Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

4-Hydroxy Pyridinium Triflate@SiO2 Nanoparticles as a Novel Efficient Catalyst for Fries Rearrangement of Aryl Esters with High Selectivity

Author(s): Shermineh Sadat Ghalehbandi, Dadkhoda Ghazanfari*, Sayed Ali Ahmadi and Enayatollah Sheikhhosseini

Volume 17, Issue 8, 2020

Page: [654 - 660] Pages: 7

DOI: 10.2174/1570179417666200713175943

Price: $65

Abstract

Introduction: We developed a simple, fast and new method for the Fries rearrangement of aryl esters.

Materials and Methods: 4-Hydroxy pyridinium triflate functionalized silica is a very efficient, reusable and economically available catalyst for the Fries rearrangement in solvent-free condition and under microwave irradiation.

Results and Discussion: Also, a notable selectivity was observed in the presence of 4-hydroxy pyridinium triflate functionalized silica.

Conclusion: Selectivity, shorter reaction time, high yield, and easy work-up are advantages of this synthetic method.

Keywords: Fries rearrangement, aryl esters, SiO2 nanoparticles, silica gel, CF3SO3H, 4-Hydroxy pyridinium triflate@SiO2 nanoparticles.

Graphical Abstract
[1]
Olah, G.A. Friedel-Crafts and Related reactions; Wiley-Interscience: New York, 1973.
[2]
Sheldon, R.A.; Van Bekkum, H., Eds.; Fine chemicals through heterogeneous catalysis; John Wiley & Sons., 2008. (and references therein)
[3]
Derouane, E.G.; Crehan, G.; Dillon, C.J.; Bethell, D.; He, H.; Hamid, S.D.A. Zeolite catalysts as solid solvents in fine chemicals synthesis: 2. competitive adsorption of the reactants and products in the Friedel–Crafts acetylations of anisole and toluene. J. Catal., 2000, 194(2), 410-423.
[http://dx.doi.org/10.1006/jcat.2000.2933]
[4]
Jayat, F.; Picot, M.S.; Guisnet, M. Solvent effects in liquid phase Fries rearrangement of phenyl acetate over a HBEA zeolite. Catal. Lett., 1996, 41(3-4), 181-187.
[http://dx.doi.org/10.1007/BF00811488]
[5]
Vogt, A.; Kouwenhoven, H.W.; Prins, R. Fries rearrangement over zeolitic catalysts. Appl. Catal. A Gen., 1995, 123(1), 37-49.
[http://dx.doi.org/10.1016/0926-860X(94)00249-5]
[6]
Guisnet, M.; Perot, G. Fine Chemicals through Heterogeneous Catalysis; Sheldon, R.A.; van Bekkum, H., Eds.; Wiley/VCH: Weinheim, , 2001.
[7]
Korb, M.; Lang, H. The anionic Fries rearrangement: a convenient route to ortho-functionalized aromatics. Chem. Soc. Rev., 2019, 48(10), 2829-2882.
[http://dx.doi.org/10.1039/C8CS00830B] [PMID: 31066387]
[8]
Jeon, I.; Mangion, I.K. An improved synthesis of hydroxy aryl ketones by fries rearrangement with methanesulfonic acid/methanesulfonic anhydride. Synlett, 2012, 23(13), 1927-1930.
[http://dx.doi.org/10.1055/s-0032-1316568]
[9]
Smith, K.; El-Hiti, G.A. Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions. Green Chem., 2011, 13(7), 1579-1608.
[http://dx.doi.org/10.1039/c0gc00689k]
[10]
Rao, Y.S.; Kulkarni, S.J.; Subrahmanyam, M.; Rao, A.R. An improved acylation of phenol over modified ZSM-5 catalysts. Appl. Catal. A Gen., 1995, 133(1), L1-L6.
[http://dx.doi.org/10.1016/0926-860X(95)00212-X]
[11]
Siano, G.; Crespi, S.; Mella, M.; Bonesi, S.M. Selectivity in the photo-fries rearrangement of some aryl benzoates in green and sustainable media. preparative and mechanistic studies. J. Org. Chem., 2019, 84(7), 4338-4352.
[http://dx.doi.org/10.1021/acs.joc.9b00334] [PMID: 30876341]
[12]
Kozhevnikov, I.V. Friedel–Crafts acylation and related reactions catalysed by heteropoly acids. Appl. Catal. A Gen., 2003, 256(1-2), 3-18.
[http://dx.doi.org/10.1016/S0926-860X(03)00406-X]
[13]
Naeimi, H.; Moradi, L. Facile, convenient and regioselective direct ortho-acylation of phenols and naphthhols catalyzed by Lewis acids under free solvent and microwave conditions. J. Mol. Catal. Chem., 2006, 256(1-2), 242-246.
[http://dx.doi.org/10.1016/j.molcata.2006.04.021]
[14]
Paghandeh, H.; Saeidian, H.; Ghaffarzadeh, M. Practical and efficient synthesis of hydroxyaryl ketones catalyzed by HF@ SiO2 under solvent-free condition. Lett. Org. Chem., 2018, 15(9), 809-814.
[http://dx.doi.org/10.2174/1570178615666180126153924]
[15]
Kobayashi, S.; Moriwaki, M.; Hachiya, I. Hafnium trifluoromethanesulfonate (Hf(OTf)4) as an efficient catalyst in the fries rearrangement and direct acylation of phenol and naphthol derivatives. Tetrahedron Lett., 2018, 37(12), 2053-2056.
[16]
Aldrich, A. Handbook of Fine Chemicals and Laboratory Equipment’s; , 2008.
[17]
Paul, S.; Gupta, M. Selective Fries rearrangement catalyzed by zinc powder. Synthesis, 2004, 2004(11), 1789-1792.
[http://dx.doi.org/10.1055/s-2004-829152]
[18]
Commarieu, A.; Hoelderich, W.; Laffitte, J.A.; Dupont, M.P. Fries rearrangement in methane sulfonic acid, an environmental friendly acid. J. Mol. Catal. Chem., 2002, 182, 137-141.
[http://dx.doi.org/10.1016/S1381-1169(01)00506-4]
[19]
Ghiaci, M.; Kalbasi, R.J.; Aghaei, H. Highly selective vapor phase Fries rearrangement of phenyl acetate to 2-hydroxyacetophenone using H3PO4/ZrO2-TiO2. Catal. Commun., 2007, 8(11), 1843-1850.
[http://dx.doi.org/10.1016/j.catcom.2007.02.026]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy