Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Biodegradation of Synthetic Effluent Containing CI Direct Red 28 (Congo Red) by Lentinus sp. Laccase Leads to Low Ecotoxicity

Author(s): Glauciane D. Coelho, Kamila K.S. Silva, Dayse P.D. Silva, Julya K.N.C. Soares, Nara Ballaminut and Douglas V. Thomaz*

Volume 9, Issue 2, 2020

Page: [127 - 133] Pages: 7

DOI: 10.2174/2211550109999200720162021

Price: $65

Abstract

Background: Azo dyes are widely used recalcitrant chemicals and may promote environmental hazards. Amongst the known azo dyes is CI Direct Red 28 (C32H22N6Na2O6S2) aka Congo Red (CR), which is a known mutagen and carcinogen. In this regard, this work aimed at the biodegradation of a CR-containing synthetic effluent, and the evaluation of the ecotoxicity of post-treatment residues.

Methods: Lentinus sp. Laccase (Lac)-mediated bioremediation of CR was optimized upon added concentrations of sucrose and CuSO4, moreover a standard ecotoxicity assay was performed.

Results: Results showed that the addition of 5% sucrose and 2 mM CuSO4 increased CR degradation, with Lac activity at 48 h of 30.2 U mL-1, and at 72 h of 31.9 U mL-1. Moreover, the ecotoxicity assay showcased that CR degradation by Lentinus sp. Lac seemingly generated low ecotoxic byproducts.

Conclusion: Given that CR bioremediation byproducts were known to exhibit high toxicity, our results shed light on the use of Lentinus sp. catalytic arsenal to promote proper remediation of azo dyepolluted effluents.

Keywords: Bioremediation, oxidative degradation, polluted effluents, toxicity, azo dyes, environment.

Graphical Abstract
[1]
Rawat D, Sharma RS, Karmakar S, Arora LS, Mishra V. Ecotoxic potential of a presumably non-toxic azo dye. Ecotoxicol Environ Saf 2018; 148: 528-37.
[http://dx.doi.org/10.1016/j.ecoenv.2017.10.049] [PMID: 29125956]
[2]
Vastag G, Apostolov S, Matijević B, Assaleh F. Multivariate assessment of azo dyes’ biological activity parameters. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084: 141-9.
[http://dx.doi.org/10.1016/j.jchromb.2018.03.035] [PMID: 29604612]
[3]
Liu J, Wang N, Zhang H, Baeyens J. Adsorption of Congo red dye on FexCo3-xO4 nanoparticles. J Environ Manage 2019; 238: 473-83.
[http://dx.doi.org/10.1016/j.jenvman.2019.03.009] [PMID: 30877940]
[4]
Hou B, Lu J, Wang H, et al. Performance of microbial fuel cells based on the operational parameters of biocathode during simultaneous Congo red decolorization and electricity generation. Bioelectrochemistry 2019; 128: 291-7.
[http://dx.doi.org/10.1016/j.bioelechem.2019.04.019] [PMID: 31059969]
[5]
Moradzadeh A, Mahjoub A, Sadjadi MS, Sadr MH, Farhadyar N. Investigation on synthesis, characterization and photo catalytic degradation of congo red by Zn-doped CdTiO3/TiO2. Polyhedron 2019; 170: 404-11.
[http://dx.doi.org/10.1016/j.poly.2019.05.060]
[6]
Shetti NP, Malode SJ, Malladi RS, Nargund SL, Shukla SS, Aminabhavi TM. Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode. Microchem J 2019; 146: 387-92.
[http://dx.doi.org/10.1016/j.microc.2019.01.033]
[7]
Iark D, Buzzo AJDR, Garcia JAA, et al. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresour Technol 2019; 289121655
[http://dx.doi.org/10.1016/j.biortech.2019.121655] [PMID: 31247524]
[8]
Garcia LF, Lacerda MFAR, Thomaz DV, et al. Optimization of laccase-alginate-chitosan-based matrix toward 17 α-ethinylestradiol removal. Prep Biochem Biotechnol 2019; 49(4): 375-83.
[http://dx.doi.org/10.1080/10826068.2019.1573195] [PMID: 30777480]
[9]
Golveia JCS, Santiago MF, Sales PTF, et al. Cupuaçu (Theobroma grandiflorum) residue and its potential application in the bioremediation of 17-A-ethinylestradiol as a Pycnoporus sanguineus laccase inducer. Prep Biochem Biotechnol 2018; 48(6): 541-8.
[http://dx.doi.org/10.1080/10826068.2018.1466161] [PMID: 29939831]
[10]
Lacerda MFAR, Lopes FM, Sartoratto A, et al. Stability study of immobilized Laccase on Luffa cylindrica fibers and assessment of synthetic hormone degradation. Prep Biochem Biotechnol 2018; 2018: 1.
[PMID: 30388953]
[11]
Coelho GD, Ballaminut N, Thomaz DV, Machado KMG. Characterization of a thermostable Deconica castanella Laccase and application toward pentachlorophenol degradation. Prep Biochem Biotechnol 2019; 49(9): 908-15.
[http://dx.doi.org/10.1080/10826068.2019.1636280] [PMID: 31271327]
[12]
Tavares MF, Avelino KV, Araújo NL, et al. Decolorization of azo and anthraquinone dyes by crude laccase produced by Lentinus sp. in solid state cultivation. Braz J Microbiol 2020; 51(1): 99-106.
[http://dx.doi.org/10.1007/s42770-019-00189-w] [PMID: 31776865]
[13]
Niebisch CH, Malinowski AK, Schadeck R, Mitchell DA, Kava-Cordeiro V, Paba J. Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus sp. extracellular extract. J Hazard Mater 2010; 180(1-3): 316-22.
[http://dx.doi.org/10.1016/j.jhazmat.2010.04.033] [PMID: 20452721]
[14]
Almeida PH, Oliveira ACC, Souza GPN, et al. Decolorization of remazol brilliant blue R with laccase from Lentinus sp. grown in agro-industrial by-products. An Acad Bras Cienc 2018; 90(4): 3463-73.
[http://dx.doi.org/10.1590/0001-3765201820170458] [PMID: 29947669]
[15]
Ballaminut N, Machado KMG, Oliveira LHS, Matheus DR. Physiological characterization of fungal inoculum for biotechnological remediation of soils. Braz Arch Biol Technol 2014; 57: 561-70.
[http://dx.doi.org/10.1590/S1516-8913201402006]
[16]
Lawal IA, Chetty D, Akpotu SO, Moodley B. Sorption of Congo red and reactive blue on biomass and activated carbon derived from biomass modified by ionic liquid. Environ Nanotechnol Monit Manag 2017; 8: 83-91.
[http://dx.doi.org/10.1016/j.enmm.2017.05.003]
[17]
Tiquia S. Assessing toxicity of spent pig litter using a seed germination technique. Resour Cons Rec 1994; 11(1–4): 261-74.
[18]
Ge S, Chen X, Li D, et al. Hemicellulose structural changes during steam pretreatment and biogradation of Lentinus edodes. Arab J Chem 2018; 11(6): 771-81.
[http://dx.doi.org/10.1016/j.arabjc.2017.12.022]
[19]
Santana TTS, Linde GA, Colauto NB, Valle JS. Metallic-aromatic compounds synergistically induce Lentinus sp. laccase production. Biocatal Agric Biotechnol 2018; 16: 625-30.
[http://dx.doi.org/10.1016/j.bcab.2018.10.018]
[20]
Sen SK, Raut S, Bandyopadhyay P, Raut S. Fungal decolouration and degradation of azo dyes: A review. Fungal Biol Rev 2016; 30(3): 112-33.
[http://dx.doi.org/10.1016/j.fbr.2016.06.003]
[21]
Singh RL, Singh PK, Singh RP. Enzymatic decolorization and degradation of azo dyes – A review. Int Biodet Biodeg 2015; 104: 21-31.
[http://dx.doi.org/10.1016/j.ibiod.2015.04.027]
[22]
Asses N, Ayed L, Hkiri N, Hamdi M. Congo Red Decolorization and Detoxification by Aspergillus niger: Removal Mechanisms and Dye Degradation Pathway. BioMed Res Int 2018; 20183049686
[http://dx.doi.org/10.1155/2018/3049686] [PMID: 30175122]
[23]
Wang N, Chu Y, Wu F, Zhao Z, Xu X. Decolorization and degradation of Congo red by a newly isolated white rot fungus,Ceriporia lacerata, from decayed mulberry branches. Int Biodet Biodeg 2017; 117: 236-44.
[http://dx.doi.org/10.1016/j.ibiod.2016.12.015]
[24]
Tatarko M, Bumpus JA. Biodegradation of Congo Red by Phanerochaete chrysosporium. Water Res 1998; 32(5): 1713-7.
[http://dx.doi.org/10.1016/S0043-1354(97)00378-3]
[25]
Das A, Bhattacharya S, Panchanan G, Navya BS, Nambiar P. Production, characterization and Congo red dye decolourizing efficiency of a laccase from Pleurotus ostreatus MTCC 142 cultivated on co-substrates of paddy straw and corn husk. J Genet Eng Biotechnol 2016; 14(2): 281-8.
[http://dx.doi.org/10.1016/j.jgeb.2016.09.007] [PMID: 30647626]
[26]
Gomes E, Silva R, Pereira JC, Ladino-Orjuela G. Fungal growth on solid substrates: A physiological overview. Cur Dev Biotech Bioeng 2018; pp. 31-56.
[http://dx.doi.org/10.1016/B978-0-444-63990-5.00003-7]
[27]
Liu G, Qu Y. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnol Adv 2019; 37(4): 519-29.
[http://dx.doi.org/10.1016/j.biotechadv.2018.12.004] [PMID: 30576717]
[28]
Domingos M, Souza-Cruz PB, Ferraz A, Prata AMR. A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chem Eng Sci 2017; 170: 670-6.
[http://dx.doi.org/10.1016/j.ces.2017.04.004]
[29]
Banerjee S, Roy A, Madhusudhan MS, Bairagya HR, Roy A. Structural insights of a cellobiose dehydrogenase enzyme from the basidiomycetes fungus Termitomyces clypeatus. Comput Biol Chem 2019; 82: 65-73.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.05.013] [PMID: 31272063]
[30]
Glazunova OA, Polyakov KM, Moiseenko KV, Kurzeev SA, Fedorova TV. Structure-function study of two new middle-redox potential laccases from basidiomycetes Antrodiella faginea and Steccherinum murashkinskyi, Int J Bio Macromol 2018; 118(A): 406-18.
[31]
Peralta RM, Silva BP, Côrrea RCG, Kato CG, Seixas FAV, Bracht A. Enzymes from Basidiomycetes—peculiar and efficient tools for biotechnology. Biotech Micro Enz 2017; pp. 119-49.
[http://dx.doi.org/10.1016/B978-0-12-803725-6.00005-4]
[32]
Anastasi A, Prigione V, Varese GC. Industrial dye degradation and detoxification by basidiomycetes belonging to different eco-physiological groups. J Hazard Mater 2010; 177(1-3): 260-7.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.027] [PMID: 20042288]
[33]
Hsu CA, Wen TN, Su YC, Jiang ZB, Chen CW, Shyur LF. Biological degradation of anthroquinone and azo dyes by a novel laccase from Lentinus sp. Environ Sci Technol 2012; 46(9): 5109-17.
[http://dx.doi.org/10.1021/es2047014] [PMID: 22494443]
[34]
Sathishkumar K, AlSalhi MS, Sanganyado E, Devanesan S, Arulprakash A, Rajasekar A. Sequential electrochemical oxidation and bio-treatment of the azo dye congo red and textile effluent. J Photochem Photobiol B 2019; 200111655
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111655] [PMID: 31655456]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy