Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anticancer Activity Assessment and DNA Binding Properties of Two Binuclear Platinum (II) Complexes using Spectroscopic and Molecular Simulation Approaches

Author(s): Mohammad M. Alavianmehr, Abolfazl Ashrafi*, Reza Yousefi, Mohsen G. Haghighi, Samira S. Abolmaali, Ali A. Moosavi-Movahedi and Mohammad N.S. Rad

Volume 20, Issue 17, 2020

Page: [2066 - 2073] Pages: 8

DOI: 10.2174/1871520620666200705221325

Price: $65

Abstract

Background: Nowadays, the biological properties and anticancer activities of platinum-based drugs and metal coordination complexes have been receiving particular attention. These compounds have revealed clinical potential in cancer chemotherapy.

Objective: In this research, two binuclear platinum complexes including [Pt2Cl2(bhq)2(μ-dppm)] (1) and [(p- MeC6H4)(bhq) Pt(μ-dppm)Pt(bhq)(CF3CO2)] (2) with bhq: benzo[h] quinolone and dppm: bis(diphenylphosphino) methane have been synthesized and evaluated for their anticancer activity against A2780 and A2780/RCIS cancer cell lines.

Methods: The DNA binding and interaction of AMP/GMP nucleotide with these complexes were explored by several experimental and theoretical methods, including UV-Visible, fluorescence spectroscopic techniques and docking analysis. These complexes have demonstrated significant anticancer properties against cisplatinsensitive (A2780) and cisplatin-resistant (A2780/RCIS) human ovarian cancer cell lines.

Results: The obtained results indicated that these complexes interact with DNA. Additionally, the fluorescence emission measurements indicated that the platinum complexes binding with DNA structure occurs through nonintercalative interaction. The molecular docking assessments have also revealed the binding of these platinum complexes through DNA grooves. Moreover, the results have indicated that complex 1 exhibited more anticancer activity than complex 2.

Conclusion: The results of the DNA binding with these platinum complexes confirmed their potential antitumor properties. The substitution of -C6H4CH3 and -CO2CF3 groups in complex 2 with two chlorine atoms in complex 1 acquired the significant improvement of the anticancer activity against the cancer cell.

Keywords: Anticancer activity, platinum complex, DNA spectroscopy techniques, intercalative interaction, molecular docking simulation, DNA binding.

Graphical Abstract
[1]
Wong, E.; Giandomenico, C.M. Current status of platinum-based antitumor drugs. Chem. Rev., 1999, 99(9), 2451-2466.
[http://dx.doi.org/10.1021/cr980420v] [PMID: 11749486]
[2]
Lebwohl, D.; Canetta, R. Clinical development of platinum complexes in cancer therapy: An historical perspective and an update. Eur. J. Cancer, 1998, 34(10), 1522-1534.
[http://dx.doi.org/10.1016/S0959-8049(98)00224-X] [PMID: 9893623]
[3]
Gordon, M.; Hollander, S. Review of platinum anticancer compounds. J. Med., 1993, 24, 209-265.
[4]
Kostova, I. Platinum complexes as anticancer agents. Rec. Pat. Anti-Cancer Drug Discov., 2006, 1, 1-22.
[5]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[6]
Guo, Z.; Sadler, P.J. Metals in medicine. Angew. Chem. Int. Ed. Engl., 1999, 38(11), 1512-1531.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1512: AID-ANIE1512>3.0.CO;2-Y] [PMID: 29711002]
[7]
Yousefi, R.; Alavianmehr, M.M.; Mokhtari, F.; Keshavarz, F.; Nabavizadeh, S.M.; Rashidi, M.; Moosavi-Movahedi, A.A. Spectroscopic and molecular dynamics studies on binding of Dimethyplatinum(II) complex drug to human serum albumin. Bull. Chem. Soc. Jpn., 2014, 87, 1094-1100.
[http://dx.doi.org/10.1246/bcsj.20130319]
[8]
Reedijk, J. Improved understanding in platinium antitumour chemistry. J. Chem. Commun., 1996, 7, 801-806.
[9]
Jung, Y.; Lippard, S.J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev., 2007, 107(5), 1387-1407.
[http://dx.doi.org/10.1021/cr068207j] [PMID: 17455916]
[10]
Fricker, S.P. Metal Compounds in Cancer Therapy; Springer: Netherlands, 1994.
[http://dx.doi.org/10.1007/978-94-011-1252-9]
[11]
Reedijk, J. Metal-ligand exchange kinetics in platinum and ruthenium complexes. Platin. Met. Rev., 2008, 52, 2-11.
[http://dx.doi.org/10.1595/147106708X255987]
[12]
Thompson, K.H.; Orvig, C. Metal complexes in medicinal chemistry: New vistas and challenges in drug design. Dalton Trans., 2006, 6, 761-764.
[http://dx.doi.org/10.1039/B513476E] [PMID: 16437168]
[13]
Eastman, A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol. Ther., 1987, 34(2), 155-166.
[http://dx.doi.org/10.1016/0163-7258(87)90009-X] [PMID: 3317449]
[14]
Jamieson, E.R.; Lippard, S.J. Structure, recognition, and processing of cisplatin- DNA adducts. Chem. Rev., 1999, 99(9), 2467-2498.
[http://dx.doi.org/10.1021/cr980421n] [PMID: 11749487]
[15]
Bai, L.; Gao, C.; Liu, Q.; Yu, C.; Zhang, Z.; Cai, L.; Yang, B.; Qian, Y.; Yang, J.; Liao, X. Research progress in modern structure of platinum complexes. Eur. J. Med. Chem., 2017, 140, 349-382.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.034] [PMID: 28985575]
[16]
Alexander, C.; Prajith, N.; Priyanka, P.; Nithyakumar, A.; Samy, N.A. Dinuclear platinum (II) complexes of imidazophenanthrolinebased bridging ligands as potential anticancer agents: Synthesis, characterization, and in vitro cytotoxicity studies. J. Biol. Inorg. Chem., 2019, 24(3), 405-418.
[17]
Czarnomysy, R.; Bielawski, K.; Muszynska, A.; Bielawska, A.; Gornowicz, A. 2016, 31(sup3), 150-165.
[http://dx.doi.org/10.1080/14756366.2016.1212191] [PMID: 27488500]
[18]
Sherman, S.E.; Gibson, D.; Wang, A.H.J.; Lippard, S.J. X-ray structure of the major adduct of the anticancer drug cisplatin with DNA:cis-[Pt(NH3)2(d(pGpG))]. Science, 1985, 230(4724), 412-417.
[http://dx.doi.org/10.1126/science.4048939] [PMID: 4048939]
[19]
Sherman, S.E.; Lippard, S.J. Structural aspects of platinum anticancer drug interactions with DNA. Chem. Rev., 1987, 87, 1151-1181.
[20]
Sandlin, R.D.; Whelan, C.J.; Bradley, M.S. Effects of amine ligand bulk and hydrogen bonding on the rate of reaction of platinum(II) diamine complexes with key nucleotide and amino acid residues. Inorg. Chim. Acta, 2012, 391, 135-140.
[21]
Lippert, B. From cisplatin to artificial nucleases- the role of metal ion-nucleic acid interactions in biology. Biometals, 1992, 5, 195-208.
[22]
Jaganyi, D.; Hofmann, A.; van Eldik, R. Controlling the lability of square-planar Pt(II) complexes through electronic communication between π-acceptor ligands. Angew. Chem. Int. Ed. Engl., 2001, 40(9), 1680-1683.
[http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1680:AID-ANIE16800>3.0.CO;2-K] [PMID: 11353478]
[23]
Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 698-708.
[http://dx.doi.org/10.1016/j.saa.2012.07.051] [PMID: 22885083]
[24]
Barzegar-Kiadehi, S.R.; Golbon Haghighi, M.; Jamshidi, M.; Notash, B. Influence of the diphosphine coordination mode on the structural and optical properties of cyclometalated platinum(II) complexes: An experimental and theoretical study on intramolecular interactions. Inorg. Chem., 2018, 57(9), 5060-5073.
[http://dx.doi.org/10.1021/acs.inorgchem.8b00137] [PMID: 29638116]
[25]
Samandar Sangari, M.; Golbon Haghighi, M.; Nabavizadeh, M.; Kubicki, M.; Rashidi, M. Photophysical study on unsymmetrical binuclear cycloplatinated(II) complexes. New J. Chem., 2017, 41, 13293-13302.
[http://dx.doi.org/10.1039/C7NJ03034G]
[26]
Gao, E.; Zhu, M.; Yin, H.; Liu, L.; Wu, Q.; Sun, Y. Synthesis, characterization, interaction with DNA and cytotoxicity in vitro of dinuclear Pd(II) and Pt(II) complexes dibridged by 2,2′-azanediyldibenzoic acid. J. Inorg. Biochem., 2008, 102(10), 1958-1964.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.07.011] [PMID: 18760841]
[27]
Lemmerhirt, H.; Behnisch, S.; Bodtke, A.; Lillig, C.H.; Pazderova, L.; Kasparkova, J.; Brabec, V.; Bednarski, P.J. Effects of cytotoxic cis- and trans-diammine monochlorido platinum(II) complexes on selenium-dependent redox enzymes and DNA. J. Inorg. Biochem., 2018, 178, 94-105.
[28]
Gallego, B.; Kalu-derovi’c, M.R.; Kommera, H. Cytotoxicity, apoptosis and study of the DNA-binding properties of bi- and tetranuclear gallium(III) complexes with heterocyclic thiolato ligands. Invest. New Drugs, 2011, 29, 932-944.
[29]
Kashanian, S.; Shahabadi, N.; Roshanfekr, H.; Shalmashi, K.; Omidfar, K. DNA binding studies of PdCl2(LL) (LL = chelating diamine ligand: N,N-dimethyltrimethylenediamine) complex. Biochemistry (Mosc.), 2008, 73(8), 929-936.
[http://dx.doi.org/10.1134/S0006297908080117] [PMID: 18774940]
[30]
Tabassum, S.; Khan, R.A.; Arjmand, F. Synthesis of carbohydrate-conjugate heterobimetallic Cu(II)-Sn(2)(IV) and Zn(II)-Sn(2)(IV) complexes; their interactions with ct DNA and nucleotides; DNA cleavage, in vitro cytotoxicity. Eur. J. Med. Chem., 2010, 45, 4797-4806.
[31]
Jamshidi, M.; Yousefi, R.; Nabavizadeh, S.M.; Rashidi, M.; Haghighi, M.G.; Niazi, A. Anticancer activity and DNA-binding properties of novel cationic Pt(II) complexes. Int. J. Biol. Macromol., 2014, 66, 86-96.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.057] [PMID: 24530367]
[32]
Gao, E.J.; Wang, L.; Zhu, M.C.; Liu, L.; Zhang, W.Z. Synthesis, characterization, interaction with DNA and cytotoxicity in vitro of the complexes [M(dmphen)(CO3)].H2O [M=Pt(II), Pd(II)]. Eur. J. Med. Chem., 2010, 45(1), 311-316.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.014] [PMID: 19913954]
[33]
Shahsavani, M.B.; Ahmadi, S.; Aseman, M.D.; Nabavizadeh, S.M.; Rashidi, M.; Asadi, Z.; Erfani, N.; Ghasemi, A.; Saboury, A.A.; Niazi, A.; Bahaoddini, A.; Yousefi, R. Anticancer activity assessment of two novel binuclear platinum (II) complexes. J. Photochem. Photobiol. B, 2016, 161, 345-354.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.05.025] [PMID: 27289447]
[34]
Jaramillo, D.; Wheate, N.J.; Ralph, S.F.; Howard, W.A.; Tor, Y.; Aldrich-Wright, J.R. Polyamide platinum anticancer complexes designed to target specific DNA sequences. Inorg. Chem., 2006, 45(15), 6004-6013.
[http://dx.doi.org/10.1021/ic060383n] [PMID: 16842007]
[35]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, 2009.
[36]
Alex Mathew, J.; Nixon Raj, N. Docking studies on anticancer drugs for breast cancer using hex. Lect. Notes Eng. Comput. Sci., 2009, 1, 250-253.
[37]
Ahmed, A.; Daneshtalab, M. Polycyclic quinolones, thieno [-3, 2b] benzo [h] quinoline derivatives: Design, synthesis, preliminary in vitro and in silico studies. Heterocycles, 2012, 85, 103-122.
[38]
Yousefi, R.; Aghevlian, S.; Mokhtari, F.; Samouei, H.; Rashidi, M.; Nabavizadeh, S.M. The anticancer activity and HSA binding properties of the structurally related platinum (II) complexes. Appl. Biochem. Biotechnol., 2012, 167(4), 861-872.
[http://dx.doi.org/10.1007/s12010-012-9733-5] [PMID: 22622643]
[39]
Milne, G.W.A. Ashgate Handbook of Antineoplastic Agents, 1st ed; Ashgate Publishing: United Kingdom, 2000.
[40]
Aljofan, M.; Netter, H.J.; Aljarbou, A.N.; Hadda, T.B.; Orhan, I.E.; Sener, B.; Mungall, B.A. Anti-hepatitis B activity of isoquinoline alkaloids of plant origin. Arch. Virol., 2014, 159(5), 1119-1128.
[http://dx.doi.org/10.1007/s00705-013-1937-7] [PMID: 24311152]
[41]
Wang, Q.; Yang, Z.Y.; Qi, G.F.; Qin, D.D. Synthesis, crystal structure, antioxidant activities and DNA-binding studies of the Ln(III) complexes with 7-methoxychromone-3-carbaldehyde-(4′-hydroxy) benzoyl hydrazone. Eur. J. Med. Chem., 2009, 44(6), 2425-2433.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.023] [PMID: 19038478]
[42]
Shahabadi, N.; Kashanian, S.; Fatahi, A. Identification of binding mode of a platinum (II) complex, ptcl(2)(dip), and calf thymus DNA. Bioinorg. Chem. Appl., 2011, 2011, 687571-687577.
[http://dx.doi.org/10.1155/2011/687571] [PMID: 22110411]
[43]
Pasternack, R.F.; Gibbs, E.J.; Villafranca, J.J. Interactions of porphyrins with nucleic acids. Biochemistry, 1983, 22(23), 5409-5417.
[http://dx.doi.org/10.1021/bi00292a024] [PMID: 6652071]
[44]
Li, Q.; Yang, P.; Wang, H.; Guo, M. Diorganotin(IV) antitumor agent. (C2H5)2SnCl2 (phen)/nucleotides aqueous and solid-state coordination chemistry and its DNA binding studies. J. Inorg. Biochem., 1996, 64(3), 181-195.
[http://dx.doi.org/10.1016/0162-0134(96)00039-6] [PMID: 8893519]
[45]
Kartalou, M.; Essigmann, J.M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res., 2001, 478(1-2), 1-21.
[http://dx.doi.org/10.1016/S0027-5107(01)00142-7] [PMID: 11406166]
[46]
Howerton, S.B.; Nagpal, A.; Williams, L.D. Surprising roles of electrostatic interactions in DNA-ligand complexes. Biopolymers, 2003, 69(1), 87-99.
[http://dx.doi.org/10.1002/bip.10319] [PMID: 12717724]
[47]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[48]
Wolfe, A.; Shimer, G.H., Jr; Meehan, T., Jr Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 1987, 26(20), 6392-6396.
[http://dx.doi.org/10.1021/bi00394a013] [PMID: 3427013]
[49]
Zhou, C.Y.; Zhao, J.; Wu, Y.B.; Yin, C.X.; Pin, Y. Synthesis, characterization and studies on DNA-binding of a new Cu(II) complex with N1,N8-bis(l-methyl-4-nitropyrrole-2-carbonyl)triethylenetetr-amine. J. Inorg. Biochem., 2007, 101(1), 10-18.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.07.011] [PMID: 17010441]
[50]
Zhang, L.W.; Wang, K.; Zhang, X.X. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method. Anal. Chim. Acta, 2007, 603(1), 101-110.
[http://dx.doi.org/10.1016/j.aca.2007.09.021] [PMID: 17950064]
[51]
Lakowicz, J.R. Principles of Fluorescence, 3rd ed; Springer: New York, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[52]
Uma Maheswari, P.; Palaniandavar, M. DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines--effect of hydrogen-bonding on DNA-binding affinity. J. Inorg. Biochem., 2004, 98(2), 219-230.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.09.003] [PMID: 14729302]
[53]
Eckstein, F. Lilley D. M. J. Nucleic Acids and Molecular Biology; Springer: Germany, 1990.
[http://dx.doi.org/10.1007/978-3-642-84150-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy