Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Chrysin’s Impact on Oxidative and Inflammation Damages in the Liver of Aged Male Rats

Author(s): Mohammad Samini, Tahereh Farkhondeh, Mohsen Azimi-Nezhad and Saeed Samarghandian*

Volume 21, Issue 4, 2021

Published on: 17 July, 2020

Page: [743 - 748] Pages: 6

DOI: 10.2174/1871530320666200717162304

Price: $65

Abstract

Aim: The purpose of this research was to investigate the effect of chrysin on one of the natural antioxidants on aging progression in an animal model.

Background: Oxidative stress and inflammation increase in hepatic tissue during aging, leading to liver dysfunction.

Objective: The current research was conducted to show the effect of chrysin on the activities of antioxidant enzyme (catalase, glutathione peroxidase, and superoxide dismutase), serum nitric oxide (NO), and lipid peroxidation as well as inflammatory cytokines (TNF-α, IL-6, and IL-1β) of aging rats.

Methods: Male Wistar rats of different ages, 2, 10, and 20 months, were randomly divided into six groups as follows (n=8, per each group): young control rats (C2), young CH-treated rats (CH2), middle- aged control rats (C10), middle-aged CH-treated group (CH10), aged control group (C20), and aged CH-treated group (CH20). Chrysin (20 mg/kg) was administered intraperitoneally once a day for 30 days.

Result: Present findings indicated that chrysin treatment ameliorated the increased liver levels of lipid peroxidation, TNF-α, and IL-1β as well as serum levels of NO.

Conclusion: The findings suggest that chrysin could be effective against the progression of ageinduced damage by modulation of oxidant-antioxidant system and inflammatory response.

Keywords: Aging, chrysin, inflammation, liver, oxidative stress, rat.

Graphical Abstract
[1]
Fries, GR.; Zamzow, MJ; Andrews, T.; Pink, O.; Scaini, G.; Quevedo, J. Accelerated aging in bipolar disorder: a comprehensive review of molecular findings and their clinical implications. Neurosci. Biobehav. Rev., 2020, 112, 107-116.
[http://dx.doi.org/10.1016/j.neubiorev.2020.01.035] [PMID: 32018037]
[2]
Tower, J. Programmed cell death in aging., Ageing Res. Rev., 2015, 23(Pt A), 90-100.
[http://dx.doi.org/10.1016/j.arr.2015.04.002]
[3]
Peng, Y.; Zhu, Q.; Wang, B.; Ren, J. A cross-sectional study on interference control: age affects reactive control but not proactive control. PeerJ, 2020, 8e8365
[http://dx.doi.org/10.7717/peerj.8365] [PMID: 32025368]
[4]
Guo, B.; Guo, Q.; Wang, Z.; Shao, J.B.; Liu, K.; Du, Z.D.; Gong, S.S. D-Galactose-induced oxidative stress and mitochondrial dysfunction in the cochlear basilar membrane: an in vitro aging model. Biogerontology, 2020, 21(3), 311-323.
[http://dx.doi.org/10.1007/s10522-020-09859-x] [PMID: 32026209]
[5]
Zhang, H; Davies, K.J.A.; Forman, H.J. Oxidative stress response and Nrf2 signaling in aging Free Radic., Biol. Med., 2015, 88(Pt B), 314-336..
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.036] [PMID: 26066302]
[6]
Cabello-Verrugio, C.; Simon, F.; Trollet, C.; Santibañez, J.F. Oxidative stress in disease and aging: mechanisms and therapies. Oxid. Med. Cell. Longev., 2017, 20174310469
[7]
Pieńkowska, N.; Bartosz, G.; Pichla, M.; Grzesik-Pietrasiewicz, M.; Gruchala, M.; Sadowska-Bartosz, I. Effect of antioxidants on the H2O2-induced premature senescence of human fibroblasts. Aging (Albany NY), 2020, 12(2), 1910-1927.
[http://dx.doi.org/10.18632/aging.102730] [PMID: 31962290]
[8]
Scarlata, E.; O’Flaherty, C. Antioxidant enzymes and male fertility: lessons from knockout models. Antioxid. Redox Signal., 2020, 32(8), 569-580.
[http://dx.doi.org/10.1089/ars.2019.7985] [PMID: 31891662]
[9]
Fagundes, F.L.; de Morais Piffer, G.; Périco, L.L.; Rodrigues, V.P.; Hiruma-Lima, C.A.; Dos Santos, R.C. Chrysin modulates genes related to inflammation, tissue remodeling, and cell proliferation in the gastric ulcer healing. Int. J. Mol. Sci., 2020, 21(3)E760
[http://dx.doi.org/10.3390/ijms21030760] [PMID: 31979417]
[10]
Mohammadi, A.; Kazemi, S.; Hosseini, M.; Najafzadeh Varzi, H.; Feyzi, F.; Morakabati, P.; Moghadamnia, A.A. Chrysin effect in prevention of acetaminophen-induced hepatotoxicity in rat. Chem. Res. Toxicol., 2019, 32(11), 2329-2337.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00332] [PMID: 31625388]
[11]
Naz, S.; Imran, M.; Rauf, A.; Orhan, I.E.; Shariati, M.A. Iahtisham-Ul-Haq; IqraYasmin; Shahbaz, M.; Qaisrani, T.B.; Shah, Z.A.; Plygun, S.; Heydari, M. Chrysin: pharmacological and therapeutic properties. Life Sci., 2019, 235116797
[http://dx.doi.org/10.1016/j.lfs.2019.116797] [PMID: 31472146]
[12]
Farkhondeh, T.; Abedi, F.; Samarghandian, S. Chrysin attenuates inflammatory and metabolic disorder indices in aged male rat. Biomed. Pharmacother., 2019, 109, 1120-1125.
[http://dx.doi.org/10.1016/j.biopha.2018.10.059] [PMID: 30551362]
[13]
Maeso-Díaz, R.; Ortega-Ribera, M.; Fernández-Iglesias, A.; Hide, D.; Muñoz, L.; Hessheimer, A.J.; Vila, S.; Francés, R.; Fondevila, C.; Albillos, A.; Peralta, C.; Bosch, J.; Tacke, F.; Cogger, V.C.; Gracia-Sancho, J. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell, 2018, 17(6)e12829
[http://dx.doi.org/10.1111/acel.12829] [PMID: 30260562]
[14]
Zeng, L.; Lin, L.; Peng, Y.; Yuan, D.; Zhang, S.; Gong, Z.; Xiao, W. l-Theanine attenuates liver aging by inhibiting advanced glycation end products in d-galactose-induced rats and reversing an imbalance of oxidative stress and inflammation. Exp. Gerontol., 2020, 131110823
[http://dx.doi.org/10.1016/j.exger.2019.110823] [PMID: 31899338]
[15]
Fusco, D.; Colloca, G.; Lo Monaco, M.R.; Cesari, M. Effects of antioxidant supplementation on the aging process. Clin. Interv. Aging, 2007, 2(3), 377-387.
[PMID: 18044188]
[16]
MacNee, W.; Rabinovich, R.A.; Choudhury, G. Ageing and the border between health and disease. Eur. Respir. J., 2014, 44(5), 1332-1352.
[http://dx.doi.org/10.1183/09031936.00134014] [PMID: 25323246]
[17]
Choi, J.H.; Yun, J.W. Chrysin induces brown fat-like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition, 2016, 32(9), 1002-1010.
[http://dx.doi.org/10.1016/j.nut.2016.02.007] [PMID: 27133810]
[18]
Pai, S.A.; Martis, E.A.; Munshi, R.P.; Gursahani, M.S.; Mestry, S.N.; Juvekar, A.R. Chrysin mitigated obesity by regulating energy intake and expenditure in rats. J. Tradit. Complement. Med., 2019.
[http://dx.doi.org/10.1016/j.jtcme.2019.09.002]
[19]
Liu, J.; Chen, S.; Biswas, S.; Nagrani, N.; Chu, Y.; Chakrabarti, S.; Feng, B. Glucose-induced oxidative stress and accelerated aging in endothelial cells are mediated by the depletion of mitochondrial SIRTs. Physiol. Rep., 2020, 8(3)e14331
[http://dx.doi.org/10.14814/phy2.14331] [PMID: 32026628]
[20]
Mantha, A.K.; Moorthy, K.; Cowsik, S.M.; Baquer, N.Z. Membrane associated functions of neurokinin B (NKB) on Abeta (25-35) induced toxicity in aging rat brain synaptosomes. Biogerontology, 2006, 7(1), 19-33.
[http://dx.doi.org/10.1007/s10522-005-6044-z] [PMID: 16518717]
[21]
Tew, K.D.; Ronai, Z. GST function in drug and stress response. Drug Resist. Updat., 1999, 2(3), 143-147.
[http://dx.doi.org/10.1054/drup.1999.0086] [PMID: 11504484]
[22]
Farahmand, S.K.; Samini, F.; Samini, M.; Samarghandian, S. Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology, 2013, 14(1), 63-71.
[http://dx.doi.org/10.1007/s10522-012-9409-0] [PMID: 23179288]
[23]
Vendemiale, G.; Grattagliano, I.; Altomare, E. An update on the role of free radicals and antioxidant defense in human disease. Int. J. Clin. Lab. Res., 1999, 29(2), 49-55.
[http://dx.doi.org/10.1007/s005990050063] [PMID: 10436261]
[24]
Evans, L.W.; Stratton, M.S.; Ferguson, B.S. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat. Prod. Rep., 2020, 37(5), 653-676.
[http://dx.doi.org/10.1039/C9NP00057G] [PMID: 31993614]
[25]
Papaconstantinou, J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells, 2019, 8(11)E1383
[http://dx.doi.org/10.3390/cells8111383] [PMID: 31689891]
[26]
Wang, N.; Ji, S.; Zhang, H.; Mei, S.; Qiao, L.; Jin, X. Herba Cistanches: Anti-aging. Aging Dis., 2017, 8(6), 740-759.
[http://dx.doi.org/10.14336/AD.2017.0720]]
[27]
Pani, G. Neuroprotective effects of dietary restriction: evidence and mechanisms. Semin. Cell Dev. Biol., 2015, 40, 106-114.
[http://dx.doi.org/10.1016/j.semcdb.2015.03.004] [PMID: 25773162]
[28]
Feldman, N.; Rotter-Maskowitz, A.; Okun, E. DAMPs as mediators of sterile inflammation in aging-related pathologies., Ageing Res.Rev., 2015, 24(Pt A), 29-39..
[http://dx.doi.org/10.1016/j.arr.2015.01.003 ] [PMID: 25641058]
[29]
Rashid, S.; Nafees, S.; Vafa, A.; Afzal, S.M.; Ali, N.; Rehman, M.U.; Hasan, S.K.; Siddiqi, A.; Barnwal, P.; Majed, F.; Sultana, S. Inhibition of precancerous lesions development in kidneys by chrysin via regulating hyperproliferation, inflammation and apoptosis at pre clinical stage. Arch. Biochem. Biophys., 2016, 606, 1-9.
[http://dx.doi.org/10.1016/j.abb.2016.07.004] [PMID: 27403965]
[30]
Xia, Y.; Lian, S.; Khoi, P.N.; Yoon, H.J.; Han, J.Y.; Chay, K.O.; Kim, K.K.; Jung, Y.D. Chrysin inhibits cell invasion by inhibition of Recepteur d’origine Nantais via suppressing early growth response-1 and NF-κB transcription factor activities in gastric cancer cells. Int. J. Oncol., 2015, 46(4), 1835-1843.
[http://dx.doi.org/10.3892/ijo.2015.2847] [PMID: 25625479]
[31]
Shoieb, S.M.; Esmat, A.; Khalifa, A.E.; Abdel-Naim, A.B. Chrysin attenuates testosterone-induced benign prostate hyperplasia in rats. Food Chem. Toxicol., 2018, 111, 650-659.
[http://dx.doi.org/10.1016/j.fct.2017.12.017] [PMID: 29247772]
[32]
Anand, K.V.; Mohamed Jaabir, M.S.; Thomas, P.A.; Geraldine, P. Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model. Geriatr. Gerontol. Int., 2015, 12(4), 741-750.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00843.x]] [PMID: 22469068]
[33]
Souza, L.C.; Antunes, M.S.; Filho, C.B.; Del Fabbro, L.; de Gomes, M.G.; Goes, A.T.; Donato, F.; Prigol, M.; Boeira, S.P.; Jesse, C.R. Flavonoid chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol. Biochem. Behav., 2015, 134, 22-30.
[http://dx.doi.org/10.1016/j.pbb.2015.04.010] [PMID: 25931267]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy