Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

In silico Study to Evaluate the Antiviral Activity of Novel Structures against 3C-like Protease of Novel Coronavirus (COVID-19) and SARS-CoV

Author(s): Kiran Chunduru, Runali Sankhe, Farmiza Begum, Nalini Sodum, Nitesh Kumar*, Anoop Kishore, Rekha R. Shenoy, Chamallamudi M. Rao and Kavitha Saravu

Volume 17, Issue 4, 2021

Published on: 27 July, 2020

Page: [380 - 395] Pages: 16

DOI: 10.2174/1573396316999200727125522

Price: $65

Abstract

Background: Globally, over 4.3 million laboratory confirmed cases of COVID-19 have been reported from over 105 countries. No FDA approved antiviral is available for the treatment of this infection. Zhavoronkov et al., with their generative chemistry pipeline, have generated structures that can be potential novel drug-like inhibitors for COVID-19, provided they are validated. 3C–like protease (3CLP) is a homodimeric cysteine protease that is present in coronaviruses. Interestingly, 3CLP is 96.1% structurally similar between SARS-CoV and SARS-CoV-2.

Objective: To evaluate interaction of generated structures with 3CLP of SARS-CoV (RCSB PDB ID: 4MDS).

Methods: Crystal structure of human SARS-CoV with a non-covalent inhibitor with resolution: 1.598 Å was obtained and molecular docking was performed to evaluate the interaction with generated structures. The MM-GBSA and IFD-SP were performed to narrow down to the structures with better binding energy and IFD score. The ADME analysis was performed on top 5 hits and further MD simulation was employed for top 2 hits.

Results: In XP docking, IFD-SP and molecular dynamic simulation studies, the top 2 hits 32 and 61 showed interaction with key amino acid residue GLU166. Structure 61, also showed interaction with HIS164. These interactions of generated structure 32 and 61, with GLU166 and HIS164, indicate the binding of the selected drug within the close proximity of 3CLP. In the MD simulation, the protein– ligand complex of 4MDS and structure 61 was found to be more stable for 10ns.

Conclusion: These identified structures can be further assessed for their antiviral activity to combat SARS-CoV and COVID-19.

Keywords: Coronavirus, COVID-19, SARS-CoV, 3C- like protease, molecular modelling, anti-viral agent.

Graphical Abstract
[1]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[2]
Organization, W.H. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020; Internet World Health Organization, 2020.
[3]
Demmler, G.J.; Ligon, B.L. Severe acute respiratory syndrome (SARS): a review of the history, epidemiology, prevention, and concerns for the future, Seminars in pediatric infectious diseases; Elsevier, 2003, pp. 240-244.
[4]
Hajjar, S.A.; Memish, Z.A.; McIntosh, K. Middle East respiratory syndrome coronavirus (MERS-CoV): a perpetual challenge. Ann. Saudi Med., 2013, 33(5), 427-436.
[http://dx.doi.org/10.5144/0256-4947.2013.427] [PMID: 24188935]
[5]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Organization, W.H. Novel Coronavirus (2019-nCoV): situation report, 3. 2020.
[7]
Lai, C-C.; Shih, T-P.; Ko, W-C.; Tang, H-J.; Hsueh, P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3)105924
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[8]
WHO Report of the WHO-China Joint Mission on Coronavirus Disease (COVID-19 2019.https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
[9]
Chan, J.F-W.; Yuan, S.; Kok, K-H.; To, K.K-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C-Y.; Poon, R.W-S.; Tsoi, H.W.; Lo, S.K.; Chan, K.H.; Poon, V.K.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.; Chen, H.; Hui, C.K.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[10]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D-Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[11]
Chen, Z-L.; Zhang, Q.; Lu, Y.; Guo, Z-M.; Zhang, X.; Zhang, W-J.; Guo, C.; Liao, C-H.; Li, Q-L.; Han, X-H.; Lu, J.H. Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China. Chin. Med. J. (Engl.), 2020, 133(9), 1044-1050.
[http://dx.doi.org/10.1097/CM9.0000000000000782] [PMID: 32118644]
[12]
Baloch, S.; Baloch, M.A.; Zheng, T.; Pei, X. The coronavirus disease 2019 (COVID-19) pandemic. Tohoku J. Exp. Med., 2020, 250(4), 271-278.
[http://dx.doi.org/10.1620/tjem.250.271] [PMID: 32321874]
[13]
Sivasankarapillai, V.S.; Pillai, A.M.; Rahdar, A.; Sobha, A.P.; Das, S.S.; Mitropoulos, A.C.; Mokarrar, M.H.; Kyzas, G.Z. On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges. Nanomaterials (Basel), 2020, 10(5), 852.
[http://dx.doi.org/10.3390/nano10050852] [PMID: 32354113]
[14]
Vellingiri, B.; Jayaramayya, K.; Iyer, M.; Narayanasamy, A.; Govindasamy, V.; Giridharan, B.; Ganesan, S.; Venugopal, A.; Venkatesan, D.; Ganesan, H.; Rajagopalan, K.; Rahman, P.K.S.M.; Cho, S.G.; Kumar, N.S.; Subramaniam, M.D. COVID-19: A promising cure for the global panic. Sci. Total Environ., 2020, 725138277
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277] [PMID: 32278175]
[15]
Zhavoronkov, A.; Aladinskiy, V.; Zhebrak, A.; Zagribelnyy, B.; Terentiev, V.; Bezrukov, D.S.; Polykovskiy, D.; Shayakhmetov, R.; Filimonov, A.; Orekhov, P. Potential 2019-nCoV 3C-like protease inhibitors designed using generative deep learning approaches. no. February, 2020.
[16]
Bung, N.; Krishnan, S.R.; Bulusu, G.; Roy, A. De novo design of new chemical entities (NCEs) for SARS-CoV-2 using artificial intelligence 2020.
[17]
Sawicki, S.G.; Sawicki, D.L.; Siddell, S.G. A contemporary view of coronavirus transcription. J. Virol., 2007, 81(1), 20-29.
[http://dx.doi.org/10.1128/JVI.01358-06] [PMID: 16928755]
[18]
Knipe, D.; Howley, P.; Cohen, J.; Griffin, D.; Lamb, R.; Martin, M.; Racaniello, V.; Roizman, B. Fields virology; Wolters Kluwer. Lippincott Williams & Wilkins Health: Philadelphia, PA, 2013.
[19]
Turlington, M.; Chun, A.; Tomar, S.; Eggler, A.; Grum-Tokars, V.; Jacobs, J.; Daniels, J.S.; Dawson, E.; Saldanha, A.; Chase, P.; Baez-Santos, Y.M.; Lindsley, C.W.; Hodder, P.; Mesecar, A.D.; Stauffer, S.R. Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett., 2013, 23(22), 6172-6177.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.112] [PMID: 24080461]
[20]
(a) Release, S. 4: Schrödinger Suite 2017-4 Protein Preparation Wizard; Epik, Schrödinger, LLC: New York, NY, 2017.
(b) Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[21]
Kumar, A.; Rathi, E.; Kini, S.G. E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. J. Mol. Struct., 2019, 1189, 299-306.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.023]
[22]
Preparation was performed by LigPrep, L., version 2.5; Schrodinger. Inc.: New York, NY, 2011.
[23]
Nagpal, I.; Raj, I.; Subbarao, N.; Gourinath, S. Virtual screening, identification and in vitro testing of novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica. PLoS One, 2012, 7(2)e30305
[http://dx.doi.org/10.1371/journal.pone.0030305] [PMID: 22355310]
[24]
Rathi, E.; Kumar, A.; Kini, S.G. Molecular dynamics guided insight, binding free energy calculations and pharmacophore-based virtual screening for the identification of potential VEGFR2 inhibitors. J. Recept. Signal Transduct. Res., 2019, 39(5-6), 415-433.
[http://dx.doi.org/10.1080/10799893.2019.1690509] [PMID: 31755336]
[25]
Sabitha, K.; Rajkumar, T. Identification of small molecule inhibitors against UBE2C by using docking studies. Bioinformation, 2012, 8(21), 1047-1058.
[http://dx.doi.org/10.6026/97320630081047] [PMID: 23275705]
[26]
Release, S. 4: Schrödinger Suite 2017-4 Induced Fit Docking protocol; Glide, Schrödinger, LLC: New York, NY, 2017.
[27]
Bowman, A.L.; Nikolovska-Coleska, Z.; Zhong, H.; Wang, S.; Carlson, H.A. Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J. Am. Chem. Soc., 2007, 129(42), 12809-12814.
[http://dx.doi.org/10.1021/ja073687x] [PMID: 17902662]
[28]
Schrödinger, L. QikProp, version 3.5; New York, NY , 2012.
[29]
Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47.
[PMID: 26604800]
[30]
Karypidou, K.; Ribone, S.R.; Quevedo, M.A.; Persoons, L.; Pannecouque, C.; Helsen, C.; Claessens, F.; Dehaen, W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorg. Med. Chem. Lett., 2018, 28(21), 3472-3476.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.019] [PMID: 30286952]
[31]
Ul Qamar, M.T.; Alqahtani, S.M.; Alamri, M.A.; Chen, L-L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy