Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Advances in Environmental Analysis Towards Green Nanomaterials

Author(s): Aslı Erdem Yayayürük* and Onur Yayayürük

Volume 17, Issue 4, 2021

Published on: 19 July, 2020

Page: [449 - 460] Pages: 12

DOI: 10.2174/1573411016999200719154826

Price: $65

Abstract

Background: The protection of the ecology is an important task to control and restore the quality of environmental media through the reduction or prevention of the pollutants. Due to the growing awareness of safety, health and environmental issues, the use of non-toxic, clean and ecofriendly methods in the synthesis of nanoparticles has emerged out of necessity.

Methods: In this article, the following concepts were considered: strategies of green chemistry, green chemistry metrics, waste management, green nanotechnology/nanoscience and characterization. Furthermore, the tables that include the covered topics were also presented in the manuscript.

Results: The green synthesis of nanomaterials is a safe, energy-efficient and fast method which reduces the use of solvents, reagents, and preservatives that are hazardous to environment and human health.

Conclusion: The fabrication of nanomaterials with green methods is a clean, safe, nontoxic and environmentally- friendly application which is necessary especially in large-scale operations.

Keywords: Characterization, environmental analysis, green analytical chemistry, green chemistry metrics, green nanomaterials, waste management.

Graphical Abstract
[1]
Frank, R.S. The Science of Environmental Pollution, 3rd ed; CRC Press, 2017.
[2]
John, R. The Elements of Environmental Pollution; Routledge, 2015.
[3]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
[4]
Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure. Green Analytical Procedure Index. Talanta, 2018, 181, 204-209.
[http://dx.doi.org/10.1016/j.talanta.2018.01.013] [PMID: 29426502]
[5]
Mitra, S. Sample Preparation Techniques in Analytical Chemistry; Wiley-Interscience, 2003.
[http://dx.doi.org/10.1002/0471457817]
[6]
Anastas, P.T. Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem., 1999, 29, 167-175.
[http://dx.doi.org/10.1080/10408349891199356]
[7]
Trost, B.M. Atom Economy-A challenge for organic synthesis: homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl., 1995, 34, 259-281.
[http://dx.doi.org/10.1002/anie.199502591]
[8]
Sheldon, R.A. Organic Synthesis: Past; Present and Future Chem: London, Ind., 1992, pp. 903-906.
[9]
Van Aken, K.; Strekowski, L.; Patiny, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem., 2006, 2(1), 3.
[http://dx.doi.org/10.1186/1860-5397-2-3] [PMID: 16542013]
[10]
Constable, D.J.C.; Curzons, A.D.; Cunningham, V.L. Metrics to ‘green’ chemistry-which are the best? Green Chem., 2002, 4, 521-527.
[http://dx.doi.org/10.1039/B206169B]
[11]
Curzons, A.D.; Constable, D.J.C.; Mortimer, D.N.; Cunningham, V.L. Green chemistry measures for process research and development. Green Chem., 2001, 3, 7-9.
[http://dx.doi.org/10.1039/b007875l]
[12]
Trost, B.M. The atom economy--a search for synthetic efficiency. Science, 1991, 254(5037), 1471-1477.
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206]
[13]
Kinen, C.O.; Rossi, L.J.; Hoyos de Rossi, R. The development of an environmentally benign sulfide oxidation procedure and its assessment by green chemistry metrics. Green Chem., 2009, 11, 223-228.
[http://dx.doi.org/10.1039/B815986F]
[14]
Sheldon, R.A. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem., 2017, 19, 18-43.
[http://dx.doi.org/10.1039/C6GC02157C]
[15]
Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A.M. Talić, S.; Wasylka, J.P. Green analytical chemistry: social dimension and teaching, TrAC Trends Analyt. Chem., 2019, 111, 185-196.
[http://dx.doi.org/10.1016/j.trac.2018.10.022]
[16]
Mulholland, K.L.; Sylvester, R.W.; Dyer, J.A. Sustainability: Waste minimization, green chemistry, and inherently safer processing. Environ. Prog., 2001, 19(4), 260-268.
[http://dx.doi.org/10.1002/ep.670190413]
[17]
Arevalo-Gallegos, A.; Ahmad, Z.; Asgher, M.; Parra-Saldivar, R.; Iqbal, H.M.N. Lignocellulose: A sustainable material to produce value-added products with a zero waste approach-A review. Int. J. Biol. Macromol., 2017, 99, 308-318.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.097] [PMID: 28254573]
[18]
Nasrollahzadeh, M.; Sajadi, M.; Atarod, M.; Sajjadi, M.; Isaabadi, Z. An Introduction to Green Nanotechnology, 1st ed; Academic Press, 2019.
[19]
Ghorbanpour, M.; Khanuja, M.; Varam, A. Nanoscience and plant-soil systems. Soil biology; Springer International Publishing AG, 2017.
[http://dx.doi.org/10.1007/978-3-319-46835-8]
[20]
Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater., 2000, 48, 1-29.
[http://dx.doi.org/10.1016/S1359-6454(99)00285-2]
[21]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[22]
Koch, C.C. Nanostructured materials: Processing, properties and applications, 2nd ed; Elsevier Science, 2006.
[23]
Gusev, A.I.; Rempel, A.A. Nanocrystalline materials; Cambridge International Science Publishing, 2004.
[24]
Logothetidis, S. Nanostructured materials and their applications. Nanoscience and technology; Springer: Berlin, Heidelberg, 2012.
[http://dx.doi.org/10.1007/978-3-642-22227-6]
[25]
Rempel, A.A. Nanotechnologies: Properties and applications of nanostructured materials. Russ. Chem. Rev., 2007, 76, 435-461.
[http://dx.doi.org/10.1070/RC2007v076n05ABEH003674]
[26]
Nath, D.; Banerjee, P. Green nanotechnology - a new hope for medical biology. Environ. Toxicol. Pharmacol., 2013, 36(3), 997-1014.
[http://dx.doi.org/10.1016/j.etap.2013.09.002] [PMID: 24095717]
[27]
Saratale, R.G.; Karuppusamy, I.; Saratale, G.D.; Pugazhendhi, A.; Kumar, G.; Park, Y.; Ghodake, G.S.; Bharagava, R.N.; Banu, J.R.; Shin, H.S. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf. B Biointerfaces, 2018, 170, 20-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.045] [PMID: 29860217]
[28]
Dahl, J.A.; Maddux, B.L.S.; Hutchison, J.E. Toward greener nanosynthesis. Chem. Rev., 2007, 107(6), 2228-2269.
[http://dx.doi.org/10.1021/cr050943k] [PMID: 17564480]
[29]
Gotić, M.; Musić, S. Synthesis of nanocrystalline iron oxide particles in the iron (III) acetate/alcohol/acetic acid system. Eur. J. Inorg. Chem., 2008, 6, 966-973.
[http://dx.doi.org/10.1002/ejic.200700986]
[30]
Hayashi, H.; Hakuta, Y. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials (Basel), 2010, 3(7), 3794-3817.
[http://dx.doi.org/10.3390/ma3073794] [PMID: 28883312]
[31]
Kim, C.S.; Moon, B.K.; Park, J.H.; Choi, B.C.; Seo, H.J. Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant. J. Cryst. Growth, 2003, 257(3-4), 309-315.
[http://dx.doi.org/10.1016/S0022-0248(03)01468-4]
[32]
Kahrilas, G.A.; Wally, L.M.; Fredrick, S.J.; Hiskey, M.; Prieto, A.L.; Owens, J.E. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain. Chem.& Eng., 2014, 2(3), 367-376.
[http://dx.doi.org/10.1021/sc4003664]
[33]
Chen, S.H.; Yuan, R.; Chai, Y.Q.; Hu, F.X. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Mikrochim. Acta, 2013, 180, 15-32.
[http://dx.doi.org/10.1007/s00604-012-0904-4]
[34]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650.
[http://dx.doi.org/10.1039/c1gc15386b]
[35]
Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci., 2012, 170(1-2), 2-27.
[http://dx.doi.org/10.1016/j.cis.2011.11.001] [PMID: 22154364]
[36]
Parsons, J.G.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Use of plants in biotechnology: Synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev Environ Sci., 2007, 5, 463-485.
[http://dx.doi.org/10.1016/S1474-8177(07)05021-8]
[37]
Durán, N.; Marcato, P.D.; Durán, M.; Yadav, A.; Gade, A.; Rai, M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl. Microbiol. Biotechnol., 2011, 90(5), 1609-1624.
[http://dx.doi.org/10.1007/s00253-011-3249-8] [PMID: 21484205]
[38]
Kunduru, K.R.; Nazarkovsky, M.; Farah, S.; Pawar, R.P.; Basu, A.; Domb, A.J. Nanotechnology for water purification: Applications of nanotechnology methods in wastewater treatment. Water Purif; Elsevier, 2017, pp. 33-74.
[http://dx.doi.org/10.1016/B978-0-12-804300-4.00002-2]
[39]
Kanchi, S. Nanotechnology for water treatment. J. Environ. Anal. Chem., 2014, 1, 1-3.
[http://dx.doi.org/10.4172/2380-2391.1000e102]
[40]
Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci., 2012, 5, 8075-8109.
[http://dx.doi.org/10.1039/c2ee21818f]
[41]
Amin, M.T.; Alazba, A.A.; Manzoor, U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv. Mater. Sci. Eng., 2014, 2014, 1-24.
[http://dx.doi.org/10.1155/2014/825910]
[42]
Bora, T.; Dutta, J. Applications of nanotechnology in wastewater treatment--a review. J. Nanosci. Nanotechnol., 2014, 14(1), 613-626.
[http://dx.doi.org/10.1166/jnn.2014.8898] [PMID: 24730286]
[43]
Patanjali, P.; Singh, R.; Kumar, A.; Chaudhar, P. Nanotechnology for water treatment: A green approach.Green Synthesis, Characterization and Applications of Nanoparticles; Shukla, A.K; Iravani, S., Ed.; Elsevier Science B. V: Amsterdam, 2019.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00021-6]
[44]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101174-101184.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[45]
Pejin, B.; Iodice, C.; Tommonaro, G.; De Rosa, S. Synthesis and biological activities of thio-avarol derivatives. J. Nat. Prod., 2008, 71(11), 1850-1853.
[http://dx.doi.org/10.1021/np800318m] [PMID: 19007183]
[46]
Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ. Sci. Pollut. Res. Int., 2017, 24(21), 17347-17357.
[http://dx.doi.org/10.1007/s11356-017-9329-2] [PMID: 28589274]
[47]
Manjumeena, R.; Duraibabu, D.; Rajamuthuramalingam, T.; Venkatesan, R.; Kalaichelvan, P.T. Highly responsive glutathione functionalized green AuNP probe for precise colorimetric detection of Cd2+ contamination in the environment. RSC Advances, 2015, 5, 69124-69133.
[http://dx.doi.org/10.1039/C5RA12427A]
[48]
Begum, N.A.; Mondal, S.; Basu, S.; Laskar, R.A.; Mandal, D. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf. B Biointerfaces, 2009, 71(1), 113-118.
[http://dx.doi.org/10.1016/j.colsurfb.2009.01.012] [PMID: 19250808]
[49]
Njagi, E.C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H.M.; Collins, J.B.; Hoag, G.E.; Suib, S.L. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 2011, 27(1), 264-271.
[http://dx.doi.org/10.1021/la103190n] [PMID: 21133391]
[50]
Das, S.K.; Khan, M.M.R.; Guha, A.K.; Das, A.R.; Mandal, A.B. Silver-nano biohybride material: Synthesis, characterization and application in water purification. Bioresour. Technol., 2012, 124, 495-499.
[http://dx.doi.org/10.1016/j.biortech.2012.08.071] [PMID: 23021961]
[51]
Oluwafemi, O.S.; Anyik, J.L.; Zikalala, N.E.; Sakho, E.M. Biosynthesis of silver nanoparticles from water hyacinth plant leaves extract for colourimetric sensing of heavy metals. Nano-Structures & Nano-Objects, 2019, 20, 100387-100390.
[http://dx.doi.org/10.1016/j.nanoso.2019.100387]
[52]
Vinod Kumar, V.; Anbarasan, S.; Christena, L.R. SaiSubramanian, N.; Philip Anthony, S. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 129(14), 35-42.
[http://dx.doi.org/10.1016/j.saa.2014.03.020] [PMID: 24717716]
[53]
Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyacı, E.; Eroglu, A.E.; Scott, T.B.; Hallam, K.R. Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J., 2011, 172, 258-266.
[http://dx.doi.org/10.1016/j.cej.2011.05.103]
[54]
Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ., 2014, 466-467(1), 210-213.
[http://dx.doi.org/10.1016/j.scitotenv.2013.07.022] [PMID: 23895784]
[55]
Wang, T.; Lin, J.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod., 2014, 83, 413-419.
[http://dx.doi.org/10.1016/j.jclepro.2014.07.006]
[56]
Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Advances, 2014, 4, 53467-53474.
[http://dx.doi.org/10.1039/C4RA08808E]
[57]
Srivastava, S.K.; Yamada, R.; Ogino, C.; Kondo, A. Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res. Lett., 2013, 8(1), 70.
[http://dx.doi.org/10.1186/1556-276X-8-70] [PMID: 23399317]
[58]
Sharma, N.; Pinnaka, A.K.; Raje, M.; Fnu, A.; Bhattacharyya, M.S.; Choudhury, A.R. Exploitation of marine bacteria for production of gold nanoparticles. Microb. Cell Fact., 2012, 11(86), 86.
[http://dx.doi.org/10.1186/1475-2859-11-86] [PMID: 22715848]
[59]
Correa-Llantén, D.N.; Muñoz-Ibacache, S.A.; Castro, M.E.; Muñoz, P.A.; Blamey, J.M. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb. Cell Fact., 2013, 12(75), 75.
[http://dx.doi.org/10.1186/1475-2859-12-75] [PMID: 23919572]
[60]
Binupriya, A.R.; Sathishkumar, M.; Vijayaraghavan, K.; Yun, S-I. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J. Hazard. Mater., 2010, 177(1-3), 539-545.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.066] [PMID: 20056324]
[61]
Molnár, Z.; Bódai, V.; Szakacs, G.; Erdélyi, B.; Fogarassy, Z.; Sáfrán, G.; Varga, T.; Kónya, Z.; Tóth-Szeles, E.; Szűcs, R.; Lagzi, I. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep., 2018, 8(1), 3943.
[http://dx.doi.org/10.1038/s41598-018-22112-3] [PMID: 29500365]
[62]
Agnihotri, M.; Joshi, S.; Kumar, A.R.; Zinjarde, S.; Kulkarni, S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater. Lett., 2009, 63, 1231-1234.
[http://dx.doi.org/10.1016/j.matlet.2009.02.042]
[63]
Zhang, X.; Qu, Y.; Shen, W.; Wang, J.; Li, H.; Zhang, Z.; Li, S.; Zhou, J. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf. A Physicochem. Eng. Asp., 2016, 497, 280-285.
[http://dx.doi.org/10.1016/j.colsurfa.2016.02.033]
[64]
Silambarasan, S.; Jayanthi, A. Biosynthesis of silver nanoparticles using Pseudomonas fluorescens. Res. J. Biotechnol., 2013, 8(3)
[65]
El-Batal, A.I.; Amin, M.A.; Shehata, M.M.K.; Hallo, M.M.A. Synthesis of Silver Nanoparticles by Bacillus stearothermophilus Using Gamma Radiation and Their Antimicrobial Activity. World Appl. Sci. J., 2013, 22(1), 1-16.
[66]
Kumar, C.G.; Mamidyala, S.K. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces, 2011, 84(2), 462-466.
[http://dx.doi.org/10.1016/j.colsurfb.2011.01.042] [PMID: 21353501]
[67]
Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine (Lond.), 2009, 5(4), 382-386.
[http://dx.doi.org/10.1016/j.nano.2009.06.005] [PMID: 19616127]
[68]
Ravindra, B.K.; Rajasab, A.H. A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int. J. Pharm. Pharm. Sci., 2014, 6, 372-376.
[69]
Niknejad, F.; Nabili, M.; Daie Ghazvini, R.; Moazeni, M. Green synthesis of silver nanoparticles: Advantages of the yeast Saccharomyces cerevisiae model. Curr. Med. Mycol., 2015, 1(3), 17-24.
[http://dx.doi.org/10.18869/acadpub.cmm.1.3.17] [PMID: 28680992]
[70]
Holmes, J.D.; Smith, P.R.; Evans-Gowing, R.; Richardson, D.J.; Russell, D.A.; Sodeau, J.R. Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch. Microbiol., 1995, 163(2), 143-147.
[http://dx.doi.org/10.1007/BF00381789] [PMID: 7710328]
[71]
Sweeney, R.Y.; Mao, C.; Gao, X.; Burt, J.L.; Belcher, A.M.; Georgiou, G.; Iverson, B.L. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol., 2004, 11(11), 1553-1559.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.022] [PMID: 15556006]
[72]
Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc., 2002, 124(41), 12108-12109.
[http://dx.doi.org/10.1021/ja027296o] [PMID: 12371846]
[73]
Yong, P.; Rowson, N.A.; Farr, J.P.G.; Harris, I.R.; Macaskie, L.E. Bioreduction and biocrystallization of palladium by desulfovibrio desulfuricans NCIMB 8307. Biotechnol. Bioeng., 2002, 80(4), 369-379.
[http://dx.doi.org/10.1002/bit.10369] [PMID: 12325145]
[74]
Santhoshkumar, J.; Rajeshkumar, S.; Venkat Kumar, S. Phyto-assisted synthesis, characterization and applications of gold nanoparticles - A review. Biochem. Biophys. Rep., 2017, 11, 46-57.
[http://dx.doi.org/10.1016/j.bbrep.2017.06.004] [PMID: 28955767]
[75]
Kumar, I.; Mondal, M.; Meyappan, V.; Sakthivel, N. Green one-pot synthesis of gold nanoparticles using Sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants. Mater. Res. Bull., 2019, 117, 18-27.
[http://dx.doi.org/10.1016/j.materresbull.2019.04.029]
[76]
Vijay Kumar, P.; Pammi, S.; Kollu, P.; Satyanarayana, K.; Shameem, U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod., 2014, 52, 562-566.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[77]
Sebastian, M.; Aravind, A.; Mathew, B. Green Silver Nanoparticles Based Multi-Technique Sensor for Environmental Hazardous Cu(II) Ion. Bionanoscience, 2019, 9, 373-385.
[http://dx.doi.org/10.1007/s12668-019-0608-x]
[78]
Saif, S.; Tahir, A.; Chen, Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials (Basel), 2016, 6(11), 209-234.
[http://dx.doi.org/10.3390/nano6110209] [PMID: 28335338]
[79]
Lohrasbi, S.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Ghasemi, Y.; Amani, A.M.; Taghizadeh, S. Green synthesis of iron nanoparticles using plantago major leaf extract and their application as a catalyst for the decolorization of azo dye. Bionanoscience, 2019, 9, 317-322.
[http://dx.doi.org/10.1007/s12668-019-0596-x]
[80]
Yi, Y.; Tu, G.; Tsang, P.E.; Xiao, S.; Fang, Z. Green synthesis of iron-based nanoparticles from extracts of Nephrolepis auriculata and applications for Cr(VI) removal. Mater. Lett., 2019, 234, 388-391.
[http://dx.doi.org/10.1016/j.matlet.2018.09.137]
[81]
Hoseinpour, V.; Ghaemi, N. Green synthesis of manganese nanoparticles: Applications and future perspective-A review. J. Photochem. Photobiol. B, 2018, 189, 234-243.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.022] [PMID: 30412855]
[82]
Kumar, V.; Singh, K.; Panwar, S.; Mehta, S.K. Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol. Int. Nano Lett., 2017, 7, 123-131.
[http://dx.doi.org/10.1007/s40089-017-0205-3]
[83]
Sorbiun, R.M.; Mehr, E.S.; Ramazani, A.; Fardood, S.T. green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. Int. J. Environ. Res., 2018, 12, 29-37.
[http://dx.doi.org/10.1007/s41742-018-0064-4]
[84]
Moisescu, C.; Bonneville, S.; Tobler, D.; Ardelean, I.; Benning, L.G. Controlled biomineralization of magnetite (Fe3O4) by Magnetospirillum gryphiswaldense. Mineral. Mag., 2008, 72, 333-336.
[http://dx.doi.org/10.1180/minmag.2008.072.1.333]
[85]
Suzuki, Y.; Kelly, S.D.; Kemner, K.M.; Banfield, J.F. Nanometre-size products of uranium bioreduction. Nature, 2002, 419(6903), 134-134.
[http://dx.doi.org/10.1038/419134a] [PMID: 12226656]
[86]
Kundu, D.; Hazra, C.; Chatterjee, A.; Chaudhari, A.; Mishra, S. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: Multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J. Photochem. Photobiol. B, 2014, 140, 194-204.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.08.001] [PMID: 25169770]
[87]
Tripathi, R.M.; Bhadwal, A.S.; Gupta, R.K.; Singh, P.; Shrivastav, A.; Shrivastav, B.R. ZnO nanoflowers: Novel biogenic synthesis and enhanced photocatalytic activity. J. Photochem. Photobiol. B, 2014, 141, 288-295.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.10.001] [PMID: 25463680]
[88]
Bharde, A.; Rautaray, D.; Bansal, V.; Ahmad, A.; Sarkar, I.; Yusuf, S.M.; Sanyal, M.; Sastry, M. Extracellular biosynthesis of magnetite using fungi. Small, 2006, 2(1), 135-141.
[http://dx.doi.org/10.1002/smll.200500180] [PMID: 17193569]
[89]
Uddin, I.; Adyanthaya, S.; Syed, A.; Selvaraj, K.; Ahmad, A.; Poddar, P. Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J. Nanosci. Nanotechnol., 2008, 8(8), 3909-3913.
[http://dx.doi.org/10.1166/jnn.2008.179] [PMID: 19049149]
[90]
Shamsuzzaman, A.; Mashrai, H.; Khanam, R.N.; Aljawfi, R.N. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab. J. Chem., 2017, 10(2), 1530-1536.
[http://dx.doi.org/10.1016/j.arabjc.2013.05.004]
[91]
Azizi, S.; Ahmad, M.B.; Namvar, F.; Mohamad, R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett., 2014, 116, 275-277.
[http://dx.doi.org/10.1016/j.matlet.2013.11.038]
[92]
Vanathi, P.; Rajiv, P.; Sivaraj, R. Synthesis and characterization of eichhorniamediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull. Mater. Sci., 2016, 39, 1165-1170.
[http://dx.doi.org/10.1007/s12034-016-1276-x]
[93]
Mahdavi, M.; Namvar, F.; Ahmad, M.B.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 2013, 18(5), 5954-5964.
[http://dx.doi.org/10.3390/molecules18055954] [PMID: 23698048]
[94]
Zheng, Y.; Fu, L.; Han, F.; Wang, A.; Cai, W.; Yu, J.; Yang, J.; Peng, F. Green biosynthesis and characterization of zinc oxide nanoparticles using corymbia citriodora leaf extract and their photocatalytic activity. Green Chem. Lett. Rev., 2015, 8, 59-63.
[http://dx.doi.org/10.1080/17518253.2015.1075069]
[95]
Santhoshkumar, J.; Kumar, S.V.; Rajeshkumar, S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour. Technol., 2017, 3(4), 459-465.
[96]
Alagiri, M.; Hamid, S.B.A. Green synthesis of alpha-Fe2O3 nanoparticles for photocatalytic application. J. Mater. Sci. Mater. Electron., 2014, 25, 3572-3577.
[http://dx.doi.org/10.1007/s10854-014-2058-0]
[97]
Phumying, S.; Labuayai, S.; Thomas, C.; Amornkitbamrung, V.; Swatsitangand, E.; Maensiri, S. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl. Phys., A Mater. Sci. Process., 2013, 111, 1187-1193.
[http://dx.doi.org/10.1007/s00339-012-7340-5]
[98]
Naika, H.R.; Lingarajua, K.; Manjunathb, K.; Danith, K.; Nagarajuc, G.; Suresh, D.; Nagabhushana, H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah. Univ. Sci., 2015, 9, 7-12.
[http://dx.doi.org/10.1016/j.jtusci.2014.04.006]
[99]
Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev., 2015, 44(16), 5778-5792.
[http://dx.doi.org/10.1039/C4CS00363B] [PMID: 25615873]
[100]
Awwad, A.M.; Albiss, B.A.; Salem, N.M. Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. Int. J. Adv. Res. (Indore), 2015, 5, 925-994.
[101]
Marimuthu, S.; Rahuman, A.A.; Jayaseelan, C.; Kirthi, A.V.; Santhoshkumar, T.; Velayutham, K.; Bagavan, A.; Kamaraj, C.; Elango, G.; Iyappan, M.; Siva, C.; Karthik, L.; Rao, K.V. Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac. J. Trop. Med., 2013, 6(9), 682-688.
[http://dx.doi.org/10.1016/S1995-7645(13)60118-2] [PMID: 23827143]
[102]
Suman, T.Y.; Ravindranat, R.R.S.; Elumalai, D.; Kaleena, P.K.; Ramkumar, R.; Perumal, P.; Chitrarasu, P.S. Larvicidal activity of titanium dioxide nanoparticles synthesized using morinda citrifolia root extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and its other effect on non-target fish. Asian Pac. J. Trop. Dis., 2015, 5, 224-230.
[http://dx.doi.org/10.1016/S2222-1808(14)60658-7]
[103]
Kalidindi, S.B.; Jagirdar, B.R. Nanocatalysis and prospects of green chemistry. ChemSusChem, 2012, 5(1), 65-75.
[http://dx.doi.org/10.1002/cssc.201100377] [PMID: 22190344]
[104]
Guria, M.K.; Majumdar, M.; Bhattacharyya, M. Green synthesis of protein capped nano-gold particle: An excellent recyclable nano-catalyst for the reduction of nitro-aromatic pollutants at higher concentration. J. Mol., 2016, 222, 549-557.
[http://dx.doi.org/10.1016/j.molliq.2016.07.087]
[105]
Tesh, S.J.; Scott, T.B. Nano-composites for water remediation: A review. Adv. Mater., 2014, 26(35), 6056-6068.
[http://dx.doi.org/10.1002/adma.201401376] [PMID: 25069835]
[106]
Xu, J.; Bhattacharyya, D. Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature. J. Phys. Chem. C Nanomater. Interfaces, 2008, 112(25), 9133-9144.
[http://dx.doi.org/10.1021/jp7097262] [PMID: 31131070]
[107]
Maximous, N.; Nakhla, G.; Wong, K.; Wan, W. Optimization of Al2O3/PES membranes for wastewater filtration. Separ. Purif. Tech., 2010, 73, 294-301.
[http://dx.doi.org/10.1016/j.seppur.2010.04.016]
[108]
Fujiwara, M.; Imura, T. Photo induced membrane separation for water purification and desalination using azobenzene modified anodized alumina membranes. ACS Nano, 2015, 9(6), 5705-5712.
[http://dx.doi.org/10.1021/nn505970n] [PMID: 26005901]
[109]
Bottino, A.; Capannelli, G.; D’Asti, V.; Piaggio, P. Preparation and properties of novel organic-inorganic porous membranes. Separ. Purif. Tech., 2001, 22-23, 269-275.
[http://dx.doi.org/10.1016/S1383-5866(00)00127-1]
[110]
Pendergast, M.M.; Hoek, E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 2011, 4, 1946-1971.
[http://dx.doi.org/10.1039/c0ee00541j]
[111]
Mauter, M.S.; Wang, Y.; Okemgbo, K.C.; Osuji, C.O.; Giannelis, E.P.; Elimelech, M. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl. Mater. Interfaces, 2011, 3(8), 2861-2868.
[http://dx.doi.org/10.1021/am200522v] [PMID: 21736330]
[112]
Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P.J.J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res., 2009, 43(3), 715-723.
[http://dx.doi.org/10.1016/j.watres.2008.11.014] [PMID: 19046755]
[113]
Carpenter, A.W.; de Lannoy, C.F.; Wiesner, M.R. Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol., 2015, 49(9), 5277-5287.
[http://dx.doi.org/10.1021/es506351r] [PMID: 25837659]
[114]
Chen, Q.; Liu, G.; Chen, G.; Mi, T.; Tai, J. Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. BioResources, 2016, 12, 608-621.
[http://dx.doi.org/10.15376/biores.12.1.608-621]
[115]
Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 2010, 4(4), 2429-2437.
[http://dx.doi.org/10.1021/nn1002387] [PMID: 20359169]
[116]
Krishna, R.; Titus, E.; Krishna, R.; Bardhan, N.; Bahadur, D.; Gracio, J. Wet-chemical green synthesis of L-lysine amino acid stabilized biocompatible iron-oxide magnetic nanoparticles. J. Nanosci. Nanotechnol., 2012, 12(8), 6645-6651.
[http://dx.doi.org/10.1166/jnn.2012.4571] [PMID: 22962801]
[117]
Sayyad, A.S.; Balakrishnan, K.; Ci, L.; Kabbani, A.T.; Vajtai, R.; Ajayan, P.M. Synthesis of iron nanoparticles from hemoglobin and myoglobin. Nanotechnology, 2012, 23(5)055602
[http://dx.doi.org/10.1088/0957-4484/23/5/055602] [PMID: 22236554]
[118]
Sreeja, V.; Jayaprabha, K.; Joy, P. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI. Appl. Nanosci., 2015, 5, 435-441.
[http://dx.doi.org/10.1007/s13204-014-0335-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy