Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Angiogenesis and Blood-Brain Barrier Permeability in Vascular Remodeling after Stroke

Author(s): Yi Yang* and Michel T. Torbey

Volume 18, Issue 12, 2020

Page: [1250 - 1265] Pages: 16

DOI: 10.2174/1570159X18666200720173316

Price: $65

Abstract

Angiogenesis, the growth of new blood vessels, is a natural defense mechanism helping to restore oxygen and nutrient supply to the affected brain tissue following an ischemic stroke. By stimulating vessel growth, angiogenesis may stabilize brain perfusion, thereby promoting neuronal survival, brain plasticity, and neurologic recovery. However, therapeutic angiogenesis after stroke faces challenges: new angiogenesis-induced vessels have a higher than normal permeability, and treatment to promote angiogenesis may exacerbate outcomes in stroke patients. The development of therapies requires elucidation of the precise cellular and molecular basis of the disease. Microenvironment homeostasis of the central nervous system is essential for its normal function and is maintained by the blood-brain barrier (BBB). Tight junction proteins (TJP) form the tight junction (TJ) between vascular endothelial cells (ECs) and play a key role in regulating the BBB permeability. We demonstrated that after stroke, new angiogenesis-induced vessels in peri-infarct areas have abnormally high BBB permeability due to a lack of major TJPs in ECs. Therefore, promoting TJ formation and BBB integrity in the new vessels coupled with speedy angiogenesis will provide a promising and safer treatment strategy for improving recovery from stroke. Pericyte is a central neurovascular unite component in vascular barriergenesis and are vital to BBB integrity. We found that pericytes also play a key role in stroke-induced angiogenesis and TJ formation in the newly formed vessels. Based on these findings, in this article, we focus on regulation aspects of the BBB functions and describe cellular and molecular special features of TJ formation with an emphasis on role of pericytes in BBB integrity during angiogenesis after stroke.

Keywords: Cerebral stroke, vascular remodeling, angiogenesis, tight junction proteins, blood-brain barrier permeability, barriergenesis.

Graphical Abstract
[1]
Font, M.A.; Arboix, A.; Krupinski, J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr. Cardiol. Rev., 2010, 6(3), 238-244.
[http://dx.doi.org/10.2174/157340310791658802] [PMID: 21804783]
[2]
Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; Jauch, E.C.; Kidwell, C.S.; Leslie-Mazwi, T.M.; Ovbiagele, B.; Scott, P.A.; Sheth, K.N.; Southerland, A.M.; Summers, D.V.; Tirschwell, D.L. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2019, 50(12), e344-e418.
[http://dx.doi.org/10.1161/STR.0000000000000211] [PMID: 31662037]
[3]
Hermann, D.M.; Zechariah, A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J. Cereb. Blood Flow Metab., 2009, 29(10), 1620-1643.
[http://dx.doi.org/10.1038/jcbfm.2009.100] [PMID: 19654590]
[4]
Snapyan, M.; Lemasson, M.; Brill, M.S.; Blais, M.; Massouh, M.; Ninkovic, J.; Gravel, C.; Berthod, F.; Götz, M.; Barker, P.A.; Parent, A.; Saghatelyan, A. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J. Neurosci., 2009, 29(13), 4172-4188.
[http://dx.doi.org/10.1523/JNEUROSCI.4956-08.2009] [PMID: 19339612]
[5]
Lin, T.N.; Sun, S.W.; Cheung, W.M.; Li, F.; Chang, C. Dynamic changes in cerebral blood flow and angiogenesis after transient focal cerebral ischemia in rats. Evaluation with serial magnetic resonance imaging. Stroke, 2002, 33(12), 2985-2991.
[http://dx.doi.org/10.1161/01.STR.0000037675.97888.9D] [PMID: 12468801]
[6]
Teng, H.; Zhang, Z.G.; Wang, L.; Zhang, R.L.; Zhang, L.; Morris, D.; Gregg, S.R.; Wu, Z.; Jiang, A.; Lu, M.; Zlokovic, B.V.; Chopp, M. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J. Cereb. Blood Flow Metab., 2008, 28(4), 764-771.
[http://dx.doi.org/10.1038/sj.jcbfm.9600573] [PMID: 17971789]
[7]
Brea, D.; Sobrino, T.; Ramos-Cabrer, P.; Castillo, J. [Reorganisation of the cerebral vasculature following ischaemia] Rev. Neurol., 2009, 49(12), 645-654.
[PMID: 20013717]
[8]
Nakagomi, N.; Nakagomi, T.; Kubo, S.; Nakano-Doi, A.; Saino, O.; Takata, M.; Yoshikawa, H.; Stern, D.M.; Matsuyama, T.; Taguchi, A. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells, 2009, 27(9), 2185-2195.
[http://dx.doi.org/10.1002/stem.161] [PMID: 19557831]
[9]
Lee, H.S.; Han, J.; Bai, H.J.; Kim, K.W. Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS J., 2009, 276(17), 4622-4635.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07174.x] [PMID: 19664072]
[10]
Jain, R.K. Molecular regulation of vessel maturation. Nat. Med., 2003, 9(6), 685-693.
[http://dx.doi.org/10.1038/nm0603-685] [PMID: 12778167]
[11]
Shen, Q.; Goderie, S.K.; Jin, L.; Karanth, N.; Sun, Y.; Abramova, N.; Vincent, P.; Pumiglia, K.; Temple, S. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 2004, 304(5675), 1338-1340.
[http://dx.doi.org/10.1126/science.1095505] [PMID: 15060285]
[12]
Yu, S.W.; Friedman, B.; Cheng, Q.; Lyden, P.D. Stroke-evoked angiogenesis results in a transient population of microvessels. J. Cereb. Blood Flow Metab., 2007, 27(4), 755-763.
[http://dx.doi.org/10.1038/sj.jcbfm.9600378] [PMID: 16883352]
[13]
Carmeliet, P. Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ. Res., 2000, 87(3), 176-178.
[http://dx.doi.org/10.1161/01.RES.87.3.176] [PMID: 10926865]
[14]
Beck, H.; Plate, K.H. Angiogenesis after cerebral ischemia. Acta Neuropathol., 2009, 117(5), 481-496.
[http://dx.doi.org/10.1007/s00401-009-0483-6] [PMID: 19142647]
[15]
Zhang, Z.G.; Zhang, L.; Jiang, Q.; Zhang, R.; Davies, K.; Powers, C.; Bruggen, Nv.; Chopp, M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest., 2000, 106(7), 829-838.
[http://dx.doi.org/10.1172/JCI9369] [PMID: 11018070]
[16]
Zhang, Z.G.; Zhang, L.; Tsang, W.; Soltanian-Zadeh, H.; Morris, D.; Zhang, R.; Goussev, A.; Powers, C.; Yeich, T.; Chopp, M. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2002, 22(4), 379-392.
[http://dx.doi.org/10.1097/00004647-200204000-00002] [PMID: 11919509]
[17]
Chen, J.; Chopp, M. Neurorestorative treatment of stroke: cell and pharmacological approaches. NeuroRx, 2006, 3(4), 466-473.
[http://dx.doi.org/10.1016/j.nurx.2006.07.007] [PMID: 17012060]
[18]
Issa, R.; Krupinski, J.; Bujny, T.; Kumar, S.; Kaluza, J.; Kumar, P. Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab. Invest., 1999, 79(4), 417-425.
[PMID: 10211994]
[19]
Shen, F.; Walker, E.J.; Jiang, L.; Degos, V.; Li, J.; Sun, B.; Heriyanto, F.; Young, W.L.; Su, H. Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood-brain barrier and reduces atrophy volume. J. Cereb. Blood Flow Metab., 2011, 31(12), 2343-2351.
[http://dx.doi.org/10.1038/jcbfm.2011.97] [PMID: 21772310]
[20]
Abbott, N.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis., 2013, 36(3), 437-449.
[http://dx.doi.org/10.1007/s10545-013-9608-0] [PMID: 23609350]
[21]
Liebner, S.; Czupalla, C.J.; Wolburg, H. Current concepts of blood-brain barrier development. Int. J. Dev. Biol., 2011, 55(4-5), 467-476.
[http://dx.doi.org/10.1387/ijdb.103224sl] [PMID: 21769778]
[22]
Abbott, N.J. Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat., 2002, 200(6), 629-638.
[http://dx.doi.org/10.1046/j.1469-7580.2002.00064.x] [PMID: 12162730]
[23]
Abbott, N.J.; Friedman, A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia, 2012, 53(Suppl. 6), 1-6.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03696.x] [PMID: 23134489]
[24]
Yang, Y.; Estrada, E.Y.; Thompson, J.F.; Liu, W.; Rosenberg, G.A. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J. Cereb. Blood Flow Metab., 2007, 27(4), 697-709.
[http://dx.doi.org/10.1038/sj.jcbfm.9600375] [PMID: 16850029]
[25]
Yang, Y.; Rosenberg, G.A. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke, 2011, 42(11), 3323-3328.
[http://dx.doi.org/10.1161/STROKEAHA.110.608257] [PMID: 21940972]
[26]
Keaney, J.; Campbell, M. The dynamic blood-brain barrier. FEBS J., 2015, 282(21), 4067-4079.
[http://dx.doi.org/10.1111/febs.13412] [PMID: 26277326]
[27]
Rosenberg, G.A.; Yang, Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg. Focus, 2007, 22(5)E4
[http://dx.doi.org/10.3171/foc.2007.22.5.5] [PMID: 17613235]
[28]
Zhao, Z.; Nelson, A.R.; Betsholtz, C.; Zlokovic, B.V. Establishment and Dysfunction of the Blood-Brain Barrier. Cell, 2015, 163(5), 1064-1078.
[http://dx.doi.org/10.1016/j.cell.2015.10.067] [PMID: 26590417]
[29]
Armulik, A.; Genové, G.; Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell, 2011, 21(2), 193-215.
[http://dx.doi.org/10.1016/j.devcel.2011.07.001] [PMID: 21839917]
[30]
Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; Johansson, B.R.; Betsholtz, C. Pericytes regulate the blood-brain barrier. Nature, 2010, 468(7323), 557-561.
[http://dx.doi.org/10.1038/nature09522] [PMID: 20944627]
[31]
Armulik, A.; Mäe, M.; Betsholtz, C. Pericytes and the blood-brain barrier: recent advances and implications for the delivery of CNS therapy. Ther. Deliv., 2011, 2(4), 419-422.
[http://dx.doi.org/10.4155/tde.11.23] [PMID: 22826851]
[32]
Bell, R.D.; Winkler, E.A.; Sagare, A.P.; Singh, I.; LaRue, B.; Deane, R.; Zlokovic, B.V. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron, 2010, 68(3), 409-427.
[http://dx.doi.org/10.1016/j.neuron.2010.09.043] [PMID: 21040844]
[33]
Winkler, E.A.; Bell, R.D.; Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci., 2011, 14(11), 1398-1405.
[http://dx.doi.org/10.1038/nn.2946] [PMID: 22030551]
[34]
Andreone, B.J. Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis.Neuron, 2017, 94, 581-594. e5.
[http://dx.doi.org/10.1016/j.neuron.2017.03.043]
[35]
Gautam, J.; Xu, L.; Nirwane, A.; Nguyen, B.; Yao, Y. Loss of mural cell-derived laminin aggravates hemorrhagic brain injury. J. Neuroinflammation, 2020, 17(1), 103.
[http://dx.doi.org/10.1186/s12974-020-01788-3] [PMID: 32252790]
[36]
Gautam, J.; Cao, Y.; Yao, Y. Pericytic Laminin Maintains Blood-Brain Barrier Integrity in an Age-Dependent Manner. Transl. Stroke Res., 2020, 11(2), 228-242.
[http://dx.doi.org/10.1007/s12975-019-00709-8] [PMID: 31292838]
[37]
Colton, C.A. Heterogeneity of microglial activation in the innate immune response in the brain. J. Neuroimmune Pharmacol., 2009, 4(4), 399-418.
[http://dx.doi.org/10.1007/s11481-009-9164-4] [PMID: 19655259]
[38]
Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis., 2004, 16(1), 1-13.
[http://dx.doi.org/10.1016/j.nbd.2003.12.016] [PMID: 15207256]
[39]
Brightman, M.W.; Reese, T.S. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol., 1969, 40(3), 648-677.
[http://dx.doi.org/10.1083/jcb.40.3.648] [PMID: 5765759]
[40]
Liebner, S.; Kniesel, U.; Kalbacher, H.; Wolburg, H. Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur. J. Cell Biol., 2000, 79(10), 707-717.
[http://dx.doi.org/10.1078/0171-9335-00101] [PMID: 11089919]
[41]
Willis, C.L.; Leach, L.; Clarke, G.J.; Nolan, C.C.; Ray, D.E. Reversible disruption of tight junction complexes in the rat blood-brain barrier, following transitory focal astrocyte loss. Glia, 2004, 48(1), 1-13.
[http://dx.doi.org/10.1002/glia.20049] [PMID: 15326610]
[42]
Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 2008, 57(2), 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[43]
Furuse, M.; Hirase, T.; Itoh, M.; Nagafuchi, A.; Yonemura, S.; Tsukita, S.; Tsukita, S. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol., 1993, 123(6 Pt 2), 1777-1788.
[http://dx.doi.org/10.1083/jcb.123.6.1777] [PMID: 8276896]
[44]
Hirase, T.; Staddon, J.M.; Saitou, M.; Ando-Akatsuka, Y.; Itoh, M.; Furuse, M.; Fujimoto, K.; Tsukita, S.; Rubin, L.L. Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci., 1997, 110(Pt 14), 1603-1613.
[PMID: 9247194]
[45]
McCaffrey, G.; Seelbach, M.J.; Staatz, W.D.; Nametz, N.; Quigley, C.; Campos, C.R.; Brooks, T.A.; Davis, T.P. Occludin oligomeric assembly at tight junctions of the blood-brain barrier is disrupted by peripheral inflammatory hyperalgesia. J. Neurochem., 2008, 106(6), 2395-2409.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05582.x] [PMID: 18647175]
[46]
McCaffrey, G.; Willis, C.L.; Staatz, W.D.; Nametz, N.; Quigley, C.A.; Hom, S.; Lochhead, J.J.; Davis, T.P. Occludin oligomeric assemblies at tight junctions of the blood-brain barrier are altered by hypoxia and reoxygenation stress. J. Neurochem., 2009, 110(1), 58-71.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06113.x] [PMID: 19457074]
[47]
Morita, K.; Sasaki, H.; Furuse, M.; Tsukita, S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol., 1999, 147(1), 185-194.
[http://dx.doi.org/10.1083/jcb.147.1.185] [PMID: 10508865]
[48]
Liebner, S.; Fischmann, A.; Rascher, G.; Duffner, F.; Grote, E.H.; Kalbacher, H.; Wolburg, H. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol., 2000, 100(3), 323-331.
[http://dx.doi.org/10.1007/s004010000180] [PMID: 10965803]
[49]
Pfeiffer, F.; Schäfer, J.; Lyck, R.; Makrides, V.; Brunner, S.; Schaeren-Wiemers, N.; Deutsch, U.; Engelhardt, B. Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol., 2011, 122(5), 601-614.
[http://dx.doi.org/10.1007/s00401-011-0883-2] [PMID: 21983942]
[50]
Nitta, T.; Hata, M.; Gotoh, S.; Seo, Y.; Sasaki, H.; Hashimoto, N.; Furuse, M.; Tsukita, S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol., 2003, 161(3), 653-660.
[http://dx.doi.org/10.1083/jcb.200302070] [PMID: 12743111]
[51]
Ohtsuki, S.; Sato, S.; Yamaguchi, H.; Kamoi, M.; Asashima, T.; Terasaki, T. Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J. Cell. Physiol., 2007, 210(1), 81-86.
[http://dx.doi.org/10.1002/jcp.20823] [PMID: 16998798]
[52]
Sladojevic, N.; Stamatovic, S.M.; Johnson, A.M.; Choi, J.; Hu, A.; Dithmer, S.; Blasig, I.E.; Keep, R.F.; Andjelkovic, A.V. Claudin-1-Dependent Destabilization of the Blood-Brain Barrier in Chronic Stroke. J. Neurosci., 2019, 39(4), 743-757.
[http://dx.doi.org/10.1523/JNEUROSCI.1432-18.2018] [PMID: 30504279]
[53]
Huber, J.D.; Egleton, R.D.; Davis, T.P. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci., 2001, 24(12), 719-725.
[http://dx.doi.org/10.1016/S0166-2236(00)02004-X] [PMID: 11718877]
[54]
Huber, J.D.; Hau, V.S.; Borg, L.; Campos, C.R.; Egleton, R.D.; Davis, T.P. Blood-brain barrier tight junctions are altered during a 72-h exposure to lambda-carrageenan-induced inflammatory pain. Am. J. Physiol. Heart Circ. Physiol., 2002, 283(4), H1531-H1537.
[http://dx.doi.org/10.1152/ajpheart.00027.2002] [PMID: 12234806]
[55]
Lochhead, J.J.; McCaffrey, G.; Quigley, C.E.; Finch, J.; DeMarco, K.M.; Nametz, N.; Davis, T.P. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J. Cereb. Blood Flow Metab., 2010, 30(9), 1625-1636.
[http://dx.doi.org/10.1038/jcbfm.2010.29] [PMID: 20234382]
[56]
Lochhead, J.J.; McCaffrey, G.; Sanchez-Covarrubias, L.; Finch, J.D.; Demarco, K.M.; Quigley, C.E.; Davis, T.P.; Ronaldson, P.T. Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(3), H582-H593.
[http://dx.doi.org/10.1152/ajpheart.00889.2011] [PMID: 22081706]
[57]
Mark, K.S.; Davis, T.P. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(4), H1485-H1494.
[http://dx.doi.org/10.1152/ajpheart.00645.2001] [PMID: 11893586]
[58]
Ronaldson, P.T.; Demarco, K.M.; Sanchez-Covarrubias, L.; Solinsky, C.M.; Davis, T.P. Transforming growth factor-beta signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J. Cereb. Blood Flow Metab., 2009, 29(6), 1084-1098.
[http://dx.doi.org/10.1038/jcbfm.2009.32] [PMID: 19319146]
[59]
Luh, C.; Feiler, S.; Frauenknecht, K.; Meyer, S.; Lubomirov, L.T.; Neulen, A.; Thal, S.C. The Contractile Apparatus Is Essential for the Integrity of the Blood-Brain Barrier After Experimental Subarachnoid Hemorrhage. Transl. Stroke Res., 2019, 10(5), 534-545.
[http://dx.doi.org/10.1007/s12975-018-0677-0] [PMID: 30467816]
[60]
Burek, M.; König, A.; Lang, M.; Fiedler, J.; Oerter, S.; Roewer, N.; Bohnert, M.; Thal, S.C.; Blecharz-Lang, K.G.; Woitzik, J.; Thum, T.; Förster, C.Y. Hypoxia-Induced MicroRNA-212/132 Alter Blood-Brain Barrier Integrity Through Inhibition of Tight Junction-Associated Proteins in Human and Mouse Brain Microvascular Endothelial Cells. Transl. Stroke Res., 2019, 10(6), 672-683.
[http://dx.doi.org/10.1007/s12975-018-0683-2] [PMID: 30617994]
[61]
Wolburg, H.; Wolburg-Buchholz, K.; Liebner, S.; Engelhardt, B. Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci. Lett., 2001, 307(2), 77-80.
[http://dx.doi.org/10.1016/S0304-3940(01)01927-9] [PMID: 11427304]
[62]
Lippoldt, A.; Kniesel, U.; Liebner, S.; Kalbacher, H.; Kirsch, T.; Wolburg, H.; Haller, H. Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood-brain barrier endothelial cells. Brain Res., 2000, 885(2), 251-261.
[http://dx.doi.org/10.1016/S0006-8993(00)02954-1] [PMID: 11102579]
[63]
Hirase, T.; Kawashima, S.; Wong, E.Y.; Ueyama, T.; Rikitake, Y.; Tsukita, S.; Yokoyama, M.; Staddon, J.M. Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J. Biol. Chem., 2001, 276(13), 10423-10431.
[http://dx.doi.org/10.1074/jbc.M007136200] [PMID: 11139571]
[64]
Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev., 2005, 57(2), 173-185.
[http://dx.doi.org/10.1124/pr.57.2.4] [PMID: 15914466]
[65]
Al Ahmad, A.; Taboada, C.B.; Gassmann, M.; Ogunshola, O.O. Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. J. Cereb. Blood Flow Metab., 2011, 31(2), 693-705.
[http://dx.doi.org/10.1038/jcbfm.2010.148] [PMID: 20827262]
[66]
Liebner, S.; Plate, K.H. Differentiation of the brain vasculature: the answer came blowing by the Wnt. J. Angiogenes. Res., 2010, 2, 1-10.
[http://dx.doi.org/10.1186/2040-2384-2-1] [PMID: 20150991]
[67]
Engelhardt, B.; Liebner, S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res., 2014, 355(3), 687-699.
[http://dx.doi.org/10.1007/s00441-014-1811-2] [PMID: 24590145]
[68]
Yang, Y.; Thompson, J.F.; Taheri, S.; Salayandia, V.M.; McAvoy, T.A.; Hill, J.W.; Yang, Y.; Estrada, E.Y.; Rosenberg, G.A. Early inhibition of MMP activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery. J. Cereb. Blood Flow Metab., 2013, 33(7), 1104-1114.
[http://dx.doi.org/10.1038/jcbfm.2013.56] [PMID: 23571276]
[69]
Brillault, J.; Berezowski, V.; Cecchelli, R.; Dehouck, M.P. Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood-brain barrier during ischaemia. J. Neurochem., 2002, 83(4), 807-817.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01186.x] [PMID: 12421352]
[70]
Morizawa, Y.M.; Hirayama, Y.; Ohno, N.; Shibata, S.; Shigetomi, E.; Sui, Y.; Nabekura, J.; Sato, K.; Okajima, F.; Takebayashi, H.; Okano, H.; Koizumi, S. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun., 2017, 8(1), 28.
[http://dx.doi.org/10.1038/s41467-017-00037-1] [PMID: 28642575]
[71]
Choi, Y.K.; Kim, K.W. AKAP12 in astrocytes induces barrier functions in human endothelial cells through protein kinase Czeta. FEBS J., 2008, 275(9), 2338-2353.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06387.x] [PMID: 18397319]
[72]
Tao-Cheng, J.H.; Nagy, Z.; Brightman, M.W. Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci., 1987, 7(10), 3293-3299.
[http://dx.doi.org/10.1523/JNEUROSCI.07-10-03293.1987] [PMID: 3668629]
[73]
Haseloff, R.F.; Blasig, I.E.; Bauer, H.C.; Bauer, H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell. Mol. Neurobiol., 2005, 25(1), 25-39.
[http://dx.doi.org/10.1007/s10571-004-1375-x] [PMID: 15962507]
[74]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[75]
Yao, Y.; Chen, Z.L.; Norris, E.H.; Strickland, S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat. Commun., 2014, 5, 3413.
[http://dx.doi.org/10.1038/ncomms4413] [PMID: 24583950]
[76]
Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 2010, 468(7323), 562-566.
[http://dx.doi.org/10.1038/nature09513] [PMID: 20944625]
[77]
Bonkowski, D.; Katyshev, V.; Balabanov, R.D.; Borisov, A.; Dore-Duffy, P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS, 2011, 8(1), 8.
[http://dx.doi.org/10.1186/2045-8118-8-8] [PMID: 21349156]
[78]
Dore-Duffy, P.; LaManna, J.C. Physiologic angiodynamics in the brain. Antioxid. Redox Signal., 2007, 9(9), 1363-1371.
[http://dx.doi.org/10.1089/ars.2007.1713] [PMID: 17627476]
[79]
Cui, L.; Zhang, X.; Yang, R.; Wang, L.; Liu, L.; Li, M.; Du, W. Neuroprotection of early and short-time applying atorvastatin in the acute phase of cerebral ischemia: down-regulated 12/15-LOX, p38MAPK and cPLA2 expression, ameliorated BBB permeability. Brain Res., 2010, 1325, 164-173.
[http://dx.doi.org/10.1016/j.brainres.2010.02.036] [PMID: 20167207]
[80]
Lindahl, P.; Johansson, B.R.; Levéen, P.; Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 1997, 277(5323), 242-245.
[http://dx.doi.org/10.1126/science.277.5323.242] [PMID: 9211853]
[81]
Wang, Y.L.; Hui, Y.N.; Guo, B.; Ma, J.X. Strengthening tight junctions of retinal microvascular endothelial cells by pericytes under normoxia and hypoxia involving angiopoietin-1 signal way. Eye (Lond.), 2007, 21(12), 1501-1510.
[http://dx.doi.org/10.1038/sj.eye.6702716] [PMID: 17332770]
[82]
Zacharek, A.; Chen, J.; Cui, X.; Li, A.; Li, Y.; Roberts, C.; Feng, Y.; Gao, Q.; Chopp, M. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J. Cereb. Blood Flow Metab., 2007, 27(10), 1684-1691.
[http://dx.doi.org/10.1038/sj.jcbfm.9600475] [PMID: 17356562]
[83]
Aslanyan, S.; Weir, C.J.; McInnes, G.T.; Reid, J.L.; Walters, M.R.; Lees, K.R. Statin administration prior to ischaemic stroke onset and survival: exploratory evidence from matched treatment-control study. Eur. J. Neurol., 2005, 12(7), 493-498.
[http://dx.doi.org/10.1111/j.1468-1331.2005.01049.x] [PMID: 15958087]
[84]
Quaegebeur, A.; Segura, I.; Carmeliet, P. Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron, 2010, 68(3), 321-323.
[http://dx.doi.org/10.1016/j.neuron.2010.10.024] [PMID: 21040834]
[85]
Gautam, J.; Yao, Y. Roles of Pericytes in Stroke Pathogenesis. Cell Transplant., 2018, 27(12), 1798-1808.
[http://dx.doi.org/10.1177/0963689718768455] [PMID: 29845887]
[86]
Ozerdem, U.; Grako, K.A.; Dahlin-Huppe, K.; Monosov, E.; Stallcup, W.B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn., 2001, 222(2), 218-227.
[http://dx.doi.org/10.1002/dvdy.1200] [PMID: 11668599]
[87]
Hughes, S.; Chan-Ling, T. Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. Invest. Ophthalmol. Vis. Sci., 2004, 45(8), 2795-2806.
[http://dx.doi.org/10.1167/iovs.03-1312] [PMID: 15277506]
[88]
Roitbak, T.; Li, L.; Cunningham, L.A. Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling. J. Cereb. Blood Flow Metab., 2008, 28(9), 1530-1542.
[http://dx.doi.org/10.1038/jcbfm.2008.38] [PMID: 18478024]
[89]
Li, L.; Harms, K.M.; Ventura, P.B.; Lagace, D.C.; Eisch, A.J.; Cunningham, L.A. Focal cerebral ischemia induces a multilineage cytogenic response from adult subventricular zone that is predominantly gliogenic. Glia, 2010, 58(13), 1610-1619.
[http://dx.doi.org/10.1002/glia.21033] [PMID: 20578055]
[90]
Kim, S.S.; Yoo, S.W.; Park, T.S.; Ahn, S.C.; Jeong, H.S.; Kim, J.W.; Chang, D.Y.; Cho, K.G.; Kim, S.U.; Huh, Y.; Lee, J.E.; Lee, S.Y.; Lee, Y.D.; Suh-Kim, H. Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells, 2008, 26(9), 2217-2228.
[http://dx.doi.org/10.1634/stemcells.2008-0108] [PMID: 18617687]
[91]
Virgintino, D.; Girolamo, F.; Errede, M.; Capobianco, C.; Robertson, D.; Stallcup, W.B.; Perris, R.; Roncali, L. An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis, 2007, 10(1), 35-45.
[http://dx.doi.org/10.1007/s10456-006-9061-x] [PMID: 17225955]
[92]
Ozerdem, U.; Stallcup, W.B. Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis, 2004, 7(3), 269-276.
[http://dx.doi.org/10.1007/s10456-004-4182-6] [PMID: 15609081]
[93]
Tsai, P.T.; Ohab, J.J.; Kertesz, N.; Groszer, M.; Matter, C.; Gao, J.; Liu, X.; Wu, H.; Carmichael, S.T. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J. Neurosci., 2006, 26(4), 1269-1274.
[http://dx.doi.org/10.1523/JNEUROSCI.4480-05.2006] [PMID: 16436614]
[94]
Du, Y.; Shi, L.; Li, J.; Xiong, J.; Li, B.; Fan, X. Angiogenesis and improved cerebral blood flow in the ischemic boundary area were detected after electroacupuncture treatment to rats with ischemic stroke. Neurol. Res., 2011, 33(1), 101-107.
[http://dx.doi.org/10.1179/016164110X12714125204317] [PMID: 20546685]
[95]
Kielczewski, J.L.; Jarajapu, Y.P.; McFarland, E.L.; Cai, J.; Afzal, A.; Li Calzi, S.; Chang, K.H.; Lydic, T.; Shaw, L.C.; Busik, J.; Hughes, J.; Cardounel, A.J.; Wilson, K.; Lyons, T.J.; Boulton, M.E.; Mames, R.N.; Chan-Ling, T.; Grant, M.B. Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation. Circ. Res., 2009, 105(9), 897-905.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.199059] [PMID: 19762684]
[96]
Gotts, J.E.; Chesselet, M.F. Vascular changes in the subventricular zone after distal cortical lesions. Exp. Neurol., 2005, 194(1), 139-150.
[http://dx.doi.org/10.1016/j.expneurol.2005.02.001] [PMID: 15899251]
[97]
Krupinski, J.; Stroemer, P.; Slevin, M.; Marti, E.; Kumar, P.; Rubio, F. Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia. Neuroreport, 2003, 14(8), 1171-1176.
[http://dx.doi.org/10.1097/00001756-200306110-00014] [PMID: 12821803]
[98]
Krupinski, J.; Kaluza, J.; Kumar, P.; Kumar, S.; Wang, J.M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke, 1994, 25(9), 1794-1798.
[http://dx.doi.org/10.1161/01.STR.25.9.1794] [PMID: 7521076]
[99]
Beck, H.; Acker, T.; Wiessner, C.; Allegrini, P.R.; Plate, K.H. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am. J. Pathol., 2000, 157(5), 1473-1483.
[http://dx.doi.org/10.1016/S0002-9440(10)64786-4] [PMID: 11073808]
[100]
Hayashi, T.; Noshita, N.; Sugawara, T.; Chan, P.H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab., 2003, 23(2), 166-180.
[http://dx.doi.org/10.1097/01.WCB.0000041283.53351.CB] [PMID: 12571448]
[101]
Marti, H.J.; Bernaudin, M.; Bellail, A.; Schoch, H.; Euler, M.; Petit, E.; Risau, W. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am. J. Pathol., 2000, 156(3), 965-976.
[http://dx.doi.org/10.1016/S0002-9440(10)64964-4] [PMID: 10702412]
[102]
Candelario-Jalil, E.; Taheri, S.; Yang, Y.; Sood, R.; Grossetete, M.; Estrada, E.Y.; Fiebich, B.L.; Rosenberg, G.A. Cyclooxygenase inhibition limits blood-brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J. Pharmacol. Exp. Ther., 2007, 323(2), 488-498.
[http://dx.doi.org/10.1124/jpet.107.127035] [PMID: 17704356]
[103]
Taheri, S.; Candelario-Jalil, E.; Estrada, E.Y.; Rosenberg, G.A. Spatiotemporal correlations between blood-brain barrier permeability and apparent diffusion coefficient in a rat model of ischemic stroke. PLoS One, 2009, 4(8)e6597
[http://dx.doi.org/10.1371/journal.pone.0006597]] [PMID: 19668371]
[104]
Tanaka, Y.; Nagaoka, T.; Nair, G.; Ohno, K.; Duong, T.Q. Arterial spin labeling and dynamic susceptibility contrast CBF MRI in postischemic hyperperfusion, hypercapnia, and after mannitol injection. J. Cereb. Blood Flow Metab., 2011, 31(6), 1403-1411.
[http://dx.doi.org/10.1038/jcbfm.2010.228] [PMID: 21179070]
[105]
Alonso, A.; Reinz, E.; Jenne, J.W.; Fatar, M.; Schmidt-Glenewinkel, H.; Hennerici, M.G.; Meairs, S. Reorganization of gap junctions after focused ultrasound blood-brain barrier opening in the rat brain. J. Cereb. Blood Flow Metab., 2010, 30(7), 1394-1402.
[http://dx.doi.org/10.1038/jcbfm.2010.41] [PMID: 20332798]
[106]
Ezan, P.; André, P.; Cisternino, S.; Saubaméa, B.; Boulay, A.C.; Doutremer, S.; Thomas, M.A.; Quenech’du, N.; Giaume, C.; Cohen-Salmon, M. Deletion of astroglial connexins weakens the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(8), 1457-1467.
[http://dx.doi.org/10.1038/jcbfm.2012.45] [PMID: 22472609]
[107]
ElAli, A.; Thériault, P.; Rivest, S. The role of pericytes in neurovascular unit remodeling in brain disorders. Int. J. Mol. Sci., 2014, 15(4), 6453-6474.
[http://dx.doi.org/10.3390/ijms15046453] [PMID: 24743889]
[108]
Zhang, Y.; Zhang, X.; Wei, Q.; Leng, S.; Li, C.; Han, B.; Bai, Y.; Zhang, H.; Yao, H. Activation of Sigma-1 Receptor Enhanced Pericyte Survival via the Interplay Between Apoptosis and Autophagy: Implications for Blood-Brain Barrier Integrity in Stroke. Transl. Stroke Res., 2020, 11(2), 267-287.
[http://dx.doi.org/10.1007/s12975-019-00711-0] [PMID: 31290080]
[109]
Quaegebeur, A.; Lange, C.; Carmeliet, P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron, 2011, 71(3), 406-424.
[http://dx.doi.org/10.1016/j.neuron.2011.07.013] [PMID: 21835339]
[110]
Pan, J.; Konstas, A.A.; Bateman, B.; Ortolano, G.A.; Pile-Spellman, J. Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology, 2007, 49(2), 93-102.
[http://dx.doi.org/10.1007/s00234-006-0183-z] [PMID: 17177065]
[111]
Kastrup, A.; Engelhorn, T.; Beaulieu, C.; de Crespigny, A.; Moseley, M.E. Dynamics of cerebral injury, perfusion, and blood-brain barrier changes after temporary and permanent middle cerebral artery occlusion in the rat. J. Neurol. Sci., 1999, 166(2), 91-99.
[http://dx.doi.org/10.1016/S0022-510X(99)00121-5] [PMID: 10475101]
[112]
Lampron, A.; Elali, A.; Rivest, S. Innate immunity in the CNS: redefining the relationship between the CNS and Its environment. Neuron, 2013, 78(2), 214-232.
[http://dx.doi.org/10.1016/j.neuron.2013.04.005] [PMID: 23622060]
[113]
Gordon, S.; Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity, 2010, 32(5), 593-604.
[http://dx.doi.org/10.1016/j.immuni.2010.05.007] [PMID: 20510870]
[114]
Bai, Q.; Xue, M.; Yong, V.W. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain, 2020, 143(5), 1297-1314.
[http://dx.doi.org/10.1093/brain/awz393] [PMID: 31919518]
[115]
Pimenova, A.A.; Marcora, E.; Goate, A.M. A Tale of Two Genes: Microglial Apoe and Trem2. Immunity, 2017, 47(3), 398-400.
[http://dx.doi.org/10.1016/j.immuni.2017.08.015] [PMID: 28930654]
[116]
Krasemann, S. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.Immunity, 2017, 47, 566-581.e9.
[117]
Taylor, R.A.; Sansing, L.H. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin. Dev. Immunol., 2013, 2013746068
[http://dx.doi.org/10.1155/2013/746068]] [PMID: 24223607]
[118]
Giunti, D.; Parodi, B.; Cordano, C.; Uccelli, A.; Kerlero de Rosbo, N. Can we switch microglia’s phenotype to foster neuroprotection? Focus on multiple sclerosis. Immunology, 2014, 141(3), 328-339.
[http://dx.doi.org/10.1111/imm.12177] [PMID: 24116890]
[119]
Yang, Y.; Salayandia, V.M.; Thompson, J.F.; Yang, L.Y.; Estrada, E.Y.; Yang, Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J. Neuroinflammation, 2015, 12, 26.
[http://dx.doi.org/10.1186/s12974-015-0245-4] [PMID: 25889169]
[120]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[121]
del Zoppo, G.J. Stroke and neurovascular protection. N. Engl. J. Med., 2006, 354(6), 553-555.
[http://dx.doi.org/10.1056/NEJMp058312] [PMID: 16467542]
[122]
Fan, Y.; Yang, G.Y. Therapeutic angiogenesis for brain ischemia: a brief review. J. Neuroimmune Pharmacol., 2007, 2(3), 284-289.
[http://dx.doi.org/10.1007/s11481-007-9073-3] [PMID: 18040863]
[123]
Fukushi, J.; Makagiansar, I.T.; Stallcup, W.B. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol. Biol. Cell, 2004, 15(8), 3580-3590.
[http://dx.doi.org/10.1091/mbc.e04-03-0236] [PMID: 15181153]
[124]
You, W.K.; Yotsumoto, F.; Sakimura, K.; Adams, R.H.; Stallcup, W.B. NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function. Angiogenesis, 2014, 17(1), 61-76.
[http://dx.doi.org/10.1007/s10456-013-9378-1] [PMID: 23925489]
[125]
Ozerdem, U.; Monosov, E.; Stallcup, W.B. NG2 proteoglycan expression by pericytes in pathological microvasculature. Microvasc. Res., 2002, 63(1), 129-134.
[http://dx.doi.org/10.1006/mvre.2001.2376] [PMID: 11749079]
[126]
Gibby, K.; You, W.K.; Kadoya, K.; Helgadottir, H.; Young, L.J.; Ellies, L.G.; Chang, Y.; Cardiff, R.D.; Stallcup, W.B. Early vascular deficits are correlated with delayed mammary tumorigenesis in the MMTV-PyMT transgenic mouse following genetic ablation of the NG2 proteoglycan. Breast Cancer Res., 2012, 14(2), R67.
[http://dx.doi.org/10.1186/bcr3174] [PMID: 22531600]
[127]
Huang, F.J.; You, W.K.; Bonaldo, P.; Seyfried, T.N.; Pasquale, E.B.; Stallcup, W.B. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev. Biol., 2010, 344(2), 1035-1046.
[http://dx.doi.org/10.1016/j.ydbio.2010.06.023] [PMID: 20599895]
[128]
Stallcup, W.B.; Huang, F.J. A role for the NG2 proteoglycan in glioma progression. Cell Adhes. Migr., 2008, 2(3), 192-201.
[http://dx.doi.org/10.4161/cam.2.3.6279] [PMID: 19262111]
[129]
You, W.K.; Bonaldo, P.; Stallcup, W.B. Collagen VI ablation retards brain tumor progression due to deficits in assembly of the vascular basal lamina. Am. J. Pathol., 2012, 180(3), 1145-1158.
[http://dx.doi.org/10.1016/j.ajpath.2011.11.006] [PMID: 22200614]
[130]
Elewa, H.F.; El-Remessy, A.B.; Somanath, P.R.; Fagan, S.C. Diverse effects of statins on angiogenesis: new therapeutic avenues. Pharmacotherapy, 2010, 30(2), 169-176.
[http://dx.doi.org/10.1592/phco.30.2.169] [PMID: 20099991]
[131]
Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam. Clin. Pharmacol., 2005, 19(1), 117-125.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00299.x] [PMID: 15660968]
[132]
Funck, V.R.; de Oliveira, C.V.; Pereira, L.M.; Rambo, L.M.; Ribeiro, L.R.; Royes, L.F.; Ferreira, J.; Guerra, G.P.; Furian, A.F.; Oliveira, M.S.; Mallmann, C.A.; de Mello, C.F.; Oliveira, M.S. Differential effects of atorvastatin treatment and withdrawal on pentylenetetrazol-induced seizures. Epilepsia, 2011, 52(11), 2094-2104.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03261.x] [PMID: 21906051]
[133]
Kuhlmann, C.R.; Lessmann, V.; Luhmann, H.J. Fluvastatin stabilizes the blood-brain barrier in vitro by nitric oxide-dependent dephosphorylation of myosin light chains. Neuropharmacology, 2006, 51(4), 907-913.
[http://dx.doi.org/10.1016/j.neuropharm.2006.06.004] [PMID: 16872642]
[134]
Tousoulis, D.; Oikonomou, E.; Siasos, G.; Chrysohoou, C.; Zaromitidou, M.; Kioufis, S.; Maniatis, K.; Dilaveris, P.; Miliou, A.; Michalea, S.; Papavassiliou, A.G.; Stefanadis, C. Dose-dependent effects of short term atorvastatin treatment on arterial wall properties and on indices of left ventricular remodeling in ischemic heart failure. Atherosclerosis, 2013, 227(2), 367-372.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.015] [PMID: 23433403]
[135]
Ifergan, I.; Wosik, K.; Cayrol, R.; Kébir, H.; Auger, C.; Bernard, M.; Bouthillier, A.; Moumdjian, R.; Duquette, P.; Prat, A. Statins reduce human blood-brain barrier permeability and restrict leukocyte migration: relevance to multiple sclerosis. Ann. Neurol., 2006, 60(1), 45-55.
[http://dx.doi.org/10.1002/ana.20875] [PMID: 16729291]
[136]
Jungner, M.; Lundblad, C.; Bentzer, P. Rosuvastatin in experimental brain trauma: improved capillary patency but no effect on edema or cerebral blood flow. Microvasc. Res., 2013, 88, 48-55.
[http://dx.doi.org/10.1016/j.mvr.2013.03.004] [PMID: 23538316]
[137]
Elkind, M.S.; Flint, A.C.; Sciacca, R.R.; Sacco, R.L. Lipid-lowering agent use at ischemic stroke onset is associated with decreased mortality. Neurology, 2005, 65(2), 253-258.
[http://dx.doi.org/10.1212/01.WNL.0000171746.63844.6a] [PMID: 16043795]
[138]
Garjani, A.; Rezazadeh, H.; Andalib, S.; Ziaee, M.; Doustar, Y.; Soraya, H.; Garjani, M.; Khorrami, A.; Asadpoor, M.; Maleki-Dizaji, N. Ambivalent effects of atorvastatin on angiogenesis, epidermal cell proliferation and tumorgenesis in animal models. Iran. Biomed. J., 2012, 16(2), 59-67.
[PMID: 22801278]
[139]
Camnitz, W.; Burdick, M.D.; Strieter, R.M.; Mehrad, B.; Keeley, E.C. Dose-dependent Effect of Statin Therapy on Circulating CXCL12 Levels in Patients with Hyperlipidemia. Clin. Transl. Med., 2012, 1(1), 23.
[http://dx.doi.org/10.1186/2001-1326-1-23] [PMID: 23369699]
[140]
Chen, J.; Zhang, Z.G.; Li, Y.; Wang, Y.; Wang, L.; Jiang, H.; Zhang, C.; Lu, M.; Katakowski, M.; Feldkamp, C.S.; Chopp, M. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann. Neurol., 2003, 53(6), 743-751.
[http://dx.doi.org/10.1002/ana.10555] [PMID: 12783420]
[141]
Moonis, M.; Kane, K.; Schwiderski, U.; Sandage, B.W.; Fisher, M. HMG-CoA reductase inhibitors improve acute ischemic stroke outcome. Stroke, 2005, 36(6), 1298-1300.
[http://dx.doi.org/10.1161/01.STR.0000165920.67784.58] [PMID: 15879346]
[142]
Kalayci, R.; Kaya, M.; Elmas, I.; Arican, N.; Ahishali, B.; Uzun, H.; Bilgic, B.; Kucuk, M.; Kudat, H. Effects of atorvastatin on blood-brain barrier permeability during L-NAME hypertension followed by angiotensin-II in rats. Brain Res., 2005, 1042(2), 184-193.
[http://dx.doi.org/10.1016/j.brainres.2005.02.044] [PMID: 15854590]
[143]
Polster, S.P. Atorvastatin Treatment of Cavernous Angiomas with Symptomatic Hemorrhage Exploratory Proof of Concept. (AT CASH EPOC) Trial. Neurosurgery, 2018, 85(6), 843-853.
[PMID: 30476251]
[144]
Urbich, C.; Dernbach, E.; Zeiher, A.M.; Dimmeler, S. Double-edged role of statins in angiogenesis signaling. Circ. Res., 2002, 90(6), 737-744.
[http://dx.doi.org/10.1161/01.RES.0000014081.30867.F8] [PMID: 11934843]
[145]
Walter, D.H.; Zeiher, A.M.; Dimmeler, S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coron. Artery Dis., 2004, 15(5), 235-242.
[http://dx.doi.org/10.1097/01.mca.0000131572.14521.8a] [PMID: 15238818]
[146]
Son, B.K.; Kozaki, K.; Iijima, K.; Eto, M.; Nakano, T.; Akishita, M.; Ouchi, Y. Gas6/Axl-PI3K/Akt pathway plays a central role in the effect of statins on inorganic phosphate-induced calcification of vascular smooth muscle cells. Eur. J. Pharmacol., 2007, 556(1-3), 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.070] [PMID: 17196959]
[147]
Melaragno, M.G.; Cavet, M.E.; Yan, C.; Tai, L.K.; Jin, Z.G.; Haendeler, J.; Berk, B.C. Gas6 inhibits apoptosis in vascular smooth muscle: role of Axl kinase and Akt. J. Mol. Cell. Cardiol., 2004, 37(4), 881-887.
[http://dx.doi.org/10.1016/j.yjmcc.2004.06.018] [PMID: 15380678]
[148]
Melaragno, M.G.; Fridell, Y.W.; Berk, B.C. The Gas6/Axl system: a novel regulator of vascular cell function. Trends Cardiovasc. Med., 1999, 9(8), 250-253.
[http://dx.doi.org/10.1016/S1050-1738(00)00027-X] [PMID: 11094334]
[149]
Mooradian, A.D.; Haas, M.J.; Batejko, O.; Hovsepyan, M.; Feman, S.S. Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats. Diabetes, 2005, 54(10), 2977-2982.
[http://dx.doi.org/10.2337/diabetes.54.10.2977] [PMID: 16186401]
[150]
Proia, R.L.; Hla, T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J. Clin. Invest., 2015, 125(4), 1379-1387.
[http://dx.doi.org/10.1172/JCI76369] [PMID: 25831442]
[151]
Spampinato, S.F.; Obermeier, B.; Cotleur, A.; Love, A.; Takeshita, Y.; Sano, Y.; Kanda, T.; Ransohoff, R.M. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli? PLoS One, 2015, 10(7) e0133392
[http://dx.doi.org/10.1371/journal.pone.0133392]] [PMID: 26197437]
[152]
Wacker, B.K.; Freie, A.B.; Perfater, J.L.; Gidday, J.M. Junctional protein regulation by sphingosine kinase 2 contributes to blood-brain barrier protection in hypoxic preconditioning-induced cerebral ischemic tolerance. J. Cereb. Blood Flow Metab., 2012, 32(6), 1014-1023.
[http://dx.doi.org/10.1038/jcbfm.2012.3] [PMID: 22314269]
[153]
Wacker, B.K.; Park, T.S.; Gidday, J.M. Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke, 2009, 40(10), 3342-3348.
[http://dx.doi.org/10.1161/STROKEAHA.109.560714] [PMID: 19644058]
[154]
Prager, B.; Spampinato, S.F.; Ransohoff, R.M. Sphingosine 1-phosphate signaling at the blood-brain barrier. Trends Mol. Med., 2015, 21(6), 354-363.
[http://dx.doi.org/10.1016/j.molmed.2015.03.006] [PMID: 25939882]
[155]
Vanlandewijck, M.; He, L.; Mäe, M.A.; Andrae, J.; Ando, K.; Del Gaudio, F.; Nahar, K.; Lebouvier, T.; Laviña, B.; Gouveia, L.; Sun, Y.; Raschperger, E.; Räsänen, M.; Zarb, Y.; Mochizuki, N.; Keller, A.; Lendahl, U.; Betsholtz, C. A molecular atlas of cell types and zonation in the brain vasculature. Nature, 2018, 554(7693), 475-480.
[http://dx.doi.org/10.1038/nature25739] [PMID: 29443965]
[156]
Wiltshire, R.; Nelson, V.; Kho, D.T.; Angel, C.E.; O’Carroll, S.J.; Graham, E.S. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Sci. Rep., 2016, 6, 19814.
[http://dx.doi.org/10.1038/srep19814] [PMID: 26813587]
[157]
Cuttler, A.S.; LeClair, R.J.; Stohn, J.P.; Wang, Q.; Sorenson, C.M.; Liaw, L.; Lindner, V. Characterization of Pdgfrb-Cre transgenic mice reveals reduction of ROSA26 reporter activity in remodeling arteries. Genesis, 2011, 49(8), 673-680.
[http://dx.doi.org/10.1002/dvg.20769] [PMID: 21557454]
[158]
Gerhardt, H.; Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res., 2003, 314(1), 15-23.
[http://dx.doi.org/10.1007/s00441-003-0745-x] [PMID: 12883993]
[159]
McVerry, B.J.; Garcia, J.G. Endothelial cell barrier regulation by sphingosine 1-phosphate. J. Cell. Biochem., 2004, 92(6), 1075-1085.
[http://dx.doi.org/10.1002/jcb.20088] [PMID: 15258893]
[160]
Tsai, H.C.; Han, M.H. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs, 2016, 76(11), 1067-1079.
[http://dx.doi.org/10.1007/s40265-016-0603-2] [PMID: 27318702]
[161]
Blaho, V.A.; Hla, T. An update on the biology of sphingosine 1-phosphate receptors. J. Lipid Res., 2014, 55(8), 1596-1608.
[http://dx.doi.org/10.1194/jlr.R046300] [PMID: 24459205]
[162]
Chae, S.S.; Proia, R.L.; Hla, T. Constitutive expression of the S1P1 receptor in adult tissues. Prostaglandins Other Lipid Mediat., 2004, 73(1-2), 141-150.
[http://dx.doi.org/10.1016/j.prostaglandins.2004.01.006] [PMID: 15165038]
[163]
Mendelson, K.; Evans, T.; Hla, T. Sphingosine 1-phosphate signalling. Development, 2014, 141(1), 5-9.
[http://dx.doi.org/10.1242/dev.094805] [PMID: 24346695]
[164]
Xiong, Y.; Hla, T. S1P control of endothelial integrity. Curr. Top. Microbiol. Immunol., 2014, 378, 85-105.
[http://dx.doi.org/10.1007/978-3-319-05879-5_4] [PMID: 24728594]
[165]
Eresch, J.; Stumpf, M.; Koch, A.; Vutukuri, R.; Ferreirós, N.; Schreiber, Y.; Schröder, K.; Devraj, K.; Popp, R.; Huwiler, A.; Hattenbach, L.O.; Pfeilschifter, J.; Pfeilschifter, W. Sphingosine Kinase 2 Modulates Retinal Neovascularization in the Mouse Model of Oxygen-Induced Retinopathy. Invest. Ophthalmol. Vis. Sci., 2018, 59(2), 653-661.
[http://dx.doi.org/10.1167/iovs.17-22544] [PMID: 29392309]
[166]
Vutukuri, R.; Brunkhorst, R.; Kestner, R.I.; Hansen, L.; Bouzas, N.F.; Pfeilschifter, J.; Devraj, K.; Pfeilschifter, W. Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption. J. Neurochem., 2018, 144(2), 172-185.
[http://dx.doi.org/10.1111/jnc.14236] [PMID: 29023711]
[167]
Takuwa, Y.; Du, W.; Qi, X.; Okamoto, Y.; Takuwa, N.; Yoshioka, K. Roles of sphingosine-1-phosphate signaling in angiogenesis. World J. Biol. Chem., 2010, 1(10), 298-306.
[http://dx.doi.org/10.4331/wjbc.v1.i10.298] [PMID: 21537463]
[168]
Blankenbach, K.V.; Schwalm, S.; Pfeilschifter, J.; Meyer Zu Heringdorf, D. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks. Front. Pharmacol., 2016, 7, 167.
[http://dx.doi.org/10.3389/fphar.2016.00167] [PMID: 27445808]
[169]
Park, S.J. Im, D.S. Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery. Biomol. Ther. (Seoul), 2017, 25(1), 80-90.
[http://dx.doi.org/10.4062/biomolther.2016.160] [PMID: 28035084]
[170]
Sanchez, T.; Skoura, A.; Wu, M.T.; Casserly, B.; Harrington, E.O.; Hla, T. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler. Thromb. Vasc. Biol., 2007, 27(6), 1312-1318.
[http://dx.doi.org/10.1161/ATVBAHA.107.143735] [PMID: 17431187]
[171]
Wu, S.; Thornhill, R.E.; Chen, S.; Rammo, W.; Mikulis, D.J.; Kassner, A. Relative recirculation: a fast, model-free surrogate for the measurement of blood-brain barrier permeability and the prediction of hemorrhagic transformation in acute ischemic stroke. Invest. Radiol., 2009, 44(10), 662-668.
[http://dx.doi.org/10.1097/RLI.0b013e3181ae9c40] [PMID: 19724234]
[172]
Sun, L.; Zhou, W.; Mueller, C.; Sommer, C.; Heiland, S.; Bauer, A.T.; Marti, H.H.; Veltkamp, R. Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia. J. Cereb. Blood Flow Metab., 2010, 30(9), 1651-1660.
[http://dx.doi.org/10.1038/jcbfm.2010.50] [PMID: 20424638]
[173]
O’Sullivan, C.; Dev, K.K. The structure and function of the S1P1 receptor. Trends Pharmacol. Sci., 2013, 34(7), 401-412.
[http://dx.doi.org/10.1016/j.tips.2013.05.002] [PMID: 23763867]
[174]
Sanna, M.G.; Liao, J.; Jo, E.; Alfonso, C.; Ahn, M.Y.; Peterson, M.S.; Webb, B.; Lefebvre, S.; Chun, J.; Gray, N.; Rosen, H. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J. Biol. Chem., 2004, 279(14), 13839-13848.
[http://dx.doi.org/10.1074/jbc.M311743200] [PMID: 14732717]
[175]
O’Sullivan, S.; Dev, K.K. Sphingosine-1-phosphate receptor therapies: Advances in clinical trials for CNS-related diseases. Neuropharmacology, 2017, 113(Pt B), 597-607.
[http://dx.doi.org/10.1016/j.neuropharm.2016.11.006] [PMID: 27825807]
[176]
Asle-Rousta, M.; Oryan, S.; Ahmadiani, A.; Rahnema, M. Activation of sphingosine 1-phosphate receptor-1 by SEW2871 improves cognitive function in Alzheimer’s disease model rats. EXCLI J., 2013, 12, 449-461.
[PMID: 26417237]
[177]
Aoki, M.; Aoki, H.; Ramanathan, R.; Hait, N.C.; Takabe, K. Sphingosine-1-Phosphate Signaling in Immune Cells and Inflammation: Roles and Therapeutic Potential. Mediators Inflamm., 2016, 20168606878
[PMID: 26966342]
[178]
Brinkmann, V. FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br. J. Pharmacol., 2009, 158(5), 1173-1182.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00451.x] [PMID: 19814729]
[179]
Quancard, J.; Bollbuck, B.; Janser, P.; Angst, D.; Berst, F.; Buehlmayer, P.; Streiff, M.; Beerli, C.; Brinkmann, V.; Guerini, D.; Smith, P.A.; Seabrook, T.J.; Traebert, M.; Seuwen, K.; Hersperger, R.; Bruns, C.; Bassilana, F.; Bigaud, M. A potent and selective S1P(1) antagonist with efficacy in experimental autoimmune encephalomyelitis. Chem. Biol., 2012, 19(9), 1142-1151.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.016] [PMID: 22999882]
[180]
Garris, C.S.; Blaho, V.A.; Hla, T.; Han, M.H. Sphingosine-1-phosphate receptor 1 signalling in T cells: trafficking and beyond. Immunology, 2014, 142(3), 347-353.
[http://dx.doi.org/10.1111/imm.12272] [PMID: 24597601]
[181]
Groves, A.; Kihara, Y.; Chun, J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J. Neurol. Sci., 2013, 328(1-2), 9-18.
[http://dx.doi.org/10.1016/j.jns.2013.02.011] [PMID: 23518370]
[182]
Zhu, Z.; Fu, Y.; Tian, D.; Sun, N.; Han, W.; Chang, G.; Dong, Y.; Xu, X.; Liu, Q.; Huang, D.; Shi, F.D. Combination of the Immune Modulator Fingolimod With Alteplase in Acute Ischemic Stroke: A Pilot Trial. Circulation, 2015, 132(12), 1104-1112.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016371] [PMID: 26202811]
[183]
Tian, D.C.; Shi, K.; Zhu, Z.; Yao, J.; Yang, X.; Su, L.; Zhang, S.; Zhang, M.; Gonzales, R.J.; Liu, Q.; Huang, D.; Waters, M.F.; Sheth, K.N.; Ducruet, A.F.; Fu, Y.; Lou, M.; Shi, F.D. Fingolimod enhances the efficacy of delayed alteplase administration in acute ischemic stroke by promoting anterograde reperfusion and retrograde collateral flow. Ann. Neurol., 2018, 84(5), 717-728.
[http://dx.doi.org/10.1002/ana.25352] [PMID: 30295338]
[184]
Emsley, H.C.; Tyrrell, P.J. Inflammation and infection in clinical stroke. J. Cereb. Blood Flow Metab., 2002, 22(12), 1399-1419.
[http://dx.doi.org/10.1097/01.WCB.0000037880.62590.28] [PMID: 12468886]
[185]
Jacobs, A.H.; Tavitian, B. INMiND consortium. Noninvasive molecular imaging of neuroinflammation. J. Cereb. Blood Flow Metab., 2012, 32(7), 1393-1415.
[http://dx.doi.org/10.1038/jcbfm.2012.53] [PMID: 22549622]
[186]
Jin, R.; Yang, G.; Li, G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol., 2010, 87(5), 779-789.
[http://dx.doi.org/10.1189/jlb.1109766] [PMID: 20130219]
[187]
Schilling, M.; Besselmann, M.; Müller, M.; Strecker, J.K.; Ringelstein, E.B.; Kiefer, R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol., 2005, 196(2), 290-297.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.004] [PMID: 16153641]
[188]
Ito, D.; Tanaka, K.; Suzuki, S.; Dembo, T.; Fukuuchi, Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke, 2001, 32(5), 1208-1215.
[http://dx.doi.org/10.1161/01.STR.32.5.1208] [PMID: 11340235]
[189]
Oliveira, G.B. Fontes, Ede.A., Jr; de Carvalho, S.; da Silva, J.B.; Fernandes, L.M.; Oliveira, M.C.; Prediger, R.D.; Gomes-Leal, W.; Lima, R.R.; Maia, C.S. Minocycline mitigates motor impairments and cortical neuronal loss induced by focal ischemia in rats chronically exposed to ethanol during adolescence. Brain Res., 2014, 1561, 23-34.
[http://dx.doi.org/10.1016/j.brainres.2014.03.005] [PMID: 24637259]
[190]
Lartey, F.M.; Ahn, G.O.; Ali, R.; Rosenblum, S.; Miao, Z.; Arksey, N.; Shen, B.; Colomer, M.V.; Rafat, M.; Liu, H.; Alejandre-Alcazar, M.A.; Chen, J.W.; Palmer, T.; Chin, F.T.; Guzman, R.; Loo, B.W., Jr; Graves, E. The relationship between serial [(18) F]PBR06 PET imaging of microglial activation and motor function following stroke in mice. Mol. Imaging Biol., 2014, 16(6), 821-829.
[http://dx.doi.org/10.1007/s11307-014-0745-0] [PMID: 24865401]
[191]
Schroeter, M.; Dennin, M.A.; Walberer, M.; Backes, H.; Neumaier, B.; Fink, G.R.; Graf, R. Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer [11C]PK11195- and [18F]FDG-PET study. J. Cereb. Blood Flow Metab., 2009, 29(6), 1216-1225.
[http://dx.doi.org/10.1038/jcbfm.2009.36] [PMID: 19352400]
[192]
Bang, O.Y.; Buck, B.H.; Saver, J.L.; Alger, J.R.; Yoon, S.R.; Starkman, S.; Ovbiagele, B.; Kim, D.; Ali, L.K.; Sanossian, N.; Jahan, R.; Duckwiler, G.R.; Viñuela, F.; Salamon, N.; Villablanca, J.P.; Liebeskind, D.S. Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann. Neurol., 2007, 62(2), 170-176.
[http://dx.doi.org/10.1002/ana.21174] [PMID: 17683090]
[193]
Cramer, S.C. Repairing the human brain after stroke. II. Restorative therapies. Ann. Neurol., 2008, 63(5), 549-560.
[http://dx.doi.org/10.1002/ana.21412] [PMID: 18481291]
[194]
Cramer, S.C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neurol., 2008, 63(3), 272-287.
[http://dx.doi.org/10.1002/ana.21393] [PMID: 18383072]
[195]
Iadecola, C.; Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med., 2011, 17(7), 796-808.
[http://dx.doi.org/10.1038/nm.2399] [PMID: 21738161]
[196]
Garcia, C.M.; Darland, D.C.; Massingham, L.J.; D’Amore, P.A. Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res. Dev. Brain Res., 2004, 152(1), 25-38.
[http://dx.doi.org/10.1016/j.devbrainres.2004.05.008] [PMID: 15283992]
[197]
Dohgu, S.; Yamauchi, A.; Takata, F.; Naito, M.; Tsuruo, T.; Higuchi, S.; Sawada, Y.; Kataoka, Y. Transforming growth factor-beta1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell. Mol. Neurobiol., 2004, 24(3), 491-497.
[http://dx.doi.org/10.1023/B:CEMN.0000022776.47302.ce] [PMID: 15206827]
[198]
Nishioku, T.; Dohgu, S.; Takata, F.; Eto, T.; Ishikawa, N.; Kodama, K.B.; Nakagawa, S.; Yamauchi, A.; Kataoka, Y. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell. Mol. Neurobiol., 2009, 29(3), 309-316.
[http://dx.doi.org/10.1007/s10571-008-9322-x] [PMID: 18987969]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy