Review Article

Single Nucleotide Polymorphisms in Colitis-Associated Colorectal Cancer: A Current Overview with Emphasis on the Role of the Associated Genes Products

Author(s): Adam Makaro, Jakub Fichna and Marcin Włodarczyk*

Volume 21, Issue 14, 2020

Page: [1456 - 1462] Pages: 7

DOI: 10.2174/1389450121666200727105218

Price: $65

Abstract

Colitis-Associated Colorectal Cancer (CA-CRC) is one of the most severe complications of Inflammatory Bowel Disease (IBD) and constitutes the cause of death in 10-15% of patients. The risk ratio for carcinogenesis depends on numerous factors, such as the extent of intestinal inflammatory lesions and the duration of the disease. CA-CRC is a major problem of today's gastroenterology and colorectal surgery due to the fact that the incidence and prevalence of IBD are increasing. In this review, we discussed the current state of knowledge regarding genetic differences between sporadic CRC and CA-CRC, especially pertaining to the chromosomal instability mechanism (CIN). In order to explain CA-CRC molecular basis, we have analyzed the data from studies regarding the correlations between CA-CRC and the presence of Single Nucleotide Polymorphisms (SNPs). Further focus on the role of associated proteins has emphasized the role of NF-κB signaling as the main link between inflammation and carcinogenesis during the course of IBD.

Keywords: Colitis-associated colorectal cancer, Single-Nucleotide Polymorphism (SNP), crohn's disease, ulcerative colitis, NF-κB, TNFα, rs1800629, interleukin-1.

Graphical Abstract
[1]
Sairenji T, Collins KL, Evans DV. An update on inflammatory bowel disease. Prim Care 2017; 44(4): 673-92.
[http://dx.doi.org/10.1016/j.pop.2017.07.010 ] [PMID: 29132528]
[2]
Gajendran M, Loganathan P, Catinella AP, Hashash JG. A comprehensive review and update on Crohn’s disease. Dis Mon 2018; 64(2): 20-57.
[http://dx.doi.org/10.1016/j.disamonth.2017.07.001 ] [PMID: 28826742]
[3]
Kelley KA, Kaur T, Tsikitis VL. Perianal Crohn’s disease: challenges and solutions. Clin Exp Gastroenterol 2017; 10: 39-46.
[http://dx.doi.org/10.2147/CEG.S108513 ] [PMID: 28223835]
[4]
Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterol 2012; 142(1): 46-54.e42.
[http://dx.doi.org/10.1053/j.gastro.2011.10.001 ] [PMID: 22001864]
[5]
Editor, C. Complications of Inflammatory Bowel Disease.. 2020; pp. 1-10.
[6]
Munkholm P, Loftus EVJ Jr, Reinacher-Schick A, Kornbluth A, Mittmann U, Esendal B. Prevention of colorectal cancer in inflammatory bowel disease: value of screening and 5-aminosalicylates. Digestion 2006; 73(1): 11-9.
[http://dx.doi.org/10.1159/000090763 ] [PMID: 16410688]
[7]
Gaidos JKJ, Bickston SJ. How to Optimize Colon Cancer Surveillance in Inflammatory Bowel Disease Patients. Inflamm Bowel Dis 2016; 22(5): 1219-30.
[http://dx.doi.org/10.1097/MIB.0000000000000685 ] [PMID: 26926040]
[8]
Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001; 48(4): 526-35.
[http://dx.doi.org/10.1136/gut.48.4.526 ] [PMID: 11247898]
[9]
Canavan C, Abrams KR, Mayberry J. Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol Ther 2006; 23(8): 1097-104.
[http://dx.doi.org/10.1111/j.1365-2036.2006.02854.x ] [PMID: 16611269]
[10]
Low END, Mokhtar NM, Wong Z, Raja Ali RA. Colonic mucosal transcriptomic changes in patients with long-duration ulcerative colitis revealed colitis-associated cancer pathways. J Crohn’s Colitis 2019; 13(6): 755-63.
[http://dx.doi.org/10.1093/ecco-jcc/jjz002 ] [PMID: 30954025]
[11]
Lee H-S, Park SH, Yang S-K, et al. The risk of colorectal cancer in inflammatory bowel disease: a hospital-based cohort study from Korea. Scand J Gastroenterol 2015; 50(2): 188-96.
[http://dx.doi.org/10.3109/00365521.2014.989538 ] [PMID: 25515241]
[12]
von Roon AC, Reese G, Teare J, Constantinides V, Darzi AW, Tekkis PP. The risk of cancer in patients with Crohn’s disease. Dis Colon Rectum 2007; 50(6): 839-55.
[http://dx.doi.org/10.1007/s10350-006-0848-z ] [PMID: 17308939]
[13]
Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer 2003; 3(4): 276-85.
[http://dx.doi.org/10.1038/nrc1046 ] [PMID: 12671666]
[14]
Van Der Kraak L, Gros P, Beauchemin N. Colitis-associated colon cancer: Is it in your genes? World J Gastroenterol 2015; 21(41): 11688-99.
[http://dx.doi.org/10.3748/wjg.v21.i41.11688 ] [PMID: 26556996]
[15]
Rosenberg DW, Giardina C, Tanaka T. Mouse models for the study of colon carcinogenesis. Carcinogenesis 2009; 30(2): 183-96.
[http://dx.doi.org/10.1093/carcin/bgn267 ] [PMID: 19037092]
[16]
Tariq K, Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med 2016; 13(1): 120-35.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2015.0103 ] [PMID: 27144067]
[17]
Lennerz JK, van der Sloot KWJ, Le LP, et al. Colorectal cancer in Crohn’s colitis is comparable to sporadic colorectal cancer. Int J Colorectal Dis 2016; 31(5): 973-82.
[http://dx.doi.org/10.1007/s00384-016-2574-x ] [PMID: 27026089]
[18]
Robles AI, Traverso G, Zhang M, et al. Whole-Exome Sequencing Analyses of Inflammatory Bowel Disease-Associated Colorectal Cancers. Gastroenterology 2016; 150(4): 931-43.
[http://dx.doi.org/10.1053/j.gastro.2015.12.036 ] [PMID: 26764183]
[19]
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138(6): 2059-72.
[http://dx.doi.org/10.1053/j.gastro.2009.12.065 ] [PMID: 20420946]
[20]
Baker AM, Cross W, Curtius K, et al. Evolutionary history of human colitis-associated colorectal cancer. Gut 2019; 68(6): 985-95.
[http://dx.doi.org/10.1136/gutjnl-2018-316191 ] [PMID: 29991641]
[21]
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487(7407): 330-7.
[http://dx.doi.org/10.1038/nature11252 ] [PMID: 22810696]
[22]
Du L, Kim JJ, Shen J, Chen B, Dai N. KRAS and TP53 mutations in inflammatory bowel disease-associated colorectal cancer: a meta-analysis. Oncotarget 2017; 8(13): 22175-86.
[http://dx.doi.org/10.18632/oncotarget.14549 ] [PMID: 28077799]
[23]
Garrity-Park MM, Loftus EVJ Jr, Bryant SC, Smyrk TC. A Biomarker panel to detect synchronous neoplasm in non-neoplastic surveillance biopsies from patients with ulcerative colitis. Inflamm Bowel Dis 2016; 22(7): 1568-74.
[http://dx.doi.org/10.1097/MIB.0000000000000789 ] [PMID: 27135485]
[24]
Connelly TM, Berg AS, Harris LR III, et al. Ulcerative colitis neoplasia is not associated with common inflammatory bowel disease single-nucleotide polymorphisms. Surgery 2014; 156(2): 253-62.
[http://dx.doi.org/10.1016/j.surg.2014.03.017 ] [PMID: 24947639]
[25]
Martini M, Ferrara AM, Giachelia M, et al. Association of the OCTN1/1672T variant with increased risk for colorectal cancer in young individuals and ulcerative colitis patients. Inflamm Bowel Dis 2012; 18(3): 439-48.
[http://dx.doi.org/10.1002/ibd.21814 ] [PMID: 21793125]
[26]
Garrity-Park M, Loftus EVJ Jr, Sandborn WJ, Smyrk TC. Myeloperoxidase immunohistochemistry as a measure of disease activity in ulcerative colitis: association with ulcerative colitis-colorectal cancer, tumor necrosis factor polymorphism and RUNX3 methylation. Inflamm Bowel Dis 2012; 18(2): 275-83.
[http://dx.doi.org/10.1002/ibd.21681 ] [PMID: 21425209]
[27]
Garrity-Park MM, Loftus EVJ Jr, Bryant SC, Sandborn WJ, Smyrk TC. Tumor necrosis factor-alpha polymorphisms in ulcerative colitis-associated colorectal cancer. Am J Gastroenterol 2008; 103(2): 407-15.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01572.x ] [PMID: 18289203]
[28]
Mahid SS, Colliver DW, Crawford NPS, et al. Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma. BMC Med Genet 2007; 8: 28.
[http://dx.doi.org/10.1186/1471-2350-8-28 ] [PMID: 17537267]
[29]
Brentnall TA, Rubin CE, Crispin DA, et al. A germline substitution in the human MSH2 gene is associated with high-grade dysplasia and cancer in ulcerative colitis. Gastroenterology 1995; 109(1): 151-5.
[http://dx.doi.org/10.1016/0016-5085(95)90280-5 ] [PMID: 7797014]
[30]
Li H, Jin Z, Li X, Wu L, Jin J. Associations between single-nucleotide polymorphisms and inflammatory bowel disease-associated colorectal cancers in inflammatory bowel disease patients: a meta-analysis. Clin Transl Oncol 2017; 19(8): 1018-27.
[http://dx.doi.org/10.1007/s12094-017-1634-1 ] [PMID: 28243990]
[31]
Ye BD, McGovern DPB. Genetic variation in IBD: progress, clues to pathogenesis and possible clinical utility. Expert Rev Clin Immunol 2016; 12(10): 1091-107.
[http://dx.doi.org/10.1080/1744666X.2016.1184972 ] [PMID: 27156530]
[32]
Lesage S, Zouali H, Cézard J-P, et al. EPIMAD Group; GETAID Group. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002; 70(4): 845-57.
[http://dx.doi.org/10.1086/339432 ] [PMID: 11875755]
[33]
Maeda S, Hsu L-C, Liu H, et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 2005; 307(5710): 734-8.
[http://dx.doi.org/10.1126/science.1103685 ] [PMID: 15692052]
[34]
Maeda M, Watanabe N, Neda H, et al. Serum tumor necrosis factor activity in inflammatory bowel disease. Immunopharmacol Immunotoxicol 1992; 14(3): 451-61.
[http://dx.doi.org/10.3109/08923979209005404 ] [PMID: 1517530]
[35]
Braegger CP, Nicholls S, Murch SH, Stephens S, MacDonald TT. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 1992; 339(8785): 89-91.
[http://dx.doi.org/10.1016/0140-6736(92)90999-J ] [PMID: 1345871]
[36]
Adegbola SO, Sahnan K, Warusavitarne J. Anti-TNF Therapy in Crohn’s Disease. Int J Mol Sci 2018; (July): 19. Epub ahead of print
[http://dx.doi.org/10.3390/ijms19082244]
[37]
Liu ZG, Han J. Cellular responses to tumor necrosis factor. Curr Issues Mol Biol 2001; 3(4): 79-90.
[PMID: 11719971]
[38]
Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2016; 12(1): 49-62.
[http://dx.doi.org/10.1038/nrrheum.2015.169 ] [PMID: 26656660]
[39]
Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 2015; 15(6): 362-74.
[http://dx.doi.org/10.1038/nri3834 ] [PMID: 26008591]
[40]
Israël A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2010; 2(3), a000158
[http://dx.doi.org/10.1101/cshperspect.a000158 ] [PMID: 20300203]
[41]
Luo C, Zhang H. The Role of Proinflammatory Pathways in the Pathogenesis of Colitis-Associated Colorectal Cancer. Mediators Inflamm 2017., 20175126048
[http://dx.doi.org/10.1155/2017/5126048 ] [PMID: 28852270]
[42]
Yan P, Wang Y, Meng X, et al. Whole exome sequencing of ulcerative colitis-associated colorectal cancer based on novel somatic mutations identified in chinese patients. Inflamm Bowel Dis 2019; 25(8): 1293-301.
[http://dx.doi.org/10.1093/ibd/izz020 ] [PMID: 30794281]
[43]
Karin M. Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441(7092): 431-6.
[http://dx.doi.org/10.1038/nature04870 ] [PMID: 16724054]
[44]
O’Connor PM, Lapointe TK, Beck PL, Buret AG. Mechanisms by which inflammation may increase intestinal cancer risk in inflammatory bowel disease. Inflamm Bowel Dis 2010; 16(8): 1411-20.
[http://dx.doi.org/10.1002/ibd.21217 ] [PMID: 20155848]
[45]
Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J Intern Med 2008; 263(6): 591-6.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01953.x ] [PMID: 18479258]
[46]
Guo X, Li M-G, Li S-S, Liu FH, Liu ZJ, Yang PC. Tumor necrosis factor suppresses interleukin 10 in peripheral B cells via upregulating Bcl2-like protein 12 in patients with inflammatory bowel disease. Cell Biochem Funct 2017; 35(2): 77-82.
[http://dx.doi.org/10.1002/cbf.3250 ] [PMID: 28120341]
[47]
Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 2009; 6(5): 327-34.
[http://dx.doi.org/10.1038/cmi.2009.43 ] [PMID: 19887045]
[48]
Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118(3): 285-96.
[http://dx.doi.org/10.1016/j.cell.2004.07.013 ] [PMID: 15294155]
[49]
Mandal RK, Khan MA, Hussain A. A trial sequential meta-analysis of TNF-α -308G>A (rs800629) gene polymorphism and susceptibility to colorectal cancer. Biosci Rep 2019; (January): 39. Epub ahead of print
[http://dx.doi.org/10.1042/BSR20181052.]
[50]
Nagao M, Sato Y, Yamauchi A. Meta-Analysis of Interleukin Polymorphisms and NSAID Usage Indicates Correlations to the Risk of Developing Cancer Journal of Clinical & Medical Genomics 2014; 2: 1-7.
[51]
He B, Zhang Y, Pan Y, et al. Interleukin 1 beta (IL1B) promoter polymorphism and cancer risk: evidence from 47 published studies. Mutagenesis 2011; 26(5): 637-42.
[http://dx.doi.org/10.1093/mutage/ger025 ] [PMID: 21653279]
[52]
Sanabria-Salas MC, Hernández-Suárez G, Umaña-Pérez A, et al. IL1B-CGTC haplotype is associated with colorectal cancer in admixed individuals with increased African ancestry. Sci Rep 2017; 7: 41920.
[http://dx.doi.org/10.1038/srep41920 ] [PMID: 28157220]
[53]
Chen H-X, Yuan Z-Y, Wu K-X, et al. The study of methylation and single nucleotide polymorphisms of cancer-related genes in patients with early-stage ulcerative colitis. Scand J Gastroenterol 2019; 54(4): 427-31.
[http://dx.doi.org/10.1080/00365521.2019.1594355 ] [PMID: 31046486]
[54]
Anderson CA, Massey DCO, Barrett JC, et al. Investigation of Crohn’s disease risk loci in ulcerative colitis further defines their molecular relationship. Gastroenterology 2009; 136(2): 523-9.e3.
[http://dx.doi.org/10.1053/j.gastro.2008.10.032 ] [PMID: 19068216]
[55]
Durães C, Machado JC, Portela F, et al. Phenotype-genotype profiles in Crohn’s disease predicted by genetic markers in autophagy-related genes (GOIA study II). Inflamm Bowel Dis 2013; 19(2): 230-9.
[http://dx.doi.org/10.1002/ibd.23007 ] [PMID: 22573572]
[56]
Maeda K, Saigo C, Kito Y, Sakuratani T, Yoshida K, Takeuchi T. Expression of TMEM207 in Colorectal Cancer: Relation between TMEM207 and Intelectin-1. J Cancer 2016; 7(2): 207-13.
[http://dx.doi.org/10.7150/jca.13732 ] [PMID: 26819645]
[57]
Kawashima K, Maeda K. Saigo, C Adiponectin and intelectin-1: important adipokine players in obesity-related colorectal carcinogenesis. Int J Mol Sci 2017; (April): 18. Epub ahead of print
[http://dx.doi.org/10.3390/ijms18040866.]
[58]
Kim H-J, Kang U-B, Lee H, et al. Profiling of differentially expressed proteins in stage IV colorectal cancers with good and poor outcomes. J Proteomics 2012; 75(10): 2983-97.
[http://dx.doi.org/10.1016/j.jprot.2011.12.002 ] [PMID: 22178445]
[59]
Aleksandrova K, di Giuseppe R, Isermann B, et al. Circulating Omentin as a Novel Biomarker for Colorectal Cancer Risk: Data from the EPIC-Potsdam Cohort Study. Cancer Res 2016; 76(13): 3862-71.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3464 ] [PMID: 27216184]
[60]
Barrett JC, Hansoul S, Nicolae DL, et al. Belgian-French IBD Consortium; Wellcome Trust Case Control Consortium. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008; 40(8): 955-62.
[http://dx.doi.org/10.1038/ng.175 ] [PMID: 18587394]
[61]
Padhukasahasram B, Halperin E, Wessel J, et al. Presymptomatic risk assessment for chronic non-communicable diseases. PLoS One 2010; 5(12), e14338
[http://dx.doi.org/10.1371/journal.pone.0014338 ] [PMID: 21217814]
[62]
Zhang C, Wang W, Zhang H, Wei L, Guo S. Association of FCGR2A rs1801274 polymorphism with susceptibility to autoimmune diseases: A meta-analysis. Oncotarget 2016; 7(26): 39436-43.
[http://dx.doi.org/10.18632/oncotarget.9831 ] [PMID: 27270653]
[63]
Shepshelovich D, Townsend AR, Espin-Garcia O, et al. Fc-gamma receptor polymorphisms, cetuximab therapy, and overall survival in the CCTG CO.20 trial of metastatic colorectal cancer. Cancer Med 2018; 7(11): 5478-87.
[http://dx.doi.org/10.1002/cam4.1819 ] [PMID: 30318772]
[64]
Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front Immunol 2018; 8: 1908.
[http://dx.doi.org/10.3389/fimmu.2017.01908 ] [PMID: 29379499]
[65]
Tanaka, T, Kobunai, T, Yamamoto, Y, et al. Assessment of the changes in mitochondrial gene polymorphism in ulcerative colitis and the etiology of ulcerative colitis-associated colorectal cancer. Anticancer Res 2020; 40(1): 101-7.
[http://dx.doi.org/10.21873/anticanres.13931] [PMID: 31892558]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy