMID: 31693856]
[68]
Klein, P.M.; Wagner, E. Bioreducible polycations as shuttles for therapeutic nucleic acid and protein transfection. Antioxid. Redox Signal., 2014, 21(5), 804-817.
[http://dx.doi.org/10.1089/ars.2013.5714] [PMID: 24219092]
[69]
Lynch, I.; Weiss, C.; Valsami, J.E. A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer by-design NMs. Nano Today, 2014, 9, 266-270.
[http://dx.doi.org/10.1016/j.nantod.2014.05.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy