Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation

Author(s): Mirazkar D. Pandareesh*, Vivek H. Kameshwar and Kullaiah Byrappa

Volume 21, Issue 2, 2021

Published on: 18 July, 2020

Page: [253 - 267] Pages: 15

DOI: 10.2174/1871530320666200719020709

Price: $65

Abstract

Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment.

Keywords: Prostate cancer, epigenetics, DNA modification, histone modification, inflammation, inflammasomes.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Taitt, H.E. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am. J. Men Health, 2018, 12(6), 1807-1823.
[http://dx.doi.org/10.1177/1557988318798279] [PMID: 30203706]
[3]
Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[4]
Cancer Stat Facts: Prostate Cancer.. https://seer.cancer.gov/statfacts/html/prost.html (Accessed 2016)
[5]
Cancer of the Prostate (Invasive). SEER Cancer Statistics Review., https://seer.cancer.gov/csr/1975_2016/results_merged/sect_23_prostate.pdf (Accessed 2019)
[6]
Ferlay, J.J.h.g.i.f. GLOBOCAN 2008, cancer incidence and mortality worldwide: IARC CancerBase No. 10. 2010
[7]
Trapman, J.; Cleutjens, K.B. Androgen-regulated gene expression in prostate cancer. Semin. Cancer Biol., 1997, 8(1), 29-36.
[http://dx.doi.org/10.1006/scbi.1997.0050] [PMID: 9299579]
[8]
Hui, D.H.F.; Tam, K.J.; Jiao, I.Z.F.; Ong, C.J. Semaphorin 3C as a therapeutic target in prostate and other cancers. Int. J. Mol. Sci., 2019, 20(3)E774
[http://dx.doi.org/10.3390/ijms20030774] [PMID: 30759745]
[9]
Baudis, M. Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer, 2007, 7, 226.
[http://dx.doi.org/10.1186/1471-2407-7-226] [PMID: 18088415]
[10]
Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; Mc Henry, K.T.; Pinchback, R.M.; Ligon, A.H.; Cho, Y.J.; Haery, L.; Greulich, H.; Reich, M.; Winckler, W.; Lawrence, M.S.; Weir, B.A.; Tanaka, K.E.; Chiang, D.Y.; Bass, A.J.; Loo, A.; Hoffman, C.; Prensner, J.; Liefeld, T.; Gao, Q.; Yecies, D.; Signoretti, S.; Maher, E.; Kaye, F.J.; Sasaki, H.; Tepper, J.E.; Fletcher, J.A.; Tabernero, J.; Baselga, J.; Tsao, M.S.; Demichelis, F.; Rubin, M.A.; Janne, P.A.; Daly, M.J.; Nucera, C.; Levine, R.L.; Ebert, B.L.; Gabriel, S.; Rustgi, A.K.; Antonescu, C.R.; Ladanyi, M.; Letai, A.; Garraway, L.A.; Loda, M.; Beer, D.G.; True, L.D.; Okamoto, A.; Pomeroy, S.L.; Singer, S.; Golub, T.R.; Lander, E.S.; Getz, G.; Sellers, W.R.; Meyerson, M. The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463(7283), 899-905.
[http://dx.doi.org/10.1038/nature08822] [PMID: 20164920]
[11]
Bignell, G.R.; Greenman, C.D.; Davies, H.; Butler, A.P.; Edkins, S.; Andrews, J.M.; Buck, G.; Chen, L.; Beare, D.; Latimer, C.; Widaa, S.; Hinton, J.; Fahey, C.; Fu, B.; Swamy, S.; Dalgliesh, G.L.; Teh, B.T.; Deloukas, P.; Yang, F.; Campbell, P.J.; Futreal, P.A.; Stratton, M.R. Signatures of mutation and selection in the cancer genome. Nature, 2010, 463(7283), 893-898.
[http://dx.doi.org/10.1038/nature08768] [PMID: 20164919]
[12]
Kim, T.M.; Xi, R.; Luquette, L.J.; Park, R.W.; Johnson, M.D.; Park, P.J. Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res., 2013, 23(2), 217-227.
[http://dx.doi.org/10.1101/gr.140301.112] [PMID: 23132910]
[13]
Stratton, M.R.; Campbell, P.J.; Futreal, P.A. The cancer genome. Nature, 2009, 458(7239), 719-724.
[http://dx.doi.org/10.1038/nature07943] [PMID: 19360079]
[14]
Wallis, C.J.; Nam, R.K. Prostate cancer genetics: a review. EJIFCC, 2015, 26(2), 79-91.
[PMID: 27683484]
[15]
Chen, Z.; Wang, L.; Wang, Q.; Li, W. Histone modifications and chromatin organization in prostate cancer. Epigenomics, 2010, 2(4), 551-560.
[http://dx.doi.org/10.2217/epi.10.31] [PMID: 21318127]
[16]
Yegnasubramanian, S.; Kowalski, J.; Gonzalgo, M.L.; Zahurak, M.; Piantadosi, S.; Walsh, P.C.; Bova, G.S.; De Marzo, A.M.; Isaacs, W.B.; Nelson, W.G. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res., 2004, 64(6), 1975-1986.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3972] [PMID: 15026333]
[17]
Nakayama, M.; Bennett, C.J.; Hicks, J.L.; Epstein, J.I.; Platz, E.A.; Nelson, W.G.; De Marzo, A.M. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am. J. Pathol., 2003, 163(3), 923-933.
[http://dx.doi.org/10.1016/S0002-9440(10)63452-9] [PMID: 12937133]
[18]
Baumgart, S.J.; Haendler, B. Exploiting epigenetic alterations in prostate cancer. Int. J. Mol. Sci., 2017, 18(5)E1017
[http://dx.doi.org/10.3390/ijms18051017] [PMID: 28486411]
[19]
Liao, Y.; Xu, K. Epigenetic regulation of prostate cancer: the theories and the clinical implications. Asian J. Androl., 2019, 21(3), 279-290.
[http://dx.doi.org/10.4103/aja.aja_53_18] [PMID: 30084432]
[20]
Zelic, R.; Fiano, V.; Grasso, C.; Zugna, D.; Pettersson, A.; Gillio-Tos, A.; Merletti, F.; Richiardi, L. Global DNA hypomethylation in prostate cancer development and progression: a systematic review. Prostate Cancer Prostatic Dis., 2015, 18(1), 1-12.
[http://dx.doi.org/10.1038/pcan.2014.45] [PMID: 25384337]
[21]
Massie, C.E.; Mills, I.G.; Lynch, A.G. The importance of DNA methylation in prostate cancer development. J. Steroid Biochem. Mol. Biol., 2017, 166, 1-15.
[http://dx.doi.org/10.1016/j.jsbmb.2016.04.009] [PMID: 27117390]
[22]
Gravina, G.L.; Ranieri, G.; Muzi, P.; Marampon, F.; Mancini, A.; Di Pasquale, B.; Di Clemente, L.; Dolo, V.; D’Alessandro, A.M.; Festuccia, C. Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells. Oncol. Rep., 2013, 29(3), 1189-1195.
[http://dx.doi.org/10.3892/or.2012.2192] [PMID: 23254386]
[23]
Gravina, G.L.; Marampon, F.; Piccolella, M.; Motta, M.; Ventura, L.; Pomante, R.; Popov, V.M.; Zani, B.M.; Pestell, R.G.; Tombolini, V.; Jannini, E.A.; Festuccia, C. Hormonal therapy promotes hormone-resistant phenotype by increasing DNMT activity and expression in prostate cancer models. Endocrinology, 2011, 152(12), 4550-4561.
[http://dx.doi.org/10.1210/en.2011-1056] [PMID: 21990314]
[24]
Li, L.C.; Carroll, P.R.; Dahiya, R. Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J. Natl. Cancer Inst., 2005, 97(2), 103-115.
[http://dx.doi.org/10.1093/jnci/dji010] [PMID: 15657340]
[25]
Festuccia, C.; Gravina, G.L.; D’Alessandro, A.M.; Muzi, P.; Millimaggi, D.; Dolo, V.; Ricevuto, E.; Vicentini, C.; Bologna, M. Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocr. Relat. Cancer, 2009, 16(2), 401-413.
[http://dx.doi.org/10.1677/ERC-08-0130] [PMID: 19153211]
[26]
Gravina, G.L.; Marampon, F.; Di Staso, M.; Bonfili, P.; Vitturini, A.; Jannini, E.A.; Pestell, R.G.; Tombolini, V.; Festuccia, C. 5-Azacitidine restores and amplifies the bicalutamide response on preclinical models of androgen receptor expressing or deficient prostate tumors. Prostate, 2010, 70(11), 1166-1178.
[http://dx.doi.org/10.1002/pros.21151] [PMID: 20333699]
[27]
Wang, X.; Gao, H.; Ren, L.; Gu, J.; Zhang, Y.; Zhang, Y. Demethylation of the miR-146a promoter by 5-Aza-2′-deoxycytidine correlates with delayed progression of castration-resistant prostate cancer. BMC Cancer, 2014, 14, 308.
[http://dx.doi.org/10.1186/1471-2407-14-308] [PMID: 24885368]
[28]
Naldi, I.; Taranta, M.; Gherardini, L.; Pelosi, G.; Viglione, F.; Grimaldi, S.; Pani, L.; Cinti, C. Novel epigenetic target therapy for prostate cancer: a preclinical study. PLoS One, 2014, 9(5)e98101
[http://dx.doi.org/10.1371/journal.pone.0098101] [PMID: 24851905]
[29]
McCabe, M.T.; Low, J.A.; Daignault, S.; Imperiale, M.J.; Wojno, K.J.; Day, M.L. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res., 2006, 66(1), 385-392.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2020] [PMID: 16397253]
[30]
Coffey, K.; Rogerson, L.; Ryan-Munden, C.; Alkharaif, D.; Stockley, J.; Heer, R.; Sahadevan, K.; O’Neill, D.; Jones, D.; Darby, S.; Staller, P.; Mantilla, A.; Gaughan, L.; Robson, C.N. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res., 2013, 41(8), 4433-4446.
[http://dx.doi.org/10.1093/nar/gkt106] [PMID: 23435229]
[31]
Yu, T.; Wang, C.; Yang, J.; Guo, Y.; Wu, Y.; Li, X. Metformin inhibits SUV39H1-mediated migration of prostate cancer cells. Oncogenesis, 2017, 6(5)e324
[http://dx.doi.org/10.1038/oncsis.2017.28] [PMID: 28459432]
[32]
Askew, E.B.; Bai, S.; Parris, A.B.; Minges, J.T.; Wilson, E.M. Androgen receptor regulation by histone methyltransferase Suppressor of variegation 3-9 homolog 2 and Melanoma antigen-A11. Mol. Cell. Endocrinol., 2017, 443, 42-51.
[http://dx.doi.org/10.1016/j.mce.2016.12.028] [PMID: 28042025]
[33]
Li, Q.; Li, Y.; Wang, Y.; Cui, Z.; Gong, L.; Qu, Z.; Zhong, Y.; Zhou, J.; Zhou, Y.; Gao, Y.; Li, Y. Quantitative proteomic study of human prostate cancer cells with different metastatic potentials. Int. J. Oncol., 2016, 48(4), 1437-1446.
[http://dx.doi.org/10.3892/ijo.2016.3378] [PMID: 26846621]
[34]
Huang, L.; Xu, A.M. SET and MYND domain containing protein 3 in cancer. Am. J. Transl. Res., 2017, 9(1), 1-14.
[PMID: 28123630]
[35]
Stopa, N.; Krebs, J.E.; Shechter, D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell. Mol. Life Sci., 2015, 72(11), 2041-2059.
[http://dx.doi.org/10.1007/s00018-015-1847-9] [PMID: 25662273]
[36]
Deng, X.; Shao, G.; Zhang, H.T.; Li, C.; Zhang, D.; Cheng, L.; Elzey, B.D.; Pili, R.; Ratliff, T.L.; Huang, J.; Hu, C.D. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth. Oncogene, 2017, 36(9), 1223-1231.
[http://dx.doi.org/10.1038/onc.2016.287] [PMID: 27546619]
[37]
Metzger, E.; Wissmann, M.; Yin, N.; Müller, J.M.; Schneider, R.; Peters, A.H.; Günther, T.; Buettner, R.; Schüle, R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 2005, 437(7057), 436-439.
[http://dx.doi.org/10.1038/nature04020] [PMID: 16079795]
[38]
Kashyap, V.; Ahmad, S.; Nilsson, E.M.; Helczynski, L.; Kenna, S.; Persson, J.L.; Gudas, L.J.; Mongan, N.P. The lysine specific demethylase-1 (LSD1/KDM1A) regulates VEGF-A expression in prostate cancer. Mol. Oncol., 2013, 7(3), 555-566.
[http://dx.doi.org/10.1016/j.molonc.2013.01.003] [PMID: 23384557]
[39]
Kahl, P.; Gullotti, L.; Heukamp, L.C.; Wolf, S.; Friedrichs, N.; Vorreuther, R.; Solleder, G.; Bastian, P.J.; Ellinger, J.; Metzger, E.; Schüle, R.; Buettner, R. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res., 2006, 66(23), 11341-11347.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1570] [PMID: 17145880]
[40]
Cai, C.; He, H.H.; Chen, S.; Coleman, I.; Wang, H.; Fang, Z.; Chen, S.; Nelson, P.S.; Liu, X.S.; Brown, M.; Balk, S.P. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell, 2011, 20(4), 457-471.
[http://dx.doi.org/10.1016/j.ccr.2011.09.001] [PMID: 22014572]
[41]
Cang, S.; Feng, J.; Konno, S.; Han, L.; Liu, K.; Sharma, S.C.; Choudhury, M.; Chiao, J.W. Deficient histone acetylation and excessive deacetylase activity as epigenomic marks of prostate cancer cells. Int. J. Oncol., 2009, 35(6), 1417-1422.
[PMID: 19885564]
[42]
Attar, N.; Kurdistani, S.K. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harb. Perspect. Med., 2017, 7(3)a026534
[http://dx.doi.org/10.1101/cshperspect.a026534] [PMID: 27881443]
[43]
Bianco-Miotto, T.; Chiam, K.; Buchanan, G.; Jindal, S.; Day, T.K.; Thomas, M.; Pickering, M.A.; O’Loughlin, M.A.; Ryan, N.K.; Raymond, W.A.; Horvath, L.G.; Kench, J.G.; Stricker, P.D.; Marshall, V.R.; Sutherland, R.L.; Henshall, S.M.; Gerald, W.L.; Scher, H.I.; Risbridger, G.P.; Clements, J.A.; Butler, L.M.; Tilley, W.D.; Horsfall, D.J.; Ricciardelli, C. Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol. Biomarkers Prev., 2010, 19(10), 2611-2622.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0555] [PMID: 20841388]
[44]
Ellinger, J.; Kahl, P.; von der Gathen, J.; Rogenhofer, S.; Heukamp, L.C.; Gütgemann, I.; Walter, B.; Hofstädter, F.; Büttner, R.; Müller, S.C.; Bastian, P.J.; von Ruecker, A. Global levels of histone modifications predict prostate cancer recurrence. Prostate, 2010, 70(1), 61-69.
[http://dx.doi.org/10.1002/pros.21038] [PMID: 19739128]
[45]
Cao, J.; Yan, Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front. Oncol., 2012, 2, 26.
[http://dx.doi.org/10.3389/fonc.2012.00026] [PMID: 22649782]
[46]
Du, H.N. Transcription, DNA damage and beyond: the roles of histone ubiquitination and deubiquitination. Curr. Protein Pept. Sci., 2012, 13(5), 447-466.
[http://dx.doi.org/10.2174/138920312802430617] [PMID: 22812523]
[47]
Johnsen, S.A. The enigmatic role of H2Bub1 in cancer. FEBS Lett., 2012, 586(11), 1592-1601.
[http://dx.doi.org/10.1016/j.febslet.2012.04.002] [PMID: 22564770]
[48]
Jääskeläinen, T.; Makkonen, H.; Visakorpi, T.; Kim, J.; Roeder, R.G.; Palvimo, J.J. Histone H2B ubiquitin ligases RNF20 and RNF40 in androgen signaling and prostate cancer cell growth. Mol. Cell. Endocrinol., 2012, 350(1), 87-98.
[http://dx.doi.org/10.1016/j.mce.2011.11.025] [PMID: 22155569]
[49]
Barbieri, C.E.; Baca, S.C.; Lawrence, M.S.; Demichelis, F.; Blattner, M.; Theurillat, J.P.; White, T.A.; Stojanov, P.; Van Allen, E.; Stransky, N.; Nickerson, E.; Chae, S.S.; Boysen, G.; Auclair, D.; Onofrio, R.C.; Park, K.; Kitabayashi, N.; MacDonald, T.Y.; Sheikh, K.; Vuong, T.; Guiducci, C.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Saksena, G.; Voet, D.; Hussain, W.M.; Ramos, A.H.; Winckler, W.; Redman, M.C.; Ardlie, K.; Tewari, A.K.; Mosquera, J.M.; Rupp, N.; Wild, P.J.; Moch, H.; Morrissey, C.; Nelson, P.S.; Kantoff, P.W.; Gabriel, S.B.; Golub, T.R.; Meyerson, M.; Lander, E.S.; Getz, G.; Rubin, M.A.; Garraway, L.A. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet., 2012, 44(6), 685-689.
[http://dx.doi.org/10.1038/ng.2279] [PMID: 22610119]
[50]
Draker, R.; Sarcinella, E.; Cheung, P. USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation. Nucleic Acids Res., 2011, 39(9), 3529-3542.
[http://dx.doi.org/10.1093/nar/gkq1352] [PMID: 21245042]
[51]
Chen, S.T.; Okada, M.; Nakato, R.; Izumi, K.; Bando, M.; Shirahige, K. The Deubiquitinating enzyme USP7 regulates androgen receptor activity by modulating its binding to chromatin. J. Biol. Chem., 2015, 290(35), 21713-21723.
[http://dx.doi.org/10.1074/jbc.M114.628255] [PMID: 26175158]
[52]
Faus, H.; Meyer, H.A.; Huber, M.; Bahr, I.; Haendler, B. The ubiquitin-specific protease USP10 modulates androgen receptor function. Mol. Cell. Endocrinol., 2005, 245(1-2), 138-146.
[http://dx.doi.org/10.1016/j.mce.2005.11.011] [PMID: 16368182]
[53]
Geng, C.; Rajapakshe, K.; Shah, S.S.; Shou, J.; Eedunuri, V.K.; Foley, C.; Fiskus, W.; Rajendran, M.; Chew, S.A.; Zimmermann, M.; Bond, R.; He, B.; Coarfa, C.; Mitsiades, N. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer Res., 2014, 74(19), 5631-5643.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0476] [PMID: 25274033]
[54]
Liao, Y.; Liu, N.; Hua, X.; Cai, J.; Xia, X.; Wang, X.; Huang, H.; Liu, J. Proteasome-associated deubiquitinase ubiquitin-specific protease 14 regulates prostate cancer proliferation by deubiquitinating and stabilizing androgen receptor. Cell Death Dis., 2017, 8(2)e2585
[http://dx.doi.org/10.1038/cddis.2016.477] [PMID: 28151478]
[55]
Gelato, K.A.; Shaikhibrahim, Z.; Ocker, M.; Haendler, B. Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Expert Opin. Ther. Targets, 2016, 20(7), 783-799.
[http://dx.doi.org/10.1517/14728222.2016.1134490] [PMID: 26799480]
[56]
Graça, I.; Pereira-Silva, E.; Henrique, R.; Packham, G.; Crabb, S.J.; Jerónimo, C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin. Epigenetics, 2016, 8, 98.
[http://dx.doi.org/10.1186/s13148-016-0264-8] [PMID: 27651838]
[57]
Kinoshita, H.; Shi, Y.; Sandefur, C.; Meisner, L.F.; Chang, C.; Choon, A.; Reznikoff, C.R.; Bova, G.S.; Friedl, A.; Jarrard, D.F. Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res., 2000, 60(13), 3623-3630.
[PMID: 10910077]
[58]
Mishra, D.K.; Chen, Z.; Wu, Y.; Sarkissyan, M.; Koeffler, H.P.; Vadgama, J.V. Global methylation pattern of genes in androgen-sensitive and androgen-independent prostate cancer cells. Mol. Cancer Ther., 2010, 9(1), 33-45.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0486] [PMID: 20053773]
[59]
Takayama, K.; Misawa, A.; Suzuki, T.; Takagi, K.; Hayashizaki, Y.; Fujimura, T.; Homma, Y.; Takahashi, S.; Urano, T.; Inoue, S. TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat. Commun., 2015, 6, 8219.
[http://dx.doi.org/10.1038/ncomms9219] [PMID: 26404510]
[60]
Karahoca, M.; Momparler, R.L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2′-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin. Epigenetics, 2013, 5(1), 3.
[http://dx.doi.org/10.1186/1868-7083-5-3] [PMID: 23369223]
[61]
Graça, I.; Sousa, E.J.; Baptista, T.; Almeida, M.; Ramalho-Carvalho, J.; Palmeira, C.; Henrique, R.; Jerónimo, C. Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr. Pharm. Des., 2014, 20(11), 1803-1811.
[http://dx.doi.org/10.2174/13816128113199990516] [PMID: 23888969]
[62]
Fialova, B.; Smesny Trtkova, K.; Paskova, L.; Langova, K.; Kolar, Z. Effect of histone deacetylase and DNA methyltransferase inhibitors on the expression of the androgen receptor gene in androgen-independent prostate cancer cell lines. Oncol. Rep., 2013, 29(5), 2039-2045.
[http://dx.doi.org/10.3892/or.2013.2344] [PMID: 23503510]
[63]
Hagelgans, A.; Menschikowski, M.; Fuessel, S.; Nacke, B.; Arneth, B.M.; Wirth, M.P.; Siegert, G. Deregulated expression of urokinase and its inhibitor type 1 in prostate cancer cells: role of epigenetic mechanisms. Exp. Mol. Pathol., 2013, 94(3), 458-465.
[http://dx.doi.org/10.1016/j.yexmp.2013.03.006] [PMID: 23541763]
[64]
Lakshmikanthan, V.; Kaddour-Djebbar, I.; Lewis, R.W.; Kumar, M.V. SAHA-sensitized prostate cancer cells to TNFalpha-related apoptosis-inducing ligand (TRAIL): mechanisms leading to synergistic apoptosis. Int. J. Cancer, 2006, 119(1), 221-228.
[http://dx.doi.org/10.1002/ijc.21824] [PMID: 16450389]
[65]
VanOosten, R.L.; Earel, J.K., Jr; Griffith, T.S. Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity. Apoptosis, 2007, 12(3), 561-571.
[http://dx.doi.org/10.1007/s10495-006-0009-9] [PMID: 17195089]
[66]
Yu, C.C.; Pan, S.L.; Chao, S.W.; Liu, S.P.; Hsu, J.L.; Yang, Y.C.; Li, T.K.; Huang, W.J.; Guh, J.H. A novel small molecule hybrid of vorinostat and DACA displays anticancer activity against human hormone-refractory metastatic prostate cancer through dual inhibition of histone deacetylase and topoisomerase I. Biochem. Pharmacol., 2014, 90(3), 320-330.
[http://dx.doi.org/10.1016/j.bcp.2014.06.001] [PMID: 24915421]
[67]
Asangani, I.A.; Dommeti, V.L.; Wang, X.; Malik, R.; Cieslik, M.; Yang, R.; Escara-Wilke, J.; Wilder-Romans, K.; Dhanireddy, S.; Engelke, C.; Iyer, M.K.; Jing, X.; Wu, Y.M.; Cao, X.; Qin, Z.S.; Wang, S.; Feng, F.Y.; Chinnaiyan, A.M. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature, 2014, 510(7504), 278-282.
[http://dx.doi.org/10.1038/nature13229] [PMID: 24759320]
[68]
Wyce, A.; Degenhardt, Y.; Bai, Y.; Le, B.; Korenchuk, S.; Crouthame, M.C.; McHugh, C.F.; Vessella, R.; Creasy, C.L.; Tummino, P.J.; Barbash, O. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. Oncotarget, 2013, 4(12), 2419-2429.
[http://dx.doi.org/10.18632/oncotarget.1572] [PMID: 24293458]
[69]
Crea, F.; Hurt, E.M.; Mathews, L.A.; Cabarcas, S.M.; Sun, L.; Marquez, V.E.; Danesi, R.; Farrar, W.L. Pharmacologic disruption of polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol. Cancer, 2011, 10, 40.
[http://dx.doi.org/10.1186/1476-4598-10-40] [PMID: 21501485]
[70]
Kgatle, M.M.; Kalla, A.A.; Islam, M.M.; Sathekge, M.; Moorad, R. Prostate cancer: epigenetic alterations, risk factors, and therapy. Prostate Cancer, 2016, 2016, 11.
[http://dx.doi.org/10.1155/2016/5653862] [PMID: 27891254]
[71]
Velloso, F.J.; Trombetta-Lima, M.; Anschau, V.; Sogayar, M.C.; Correa, R.G. NOD-like receptors: major players (and targets) in the interface between innate immunity and cancer. Biosci. Rep., 2019, 39(4)BSR20181709
[http://dx.doi.org/10.1042/BSR20181709] [PMID: 30837326]
[72]
Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018, 17(1), 158.
[http://dx.doi.org/10.1186/s12943-018-0900-3] [PMID: 30447690]
[73]
Costea, T.; Nagy, P.; Ganea, C.; Szöllősi, J.; Mocanu, M-M. Molecular mechanisms and bioavailability of polyphenols in prostate cancer. Int. J. Mol. Sci., 2019, 20(5), 1062.
[http://dx.doi.org/10.3390/ijms20051062] [PMID: 30823649]
[74]
He, Q.; Fu, Y.; Tian, D.; Yan, W. The contrasting roles of inflammasomes in cancer. Am. J. Cancer Res., 2018, 8(4), 566-583.
[PMID: 29736304]
[75]
Cimadamore, A.; Lopez-Beltran, A.; Massari, F.; Santoni, M.; Mazzucchelli, R.; Scarpelli, M.; Galosi, A.B.; Cheng, L.; Montironi, R. Germline and somatic mutations in prostate cancer: focus on defective DNA repair, PARP inhibitors and immunotherapy. Future Oncol., 2020, 16(5), 75-80.
[http://dx.doi.org/10.2217/fon-2019-0745] [PMID: 31916449]
[76]
Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y.; Frohlich, M.W.; Schellhammer, P.F. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[http://dx.doi.org/10.1056/NEJMoa1001294] [PMID: 20818862]
[77]
Al Harthy, M.; Redman, J.; Madan, R.A. Novel immunotherapy combinations for genitourinary cancers. Expert Opin. Biol. Ther., 2020, 20(3), 253-262.
[http://dx.doi.org/10.1080/14712598.2020.1713086] [PMID: 31914333]
[78]
Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; Davis, I.D.; de Bono, J.S.; Evans, C.P.; Fizazi, K.; Joshua, A.M.; Kim, C.S.; Kimura, G.; Mainwaring, P.; Mansbach, H.; Miller, K.; Noonberg, S.B.; Perabo, F.; Phung, D.; Saad, F.; Scher, H.I.; Taplin, M.E.; Venner, P.M.; Tombal, B. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med., 2014, 371(5), 424-433.
[http://dx.doi.org/10.1056/NEJMoa1405095] [PMID: 24881730]
[79]
Hussain, M.; Fizazi, K.; Saad, F.; Rathenborg, P.; Shore, N.; Ferreira, U.; Ivashchenko, P.; Demirhan, E.; Modelska, K.; Phung, D.; Krivoshik, A.; Sternberg, C.N. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med., 2018, 378(26), 2465-2474.
[http://dx.doi.org/10.1056/NEJMoa1800536] [PMID: 29949494]
[80]
Loeb, S.; Catalona, W.J. Prostate-specific antigen in clinical practice. Cancer Lett., 2007, 249(1), 30-39.
[http://dx.doi.org/10.1016/j.canlet.2006.12.022] [PMID: 17258389]
[81]
Boccellino, M.; Alaia, C.; Misso, G.; Cossu, A.M.; Facchini, G.; Piscitelli, R.; Quagliuolo, L.; Caraglia, M. Gene interference strategies as a new tool for the treatment of prostate cancer. Endocrine, 2015, 49(3), 588-605.
[http://dx.doi.org/10.1007/s12020-015-0629-3] [PMID: 26049369]
[82]
Facchini, G.; Caffo, O.; Ortega, C.; D’Aniello, C.; Di Napoli, M.; Cecere, S.C.; Della Pepa, C.; Crispo, A.; Maines, F.; Ruatta, F.; Iovane, G.; Pisconti, S.; Montella, M.; Berretta, M.; Pignata, S.; Cavaliere, C. Very early PSA response to abiraterone in mCRPC patients: a novel prognostic factor predicting overall survival. Front. Pharmacol., 2016, 7, 123.
[http://dx.doi.org/10.3389/fphar.2016.00123] [PMID: 27242530]
[83]
Wang, G.; Chan, E.S.; Kwan, B.C.; Li, P.K.; Yip, S.K.; Szeto, C.C.; Ng, C.F. Expression of microRNAs in the urine of patients with bladder cancer. Clin. Genitourin. Cancer, 2012, 10(2), 106-113.
[http://dx.doi.org/10.1016/j.clgc.2012.01.001] [PMID: 22386240]
[84]
Lolli, C.; Caffo, O.; Scarpi, E.; Aieta, M.; Conteduca, V.; Maines, F.; Bianchi, E.; Massari, F.; Veccia, A.; Chiuri, V.E.; Facchini, G.; De Giorgi, U. Systemic immune-inflammation index predicts the clinical outcome in patients with mCRPC treated with abiraterone. Front. Pharmacol., 2016, 7, 376.
[http://dx.doi.org/10.3389/fphar.2016.00376] [PMID: 27790145]
[85]
Verzoni, E.; De Giorgi, U.; Derosa, L.; Caffo, O.; Boccardo, F.; Facchini, G.; Porcu, L.; De Vincenzo, F.; Zaniboni, A.; Chiuri, V.E.; Fratino, L.; Santini, D.; Adamo, V.; De Vivo, R.; Dinota, A.; Messina, C.; Ricotta, R.; Caserta, C.; Scavelli, C.; Susi, M.; Tartarone, A.; Surace, G.; Mosca, A.; Bruno, M.; Barni, S.; Grassi, P.; Procopio, G. Predictors of long-term response to abiraterone in patients with metastastic castration-resistant prostate cancer: a retrospective cohort study. Oncotarget, 2016, 7(26), 40085-40094.
[http://dx.doi.org/10.18632/oncotarget.9485] [PMID: 27223078]
[86]
Schröder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; Denis, L.J.; Recker, F.; Berenguer, A.; Määttänen, L.; Bangma, C.H.; Aus, G.; Villers, A.; Rebillard, X.; van der Kwast, T.; Blijenberg, B.G.; Moss, S.M.; de Koning, H.J.; Auvinen, A. ERSPC Investigators. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med., 2009, 360(13), 1320-1328.
[http://dx.doi.org/10.1056/NEJMoa0810084] [PMID: 19297566]
[87]
Squire, J.A.; Park, P.C.; Yoshimoto, M.; Alami, J.; Williams, J.L.; Evans, A.; Joshua, A.M. Prostate cancer as a model system for genetic diversity in tumors. Adv. Cancer Res., 2011, 112, 183-216.
[http://dx.doi.org/10.1016/B978-0-12-387688-1.00007-7] [PMID: 21925305]
[88]
Schoenborn, J.R.; Nelson, P.; Fang, M. Genomic profiling defines subtypes of prostate cancer with the potential for therapeutic stratification. Clin. Cancer Res., 2013, 19(15), 4058-4066.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3606] [PMID: 23704282]
[89]
Fraser, M.; Berlin, A.; Bristow, R.G.; van der Kwast, T. Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer. Urol. Oncol., 2015, 33(2), 85-94.
[http://dx.doi.org/10.1016/j.urolonc.2013.10.020] [PMID: 24768356]
[90]
Goessl, C.; Krause, H.; Müller, M.; Heicappell, R.; Schrader, M.; Sachsinger, J.; Miller, K. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res., 2000, 60(21), 5941-5945.
[PMID: 11085508]
[91]
Jerónimo, C.; Usadel, H.; Henrique, R.; Silva, C.; Oliveira, J.; Lopes, C.; Sidransky, D. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology, 2002, 60(6), 1131-1135.
[http://dx.doi.org/10.1016/S0090-4295(02)01949-0] [PMID: 12475696]
[92]
Goessl, C.; Müller, M.; Heicappell, R.; Krause, H.; Schostak, M.; Straub, B.; Miller, K. Methylation-specific PCR for detection of neoplastic DNA in biopsy washings. J. Pathol., 2002, 196(3), 331-334.
[http://dx.doi.org/10.1002/path.1063] [PMID: 11857497]
[93]
Harden, S.V.; Sanderson, H.; Goodman, S.N.; Partin, A.A.; Walsh, P.C.; Epstein, J.I.; Sidransky, D. Quantitative GSTP1 methylation and the detection of prostate adenocarcinoma in sextant biopsies. J. Natl. Cancer Inst., 2003, 95(21), 1634-1637.
[http://dx.doi.org/10.1093/jnci/djg082] [PMID: 14600096]
[94]
Suh, C.I.; Shanafelt, T.; May, D.J.; Shroyer, K.R.; Bobak, J.B.; Crawford, E.D.; Miller, G.J.; Markham, N.; Glode, L.M. Comparison of telomerase activity and GSTP1 promoter methylation in ejaculate as potential screening tests for prostate cancer. Mol. Cell. Probes, 2000, 14(4), 211-217.
[http://dx.doi.org/10.1006/mcpr.2000.0307] [PMID: 10970725]
[95]
Gonzalgo, M.L.; Nakayama, M.; Lee, S.M.; De Marzo, A.M.; Nelson, W.G. Detection of GSTP1 methylation in prostatic secretions using combinatorial MSP analysis. Urology, 2004, 63(2), 414-418.
[http://dx.doi.org/10.1016/j.urology.2003.08.039] [PMID: 14972513]
[96]
Cairns, P.; Esteller, M.; Herman, J.G.; Schoenberg, M.; Jeronimo, C.; Sanchez-Cespedes, M.; Chow, N.H.; Grasso, M.; Wu, L.; Westra, W.B.; Sidransky, D. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin. Cancer Res., 2001, 7(9), 2727-2730.
[PMID: 11555585]
[97]
Gonzalgo, M.L.; Pavlovich, C.P.; Lee, S.M.; Nelson, W.G. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin. Cancer Res., 2003, 9(7), 2673-2677.
[PMID: 12855646]
[98]
Köllermann, J.; Müller, M.; Goessl, C.; Krause, H.; Helpap, B.; Pantel, K.; Miller, K. Methylation-specific PCR for DNA-based detection of occult tumor cells in lymph nodes of prostate cancer patients. Eur. Urol., 2003, 44(5), 533-538.
[http://dx.doi.org/10.1016/S0302-2838(03)00361-0] [PMID: 14572750]
[99]
Kang, G.H.; Lee, S.; Lee, H.J.; Hwang, K.S. Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J. Pathol., 2004, 202(2), 233-240.
[http://dx.doi.org/10.1002/path.1503] [PMID: 14743506]
[100]
Abrahamsson, A.; Dabrosin, C. Tissue specific expression of extracellular microRNA in human breast cancers and normal human breast tissue in vivo. Oncotarget, 2015, 6(26), 22959-22969.
[http://dx.doi.org/10.18632/oncotarget.4038] [PMID: 26008976]
[101]
Blondal, T.; Jensby Nielsen, S.; Baker, A.; Andreasen, D.; Mouritzen, P.; Wrang Teilum, M.; Dahlsveen, I.K. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods, 2013, 59(1), S1-S6.
[http://dx.doi.org/10.1016/j.ymeth.2012.09.015] [PMID: 23036329]
[102]
Hao, Z.; Fan, W.; Hao, J.; Wu, X.; Zeng, G.Q.; Zhang, L.J.; Nie, S.F.; Wang, X.D. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv., 2016, 23(3), 874-881.
[http://dx.doi.org/10.3109/10717544.2014.920059] [PMID: 24892627]
[103]
Ottman, R.; Levy, J.; Grizzle, W.E.; Chakrabarti, R. The other face of miR-17-92a cluster, exhibiting tumor suppressor effects in prostate cancer. Oncotarget, 2016, 7(45), 73739-73753.
[http://dx.doi.org/10.18632/oncotarget.12061] [PMID: 27650539]
[104]
Wan, X.; Huang, W.; Yang, S.; Zhang, Y.; Zhang, P.; Kong, Z.; Li, T.; Wu, H.; Jing, F.; Li, Y. Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression. Int. J. Biochem. Cell Biol., 2016, 79, 249-260.
[http://dx.doi.org/10.1016/j.biocel.2016.08.043] [PMID: 27594411]
[105]
Zhang, L.; Zhang, X.W.; Liu, C.H.; Lu, K.; Huang, Y.Q.; Wang, Y.D.; Xing, L.; Zhang, L.J.; Liu, N.; Jiang, H.; Sun, C.; Yang, Y.; Chen, S.Q.; Chen, M.; Xu, B. miRNA-30a functions as a tumor suppressor by downregulating cyclin E2 expression in castration-resistant prostate cancer. Mol. Med. Rep., 2016, 14(3), 2077-2084.
[http://dx.doi.org/10.3892/mmr.2016.5469] [PMID: 27431942]
[106]
Chang, T.C.; Wentzel, E.A.; Kent, O.A.; Ramachandran, K.; Mullendore, M.; Lee, K.H.; Feldmann, G.; Yamakuchi, M.; Ferlito, M.; Lowenstein, C.J.; Arking, D.E.; Beer, M.A.; Maitra, A.; Mendell, J.T. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell, 2007, 26(5), 745-752.
[http://dx.doi.org/10.1016/j.molcel.2007.05.010] [PMID: 17540599]
[107]
Raver-Shapira, N.; Marciano, E.; Meiri, E.; Spector, Y.; Rosenfeld, N.; Moskovits, N.; Bentwich, Z.; Oren, M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell, 2007, 26(5), 731-743.
[http://dx.doi.org/10.1016/j.molcel.2007.05.017] [PMID: 17540598]
[108]
Tazawa, H.; Tsuchiya, N.; Izumiya, M.; Nakagama, H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. USA, 2007, 104(39), 15472-15477.
[http://dx.doi.org/10.1073/pnas.0707351104] [PMID: 17875987]
[109]
Shi, X.B.; Ma, A.H.; Xue, L.; Li, M.; Nguyen, H.G.; Yang, J.C.; Tepper, C.G.; Gandour-Edwards, R.; Evans, C.P.; Kung, H.J.; deVere White, R.W. miR-124 and androgen receptor signaling inhibitors repress prostate cancer growth by downregulating androgen receptor splice variants, EZH2, and Src. Cancer Res., 2015, 75(24), 5309-5317.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0795] [PMID: 26573802]
[110]
Sherwood, E.R.; Van Dongen, J.L.; Wood, C.G.; Liao, S.; Kozlowski, J.M.; Lee, C. Epidermal growth factor receptor activation in androgen-independent but not androgen-stimulated growth of human prostatic carcinoma cells. Br. J. Cancer, 1998, 77(6), 855-861.
[http://dx.doi.org/10.1038/bjc.1998.142] [PMID: 9528825]
[111]
Sachdeva, M.; Zhu, S.; Wu, F.; Wu, H.; Walia, V.; Kumar, S.; Elble, R.; Watabe, K.; Mo, Y.Y. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3207-3212.
[http://dx.doi.org/10.1073/pnas.0808042106] [PMID: 19202062]
[112]
Avgeris, M.; Stravodimos, K.; Fragoulis, E.G.; Scorilas, A. The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Br. J. Cancer, 2013, 108(12), 2573-2581.
[http://dx.doi.org/10.1038/bjc.2013.250] [PMID: 23703249]
[113]
Zhang, Z.; Lanz, R.B.; Xiao, L.; Wang, L.; Hartig, S.M.; Ittmann, M.M.; Feng, Q.; He, B. The tumor suppressive miR-200b subfamily is an ERG target gene in human prostate tumors. Oncotarget, 2016, 7(25), 37993-38003.
[http://dx.doi.org/10.18632/oncotarget.9366] [PMID: 27191272]
[114]
Lin, Y.C.; Lin, J.F.; Tsai, T.F.; Chou, K.Y.; Chen, H.E.; Hwang, T.I. Tumor suppressor miRNA-204-5p promotes apoptosis by targeting BCL2 in prostate cancer cells. Asian J. Surg., 2017, 40(5), 396-406.
[http://dx.doi.org/10.1016/j.asjsur.2016.07.001] [PMID: 27519795]
[115]
Vanacore, D.; Boccellino, M.; Rossetti, S.; Cavaliere, C.; D’Aniello, C.; Di Franco, R.; Romano, F.J.; Montanari, M.; La Mantia, E.; Piscitelli, R.; Nocerino, F.; Cappuccio, F.; Grimaldi, G.; Izzo, A.; Castaldo, L.; Pepe, M.F.; Malzone, M.G.; Iovane, G.; Ametrano, G.; Stiuso, P.; Quagliuolo, L.; Barberio, D.; Perdonà, S.; Muto, P.; Montella, M.; Maiolino, P.; Veneziani, B.M.; Botti, G.; Caraglia, M.; Facchini, G. Micrornas in prostate cancer: an overview. Oncotarget, 2017, 8(30), 50240-50251.
[http://dx.doi.org/10.18632/oncotarget.16933] [PMID: 28445135]
[116]
Zhang, W.; Liu, J.; Qiu, J.; Fu, X.; Tang, Q.; Yang, F.; Zhao, Z.; Wang, H. MicroRNA-382 inhibits prostate cancer cell proliferation and metastasis through targeting COUP-TFII. Oncol. Rep., 2016, 36(6), 3707-3715.
[http://dx.doi.org/10.3892/or.2016.5141] [PMID: 27748848]
[117]
Karatas, O.F.; Guzel, E.; Suer, I.; Ekici, I.D.; Caskurlu, T.; Creighton, C.J.; Ittmann, M.; Ozen, M. miR-1 and miR-133b are differentially expressed in patients with recurrent prostate cancer. PLoS One, 2014, 9(6)e98675
[http://dx.doi.org/10.1371/journal.pone.0098675] [PMID: 24967583]
[118]
Zhao, Y.; Yan, M.; Yun, Y.; Zhang, J.; Zhang, R.; Li, Y.; Wu, X.; Liu, Q.; Miao, W.; Jiang, H. MicroRNA-455-3p functions as a tumor suppressor by targeting eIF4E in prostate cancer. Oncol. Rep., 2017, 37(4), 2449-2458.
[http://dx.doi.org/10.3892/or.2017.5502] [PMID: 28350134]
[119]
Xu, B.; Tao, T.; Wang, Y.; Fang, F.; Huang, Y.; Chen, S.; Zhu, W.; Chen, M. hsa-miR-135a-1 inhibits prostate cancer cell growth and migration by targeting EGFR. Tumour Biol., 2016, 37(10), 14141-14151.
[http://dx.doi.org/10.1007/s13277-016-5196-6] [PMID: 27524492]
[120]
Kong, D.; Heath, E.; Chen, W.; Cher, M.L.; Powell, I.; Heilbrun, L.; Li, Y.; Ali, S.; Sethi, S.; Hassan, O.; Hwang, C.; Gupta, N.; Chitale, D.; Sakr, W.A.; Menon, M.; Sarkar, F.H. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One, 2012, 7(3)e33729
[http://dx.doi.org/10.1371/journal.pone.0033729] [PMID: 22442719]
[121]
Cannistraci, A.; Di Pace, A.L.; De Maria, R.; Bonci, D. MicroRNA as new tools for prostate cancer risk assessment and therapeutic intervention: results from clinical data set and patients’ samples. BioMed Res. Int., 2014.2014146170
[http://dx.doi.org/10.1155/2014/146170] [PMID: 25309903]
[122]
Galardi, S.; Mercatelli, N.; Giorda, E.; Massalini, S.; Frajese, G.V.; Ciafrè, S.A.; Farace, M.G. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem., 2007, 282(32), 23716-23724.
[http://dx.doi.org/10.1074/jbc.M701805200] [PMID: 17569667]
[123]
le Sage, C.; Nagel, R.; Egan, D.A.; Schrier, M.; Mesman, E.; Mangiola, A.; Anile, C.; Maira, G.; Mercatelli, N.; Ciafrè, S.A.; Farace, M.G.; Agami, R. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J., 2007, 26(15), 3699-3708.
[http://dx.doi.org/10.1038/sj.emboj.7601790] [PMID: 17627278]
[124]
Mercatelli, N.; Coppola, V.; Bonci, D.; Miele, F.; Costantini, A.; Guadagnoli, M.; Bonanno, E.; Muto, G.; Frajese, G.V.; De Maria, R.; Spagnoli, L.G.; Farace, M.G.; Ciafrè, S.A. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One, 2008, 3(12)e4029
[http://dx.doi.org/10.1371/journal.pone.0004029] [PMID: 19107213]
[125]
Al-Kafaji, G.; Al-Naieb, Z.T.; Bakhiet, M. Increased oncogenic microRNA-18a expression in the peripheral blood of patients with prostate cancer: A potential novel non-invasive biomarker. Oncol. Lett., 2016, 11(2), 1201-1206.
[http://dx.doi.org/10.3892/ol.2015.4014] [PMID: 26893719]
[126]
Jalava, S.E.; Urbanucci, A.; Latonen, L.; Waltering, K.K.; Sahu, B.; Jänne, O.A.; Seppälä, J.; Lähdesmäki, H.; Tammela, T.L.; Visakorpi, T. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene, 2012, 31(41), 4460-4471.
[http://dx.doi.org/10.1038/onc.2011.624] [PMID: 22266859]
[127]
Chang, B.L.; Zheng, S.L.; Isaacs, S.D.; Wiley, K.E.; Turner, A.; Li, G.; Walsh, P.C.; Meyers, D.A.; Isaacs, W.B.; Xu, J. A polymorphism in the CDKN1B gene is associated with increased risk of hereditary prostate cancer. Cancer Res., 2004, 64(6), 1997-1999.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2340] [PMID: 15026335]
[128]
Haferlach, C.; Bacher, U.; Kohlmann, A.; Schindela, S.; Alpermann, T.; Kern, W.; Schnittger, S.; Haferlach, T. CDKN1B, encoding the cyclin-dependent kinase inhibitor 1B (p27), is located in the minimally deleted region of 12p abnormalities in myeloid malignancies and its low expression is a favorable prognostic marker in acute myeloid leukemia. Haematologica, 2011, 96(6), 829-836.
[http://dx.doi.org/10.3324/haematol.2010.035584] [PMID: 21422114]
[129]
Zhu, L.; Wang, J.; Yue, C.; Yuan, W.; Zhang, W.; Shi, L.; Mi, Y.; Wu, X.; Zhang, L.F.; Zuo, L. CDKN1B Val 109 Gly variant is not related to risk of prostate cancer. J. Cell. Biochem., 2019, 120(10), 18346-18356.
[http://dx.doi.org/10.1002/jcb.29144] [PMID: 31257659]
[130]
De Souza, M.F.; Kuasne, H.; Barros-Filho, M.C.; Ciliao, H.L.; Marchi, F.A.; Fuganti, P.E.; Rogatto, S.R.; Colus, I.M.S. Circulating mRNA signature as a marker for high-risk prostate cancer. Carcinogenesis, 2020, 41(2), 139-145.
[http://dx.doi.org/10.1093/carcin/bgz129] [PMID: 31305891]
[131]
Bhatia-Gaur, R.; Donjacour, A.A.; Sciavolino, P.J.; Kim, M.; Desai, N.; Young, P.; Norton, C.R.; Gridley, T.; Cardiff, R.D.; Cunha, G.R.; Abate-Shen, C.; Shen, M.M. Roles for Nkx3.1 in prostate development and cancer. Genes Dev., 1999, 13(8), 966-977.
[http://dx.doi.org/10.1101/gad.13.8.966] [PMID: 10215624]
[132]
Wang, C.; Feng, Y.; Zhang, C.; Cheng, D.; Wu, R.; Yang, Y.; Sargsyan, D.; Kumar, D.; Kong, A.N. PTEN deletion drives aberrations of DNA methylome and transcriptome in different stages of prostate cancer. FASEB J., 2020, 34(1), 1304-1318.
[http://dx.doi.org/10.1096/fj.201901205RR] [PMID: 31914691]
[133]
Yan, Y.; Huang, H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv. Exp. Med. Biol., 2019, 1210, 319-331.
[http://dx.doi.org/10.1007/978-3-030-32656-2_14] [PMID: 31900915]
[134]
Wang, G.; Zhao, D.; Spring, D.J.; DePinho, R.A. Genetics and biology of prostate cancer. Genes Dev., 2018, 32(17-18), 1105-1140.
[http://dx.doi.org/10.1101/gad.315739.118] [PMID: 30181359]
[135]
Sun, J.; Li, S.; Wang, F.; Fan, C.; Wang, J. Identification of key pathways and genes in PTEN mutation prostate cancer by bioinformatics analysis. BMC Med. Genet., 2019, 20(1), 191.
[http://dx.doi.org/10.1186/s12881-019-0923-7] [PMID: 31791268]
[136]
Chapman, L.; Ledet, E.M.; Barata, P.C.; Cotogno, P.; Manogue, C.; Moses, M.; Christensen, B.R.; Steinwald, P.; Ranasinghe, L.; Layton, J.L. TP53 Gain-of-function mutations in circulating tumor DNA in men with metastatic castration-resistant prostate cancer. Clin. Genitourin. Cancer, 2020, 18(2), 148-154.
[http://dx.doi.org/10.1016/j.clgc.2019.10.022] [PMID: 31822380]
[137]
Umemori, M.; Kurata, M.; Yamamoto, A.; Yamamoto, K.; Ishibashi, S.; Ikeda, M.; Tashiro, K.; Kimura, T.; Sato, S.; Takahashi, H.; Kitagawa, M. The expression of MYC is strongly dependent on the circular PVT1 expression in pure Gleason pattern 4 of prostatic cancer. Med. Mol. Morphol., 2020, 53(3), 156-167.
[http://dx.doi.org/10.1007/s00795-020-00243-9] [PMID: 31932969]
[138]
Koh, C.M.; Bieberich, C.J.; Dang, C.V.; Nelson, W.G.; Yegnasubramanian, S.; De Marzo, A.M. MYC and prostate cancer. Genes Cancer, 2010, 1(6), 617-628.
[http://dx.doi.org/10.1177/1947601910379132] [PMID: 21779461]
[139]
Ayala, G.; Frolov, A.; Chatterjee, D.; He, D.; Hilsenbeck, S.; Ittmann, M. Expression of ERG protein in prostate cancer: variability and biological correlates. Endocr. Relat. Cancer, 2015, 22(3), 277-287.
[http://dx.doi.org/10.1530/ERC-14-0586] [PMID: 25972242]
[140]
Adamo, P.; Ladomery, M.R. The oncogene ERG: a key factor in prostate cancer. Oncogene, 2016, 35(4), 403-414.
[http://dx.doi.org/10.1038/onc.2015.109] [PMID: 25915839]
[141]
Wang, Z.; Wang, Y.; Zhang, J.; Hu, Q.; Zhi, F.; Zhang, S.; Mao, D.; Zhang, Y.; Liang, H. Significance of the TMPRSS2:ERG gene fusion in prostate cancer. Mol. Med. Rep., 2017, 16(4), 5450-5458.
[http://dx.doi.org/10.3892/mmr.2017.7281] [PMID: 28849022]
[142]
Kim, T.D.; Jin, F.; Shin, S.; Oh, S.; Lightfoot, S.A.; Grande, J.P.; Johnson, A.J.; van Deursen, J.M.; Wren, J.D.; Janknecht, R. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J. Clin. Invest., 2016, 126(2), 706-720.
[http://dx.doi.org/10.1172/JCI78132] [PMID: 26731476]
[143]
De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Grönberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer, 2007, 7(4), 256-269.
[http://dx.doi.org/10.1038/nrc2090] [PMID: 17384581]
[144]
Fujita, K.; Nonomura, N. Role of androgen receptor in prostate cancer: a review. World J. Mens Health, 2019, 37(3), 288-295.
[http://dx.doi.org/10.5534/wjmh.180040] [PMID: 30209899]
[145]
Murillo-Garzón, V.; Kypta, R. WNT signalling in prostate cancer. Nat. Rev. Urol., 2017, 14(11), 683-696.
[http://dx.doi.org/10.1038/nrurol.2017.144] [PMID: 28895566]
[146]
Yardy, G.W.; Brewster, S.F. Wnt signalling and prostate cancer. Prostate Cancer Prostatic Dis., 2005, 8(2), 119-126.
[http://dx.doi.org/10.1038/sj.pcan.4500794] [PMID: 15809669]
[147]
Chen, X.; Liu, J.; Cheng, L.; Li, C.; Zhang, Z.; Bai, Y.; Wang, R.; Han, T.; Huang, C.; Kong, Y.; Feng, F.; Liu, X. Inhibition of noncanonical Wnt pathway overcomes enzalutamide resistance in castration-resistant prostate cancer. Prostate, 2020, 80(3), 256-266.
[http://dx.doi.org/10.1002/pros.23939] [PMID: 31856338]
[148]
Zhang, L.; Meng, X.; Pan, C.; Qu, F.; Gan, W.; Xiang, Z.; Han, X.; Li, D. piR-31470 epigenetically suppresses the expression of glutathione S-transferase pi 1 in prostate cancer via DNA methylation. Cell. Signal., 2020, 67109501
[http://dx.doi.org/10.1016/j.cellsig.2019.109501] [PMID: 31837464]
[149]
Martignano, F.; Gurioli, G.; Salvi, S.; Calistri, D.; Costantini, M.; Gunelli, R.; De Giorgi, U.; Foca, F.; Casadio, V. GSTP1 methylation and protein expression in prostate cancer: diagnostic implications. Dis. Markers, 2016, 20164358292
[http://dx.doi.org/10.1155/2016/4358292] [PMID: 27594734]
[150]
Grasso, C.S.; Wu, Y.M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; Asangani, I.A.; Ateeq, B.; Chun, S.Y.; Siddiqui, J.; Sam, L.; Anstett, M.; Mehra, R.; Prensner, J.R.; Palanisamy, N.; Ryslik, G.A.; Vandin, F.; Raphael, B.J.; Kunju, L.P.; Rhodes, D.R.; Pienta, K.J.; Chinnaiyan, A.M.; Tomlins, S.A. The mutational landscape of lethal castration-resistant prostate cancer. Nature, 2012, 487(7406), 239-243.
[http://dx.doi.org/10.1038/nature11125] [PMID: 22722839]
[151]
Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; Elemento, O.; Rubin, M.A.; Robinson, D.; Lonigro, R.; Hussain, M.; Chinnaiyan, A.; Vinson, J.; Filipenko, J.; Garraway, L.; Taplin, M.E.; AlDubayan, S.; Han, G.C.; Beightol, M.; Morrissey, C.; Nghiem, B.; Cheng, H.H.; Montgomery, B.; Walsh, T.; Casadei, S.; Berger, M.; Zhang, L.; Zehir, A.; Vijai, J.; Scher, H.I.; Sawyers, C.; Schultz, N.; Kantoff, P.W.; Solit, D.; Robson, M.; Van Allen, E.M.; Offit, K.; de Bono, J.; Nelson, P.S. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med., 2016, 375(5), 443-453.
[http://dx.doi.org/10.1056/NEJMoa1603144] [PMID: 27433846]
[152]
Fraser, M.; Sabelnykova, V.Y.; Yamaguchi, T.N.; Heisler, L.E.; Livingstone, J.; Huang, V.; Shiah, Y.J.; Yousif, F.; Lin, X.; Masella, A.P.; Fox, N.S.; Xie, M.; Prokopec, S.D.; Berlin, A.; Lalonde, E.; Ahmed, M.; Trudel, D.; Luo, X.; Beck, T.A.; Meng, A.; Zhang, J.; D’Costa, A.; Denroche, R.E.; Kong, H.; Espiritu, S.M.; Chua, M.L.; Wong, A.; Chong, T.; Sam, M.; Johns, J.; Timms, L.; Buchner, N.B.; Orain, M.; Picard, V.; Hovington, H.; Murison, A.; Kron, K.; Harding, N.J.; P’ng, C.; Houlahan, K.E.; Chu, K.C.; Lo, B.; Nguyen, F.; Li, C.H.; Sun, R.X.; de Borja, R.; Cooper, C.I.; Hopkins, J.F.; Govind, S.K.; Fung, C.; Waggott, D.; Green, J.; Haider, S.; Chan-Seng-Yue, M.A.; Jung, E.; Wang, Z.; Bergeron, A.; Dal Pra, A.; Lacombe, L.; Collins, C.C.; Sahinalp, C.; Lupien, M.; Fleshner, N.E.; He, H.H.; Fradet, Y.; Tetu, B.; van der Kwast, T.; McPherson, J.D.; Bristow, R.G.; Boutros, P.C. Genomic hallmarks of localized, non-indolent prostate cancer. Nature, 2017, 541(7637), 359-364.
[http://dx.doi.org/10.1038/nature20788] [PMID: 28068672]
[153]
Torres, A.; Alshalalfa, M.; Davicioni, E.; Gupta, A.; Yegnasubramanian, S.; Wheelan, S.J.; Epstein, J.I.; De Marzo, A.M.; Lotan, T.L. ETS2 is a prostate basal cell marker and is highly expressed in prostate cancers aberrantly expressing p63. Prostate, 2018, 78(12), 896-904.
[http://dx.doi.org/10.1002/pros.23646] [PMID: 29761525]
[154]
Bose, R.; Karthaus, W.R.; Armenia, J.; Abida, W.; Iaquinta, P.J.; Zhang, Z.; Wongvipat, J.; Wasmuth, E.V.; Shah, N.; Sullivan, P.S.; Doran, M.G.; Wang, P.; Patruno, A.; Zhao, Y.; Zheng, D.; Schultz, N.; Sawyers, C.L. International SU2C/PCF prostate cancer dream team. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature, 2017, 546(7660), 671-675.
[http://dx.doi.org/10.1038/nature22820] [PMID: 28614298]
[155]
Huang, F.W.; Mosquera, J.M.; Garofalo, A.; Oh, C.; Baco, M.; Amin-Mansour, A.; Rabasha, B.; Bahl, S.; Mullane, S.A.; Robinson, B.D.; Aldubayan, S.; Khani, F.; Karir, B.; Kim, E.; Chimene-Weiss, J.; Hofree, M.; Romanel, A.; Osborne, J.R.; Kim, J.W.; Azabdaftari, G.; Woloszynska-Read, A.; Sfanos, K.; De Marzo, A.M.; Demichelis, F.; Gabriel, S.; Van Allen, E.M.; Mesirov, J.; Tamayo, P.; Rubin, M.A.; Powell, I.J.; Garraway, L.A. Exome sequencing of African-American prostate cancer reveals loss-of-function ERF mutations. Cancer Discov., 2017, 7(9), 973-983.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0960] [PMID: 28515055]
[156]
Xu, K.; Wu, Z.J.; Groner, A.C.; He, H.H.; Cai, C.; Lis, R.T.; Wu, X.; Stack, E.C.; Loda, M.; Liu, T.; Xu, H.; Cato, L.; Thornton, J.E.; Gregory, R.I.; Morrissey, C.; Vessella, R.L.; Montironi, R.; Magi-Galluzzi, C.; Kantoff, P.W.; Balk, S.P.; Liu, X.S.; Brown, M. EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science, 2012, 338(6113), 1465-1469.
[http://dx.doi.org/10.1126/science.1227604] [PMID: 23239736]
[157]
Wu, X.; Scott, H.; Carlsson, S.V.; Sjoberg, D.D.; Cerundolo, L.; Lilja, H.; Prevo, R.; Rieunier, G.; Macaulay, V.; Higgins, G.S.; Verrill, C.L.; Lamb, A.D.; Cunliffe, V.T.; Bountra, C.; Hamdy, F.C.; Bryant, R.J. Increased EZH2 expression in prostate cancer is associated with metastatic recurrence following external beam radiotherapy. Prostate, 2019, 79(10), 1079-1089.
[http://dx.doi.org/10.1002/pros.23817] [PMID: 31104332]
[158]
Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark. Res., 2018, 6, 10.
[http://dx.doi.org/10.1186/s40364-018-0122-2] [PMID: 29556394]
[159]
Gerhardt, J.; Montani, M.; Wild, P.; Beer, M.; Huber, F.; Hermanns, T.; Müntener, M.; Kristiansen, G. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. Am. J. Pathol., 2012, 180(2), 848-861.
[http://dx.doi.org/10.1016/j.ajpath.2011.10.021] [PMID: 22138582]
[160]
Adams, E.J.; Karthaus, W.R.; Hoover, E.; Liu, D.; Gruet, A.; Zhang, Z.; Cho, H.; DiLoreto, R.; Chhangawala, S.; Liu, Y.; Watson, P.A.; Davicioni, E.; Sboner, A.; Barbieri, C.E.; Bose, R.; Leslie, C.S.; Sawyers, C.L. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature, 2019, 571(7765), 408-412.
[http://dx.doi.org/10.1038/s41586-019-1318-9] [PMID: 31243370]
[161]
Zhang, D.T.; Shi, J.G.; Liu, Y.; Jiang, H.M. The prognostic value of Smad4 mRNA in patients with prostate cancer. Tumour Biol., 2014, 35(4), 3333-3337.
[http://dx.doi.org/10.1007/s13277-013-1439-y] [PMID: 24272204]
[162]
Gurel, B.; Ali, T.Z.; Montgomery, E.A.; Begum, S.; Hicks, J.; Goggins, M.; Eberhart, C.G.; Clark, D.P.; Bieberich, C.J.; Epstein, J.I.; De Marzo, A.M. NKX3.1 as a marker of prostatic origin in metastatic tumors. Am. J. Surg. Pathol., 2010, 34(8), 1097-1105.
[http://dx.doi.org/10.1097/PAS.0b013e3181e6cbf3] [PMID: 20588175]
[163]
He, W.W.; Sciavolino, P.J.; Wing, J.; Augustus, M.; Hudson, P.; Meissner, P.S.; Curtis, R.T.; Shell, B.K.; Bostwick, D.G.; Tindall, D.J.; Gelmann, E.P.; Abate-Shen, C.; Carter, K.C. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics, 1997, 43(1), 69-77.
[http://dx.doi.org/10.1006/geno.1997.4715] [PMID: 9226374]
[164]
Graham, M.K.; Meeker, A. Telomeres and telomerase in prostate cancer development and therapy. Nat. Rev. Urol., 2017, 14(10), 607-619.
[http://dx.doi.org/10.1038/nrurol.2017.104] [PMID: 28675175]
[165]
Meeker, A.K. Telomeres and telomerase in prostatic intraepithelial neoplasia and prostate cancer biology. Urol. Oncol., 2006, 24(2), 122-130.
[http://dx.doi.org/10.1016/j.urolonc.2005.11.002] [PMID: 16520276]
[166]
Jusino, S.; Fernández-Padín, F.M.; Saavedra, H.I. Centrosome aberrations and chromosome instability contribute to tumorigenesis and intra-tumor heterogeneity. J. Cancer Metastasis Treat., 2018, 4, 4.
[http://dx.doi.org/10.20517/2394-4722.2018.24] [PMID: 30381801]
[167]
Cong, Y.S.; Wright, W.E.; Shay, J.W. Human telomerase and its regulation. Microbiol. Mol. Biol. Rev., 2002, 66(3), 407-425.
[http://dx.doi.org/10.1128/MMBR.66.3.407-425.2002] [PMID: 12208997]
[168]
Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med., 2016, 8(1), 69.
[http://dx.doi.org/10.1186/s13073-016-0324-x] [PMID: 27323951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy