Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Bacteriocins, A Natural Weapon Against Bacterial Contamination for Greater Safety and Preservation of Food: A Review

Author(s): Virginia Fuochi*, Rosalia Emma and Pio M. Furneri

Volume 22, Issue 2, 2021

Published on: 04 July, 2020

Page: [216 - 231] Pages: 16

DOI: 10.2174/1389201021666200704145427

Price: $65

Abstract

Nowadays, consumers have become increasingly attentive to human health and the use of more natural products. Consequently, the demand for natural preservatives in the food industry is more frequent. This has led to intense research to discover new antimicrobial compounds of natural origin that could effectively fight foodborne pathogens. This research aims to safeguard the health of consumers and, above all, to avoid potentially harmful chemical compounds. Lactobacillus is a bacterial genus belonging to the Lactic Acid Bacteria and many strains are defined GRAS, generally recognized as safe. These strains are able to produce substances with antibacterial activity against food spoilage bacteria and contaminating pathogens: the bacteriocins. The aim of this review was to focus on this genus and its capability to produce antibacterial peptides. The review collected all the information from the last few years about bacteriocins produced by Lactobacillus strains, isolated from clinical or food samples, with remarkable antimicrobial activities useful for being exploited in the food field. In addition, the advantages and disadvantages of their use and the possible ways of improvement for industrial applications were described.

Keywords: Lactobacillus spp., bacteriocins, food preservation, food spoilage, industrial application, drug delivery.

Graphical Abstract
[1]
Wells-Bennik, M.H.; Eijlander, R.T.; den Besten, H.M.; Berendsen, E.M.; Warda, A.K.; Krawczyk, A.O.; Nierop Groot, M.N.; Xiao, Y.; Zwietering, M.H.; Kuipers, O.P.; Abee, T. Bacterial spores in food: Survival, emergence, and outgrowth. Annu. Rev. Food Sci. Technol., 2016, 7, 457-482.
[http://dx.doi.org/10.1146/annurev-food-041715-033144] [PMID: 26934174]
[2]
W.H.O. Geneva, Switzerland. , 2015.
[3]
W.H.O. World Health Organization - Guidelines for Drinking-water Quality; World Health Organization: Geneva, Switzerland, 2017.
[4]
Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci., 2019, 20(19), 4673.
[http://dx.doi.org/10.3390/ijms20194673] [PMID: 31547172]
[5]
Fuochi, V.; Li Volti, G.; Furneri, P.M. commentary: Lactobacilli dominance and vaginal pH: Why is the human vaginal microbiome unique? Front. Microbiol., 2017, 8, 1815.
[http://dx.doi.org/10.3389/fmicb.2017.01815] [PMID: 28993762]
[6]
Fuochi, V.; Volti, G.L.; Furneri, P.M. Probiotic properties of Lactobacillus fermentum strains isolated from human oral samples and description of their antibacterial activity. Curr. Pharm. Biotechnol., 2017, 18(2), 138-149.
[http://dx.doi.org/10.2174/1389201017666161229153530] [PMID: 28034294]
[7]
Dworkin, M.F. The Prokaryotes. Dworkin, M.F.S.; Rosenberg, E.; Schleifer, K.H.; Stackebrandt, E. Ed; Springer Science Business Media: New York, NY, 2006; Vol. 4, . Bacteria: Firmicutes, Cyanobacteria, 2006
[8]
Vos, P.; Garrity, G.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.H.; Whitman, W.B. In Bergey’s Manual of Systematic Bacteriology, 2nd; Springer-Verlag: New York, NY, 2009, Vol. 3: The Firmicutes, 2009, pp. 465-511.
[9]
Hasan, M.N.; Sultan, M.Z.; Mar-E-Um, M. Significance of fermented food in nutrition and food science. J. Scient. Res., 2014, 6(2), 373-386.
[http://dx.doi.org/10.3329/jsr.v6i2.16530]
[10]
De Angelis, M.; Calasso, M.; Cavallo, N.; Di Cagno, R.; Gobbetti, M. Functional proteomics within the genus Lactobacillus. Proteomics, 2016, 16(6), 946-962.
[http://dx.doi.org/10.1002/pmic.201500117] [PMID: 27001126]
[11]
Giraffa, G.; Chanishvili, N.; Widyastuti, Y. Importance of lactobacilli in food and feed biotechnology. Res. Microbiol., 2010, 161(6), 480-487.
[http://dx.doi.org/10.1016/j.resmic.2010.03.001] [PMID: 20302928]
[12]
Elli, M.; Zink, R.; Rytz, A.; Reniero, R.; Morelli, L. Iron requirement of Lactobacillus spp. in completely chemically defined growth media. J. Appl. Microbiol., 2000, 88(4), 695-703.
[http://dx.doi.org/10.1046/j.1365-2672.2000.01013.x] [PMID: 10792529]
[13]
Vandamme, P.; Pot, B.; Gillis, M.; de Vos, P.; Kersters, K.; Swings, J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev., 1996, 60(2), 407-438.
[http://dx.doi.org/10.1128/MMBR.60.2.407-438.1996] [PMID: 8801440]
[14]
Fuochi, V. Amensalistic activity of Lactobacillus spp. isolated from human samples. Università degli Studi di Catania; Archivia, 2016.
[15]
Fusco, V.; Quero, G.M.; Poltronieri, P.; Morea, M.; Baruzzi, F. Autochthonous and probiotic lactic acid bacteria employed for production of “Advanced Traditional Cheeses”. Foods, 2019, 8(9)E412
[http://dx.doi.org/10.3390/foods8090412] [PMID: 31540237]
[16]
Mulaw, G.; Sisay Tessema, T.; Muleta, D.; Tesfaye, A. In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented ethiopian food products. Int. J. Microbiol., 2019, 20197179514
[http://dx.doi.org/10.1155/2019/7179514] [PMID: 31534458]
[17]
FAO Evaluation of health and nutritional properties of probiotics in food, including powder milk with live lactic acid bacteria, 2001.
[18]
MinisterodellaSalute. 2016. Available from: http://www.salute.gov.it/imgs/C_17_pubblicazioni_2783_allegato.pdf
[19]
Dughera, L. Probiotici, prebiotici e disturbi funzionali intestinali; Rivista della Società Italiana di Medicina Generale, 2012, p. 2.
[20]
FAO. Cordoba, Argentina;, http://www.fao.org/documents/pub_dett.asp?lang=en&pub_id=61756 (Accessed October 4, 2001).
[21]
Sengupta, R.; Altermann, E.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Roy, N.C. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm., 2013, 2013237921
[http://dx.doi.org/10.1155/2013/237921] [PMID: 23576850]
[22]
Alakomi, H.L.; Skyttä, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I.M. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol., 2000, 66(5), 2001-2005.
[http://dx.doi.org/10.1128/AEM.66.5.2001-2005.2000] [PMID: 10788373]
[23]
Servin, A.L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev., 2004, 28(4), 405-440.
[http://dx.doi.org/10.1016/j.femsre.2004.01.003] [PMID: 15374659]
[24]
Chen, X.; Kokkotou, E.G.; Mustafa, N.; Bhaskar, K.R.; Sougioultzis, S.; O’Brien, M.; Pothoulakis, C.; Kelly, C.P. Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J. Biol. Chem., 2006, 281(34), 24449-24454.
[http://dx.doi.org/10.1074/jbc.M605200200] [PMID: 16816386]
[25]
Wold, A.E. Immune effects of probiotics. Scand. J. Nutr. Naringsforskning., 2001, 45, 10.
[26]
Tagg, J.R.; Dajani, A.S.; Wannamaker, L.W. Bacteriocins of gram-positive bacteria. Bacteriol. Rev., 1976, 40(3), 722-756.
[http://dx.doi.org/10.1128/MMBR.40.3.722-756.1976] [PMID: 791239]
[27]
Oudega, B.; Mooi, F.R.; de Graaf, F.K. Excretion of proteins by gram-negative bacteria: Export of bacteriocins and fimbrial proteins by Escherichia coli. Antonie van Leeuwenhoek, 1984, 50(5-6), 569-584.
[http://dx.doi.org/10.1007/BF02386227] [PMID: 6152145]
[28]
Iyapparaj, P.; Maruthiah, T.; Ramasubburayan, R.; Prakash, S.; Kumar, C.; Immanuel, G.; Palavesam, A. Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquat. Biosyst., 2013, 9(1), 12.
[http://dx.doi.org/10.1186/2046-9063-9-12] [PMID: 23725298]
[29]
Sarikhani, M.; Kermanshahi, R.K.; Ghadam, P.; Gharavi, S. The role of probiotic Lactobacillus acidophilus ATCC 4356 bacteriocin on effect of HBsu on planktonic cells and biofilm formation of Bacillus subtilis. Int. J. Biol. Macromol., 2018, 115, 762-766.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.087] [PMID: 29567501]
[30]
Nissen-Meyer, J.; Nes, I.F. Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol., 1997, 167(2-3), 67-77.
[http://dx.doi.org/10.1007/s002030050418] [PMID: 9133328]
[31]
Rodriguez, E.; Gonzalez, B.; Gaya, P.; Nunez, M.; Medina, M. Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. Int. Dairy J., 2000, 10(1-2), 7-15.
[http://dx.doi.org/10.1016/S0958-6946(00)00017-0]
[32]
Ennahar, S.; Sashihara, T.; Sonomoto, K.; Ishizaki, A. Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiol. Rev., 2000, 24(1), 85-106.
[http://dx.doi.org/10.1111/j.1574-6976.2000.tb00534.x] [PMID: 10640600]
[33]
Rodríguez, J.M.; Martínez, M.I.; Horn, N.; Dodd, H.M. Heterologous production of bacteriocins by lactic acid bacteria. Int. J. Food Microbiol., 2003, 80(2), 101-116.
[http://dx.doi.org/10.1016/S0168-1605(02)00153-8] [PMID: 12381397]
[34]
Moll, G.N.; Konings, W.N.; Driessen, A.J. Bacteriocins: Mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek, 1999, 76(1-4), 185-198.
[http://dx.doi.org/10.1023/A:1002002718501] [PMID: 10532378]
[35]
Todorov, S.D.; Dicks, L.M. Influence of growth conditions on the production of a bacteriocin by Lactococcus lactis subsp. lactis ST34BR, a strain isolated from barley beer. J. Basic Microbiol., 2004, 44(4), 305-316.
[http://dx.doi.org/10.1002/jobm.200410413] [PMID: 15266603]
[36]
Todorov, S.D.; Dicks, L.M. Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. J. Basic Microbiol., 2005, 45(4), 312-322.
[http://dx.doi.org/10.1002/jobm.200410532] [PMID: 16028203]
[37]
Todorov, S.D.; Dicks, L.M. Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiol. Res., 2006, 161(2), 102-108.
[http://dx.doi.org/10.1016/j.micres.2005.06.006] [PMID: 16427512]
[38]
Todorov, S.D.; Dicks, L.M.T. Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme Microb. Technol., 2005, 36(2-3), 318-326.
[http://dx.doi.org/10.1016/j.enzmictec.2004.09.009]
[39]
Ross, R.P.; Morgan, S.; Hill, C. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol., 2002, 79(1-2), 3-16.
[http://dx.doi.org/10.1016/S0168-1605(02)00174-5] [PMID: 12382680]
[40]
Han, K.S.; Kim, Y.; Kim, S.H.; Oh, S. Characterization and purification of acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP1B. J. Microbiol. Biotechnol., 2007, 17(5), 774-783.
[PMID: 18051299]
[41]
Ge, J.; Sun, Y.; Xin, X.; Wang, Y.; Ping, W. Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice. Sci. Rep., 2016, 6, 19366.
[http://dx.doi.org/10.1038/srep19366] [PMID: 26763314]
[42]
Dortu, C.; Huch, M.; Holzapfel, W.H.; Franz, C.M.; Thonart, P. Anti-listerial activity of bacteriocin-producing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat. Lett. Appl. Microbiol., 2008, 47(6), 581-586.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02468.x] [PMID: 19120930]
[43]
Jacob, F.L.A.; Siminovitch, A.; Wollman, E. Définition de quelques termes relatifs à la lysogénie. Ann. Inst. Pasteur (Paris), 1953, 84(1), 3.
[PMID: 13031233]
[44]
Hamon, Y.P.Y. Bacteriologie quelques remarques sur les bacteriocines produites par les microbes gram-positif. C. R. Hebd. Seances Acad. Sci., 1963, 257(5), 1191-1193.
[45]
Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 1993, 12(1-3), 39-85.
[http://dx.doi.org/10.1111/j.1574-6976.1993.tb00012.x] [PMID: 8398217]
[46]
Baba, T.; Schneewind, O. Instruments of microbial warfare: Bacteriocin synthesis, toxicity and immunity. Trends Microbiol., 1998, 6(2), 66-71.
[http://dx.doi.org/10.1016/S0966-842X(97)01196-7] [PMID: 9507641]
[47]
Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol., 2001, 71(1), 1-20.
[http://dx.doi.org/10.1016/S0168-1605(01)00560-8] [PMID: 11764886]
[48]
Kristiansen, P.E.; Persson, C.; Fuochi, V.; Pedersen, A.; Karlsson, B.G.; Nissen-Meyer, J.; Oppegård, C. NMR structure and mutational analysis of the lactococcin A immunity protein. Biochemistry, 2016, 55(45), 6250-6257.
[http://dx.doi.org/10.1021/acs.biochem.6b00848]
[49]
Fuochi, V.; Cardile, V.; Petronio, G.; Furneri, P.M. Biological properties and production of bacteriocins-like-inhibitory substances by Lactobacillus sp. strains from human vagina. J. Appl. Microbiol., 2019, 126(5), 1541-1550.
[PMID: 30499608]
[50]
Fuochi, V.; Petronio, G.P.; Lissandrello, E.; Furneri, P.M. Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates. Int. J. Immunopathol. Pharmacol., 2015, 28(3), 426-433.
[http://dx.doi.org/10.1177/0394632015590948] [PMID: 26216909]
[51]
Toba, T.; Samant, S.K.; Yoshioka, E.; Itoh, T. Reutericin-6, a new bacteriocin produced by Lactobacillus-reuteri La-6. Lett. Appl. Microbiol., 1991, 13(6), 281-286.
[http://dx.doi.org/10.1111/j.1472-765X.1991.tb00629.x]
[52]
Klaenhammer, T.R. Bacteriocins of lactic acid bacteria. Biochimie, 1988, 70(3), 337-349.
[http://dx.doi.org/10.1016/0300-9084(88)90206-4] [PMID: 3139051]
[53]
Papagianni, M. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol. Adv., 2003, 21(6), 465-499.
[http://dx.doi.org/10.1016/S0734-9750(03)00077-6] [PMID: 14499150]
[54]
Berridge, N.J.; Newton, G.G.; Abraham, E.P. Purification and nature of the antibiotic nisin. Biochem. J., 1952, 52(4), 529-535.
[http://dx.doi.org/10.1042/bj0520529] [PMID: 13018272]
[55]
Vaillancourt, K.; LeBel, G.; Frenette, M.; Gottschalk, M.; Grenier, D. Suicin 3908, a new lantibiotic produced by a strain of Streptococcus suis serotype 2 isolated from a healthy carrier pig. PLoS One, 2015, 10(2)e0117245
[http://dx.doi.org/10.1371/journal.pone.0117245] [PMID: 25659110]
[56]
Chen, Y.S.; Wang, Y.C.; Chow, Y.S.; Yanagida, F.; Liao, C.C.; Chiu, C.M. Purification and characterization of plantaricin Y, a novel bacteriocin produced by Lactobacillus plantarum 510. Arch. Microbiol., 2014, 196(3), 193-199.
[http://dx.doi.org/10.1007/s00203-014-0958-2] [PMID: 24493293]
[57]
Holck, A.; Axelsson, L.; Birkeland, S.E.; Aukrust, T.; Blom, H. Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Gen. Microbiol., 1992, 138(12), 2715-2720.
[http://dx.doi.org/10.1099/00221287-138-12-2715] [PMID: 1487735]
[58]
Tichaczek, P.S.; Nissenmeyer, J.; Nes, I.F.; Vogel, R.F.; Hammes, W.P. Characterization of the bacteriocins curvacin-a from Lactobacillus-curvatus Lth1174 and Sakacin-P from L-Sake Lth673. Syst. Appl. Microbiol., 1992, 15(3), 460-468.
[http://dx.doi.org/10.1016/S0723-2020(11)80223-7]
[59]
Moll, G.N.; van den Akker, E.; Hauge, H.H.; Nissen-Meyer, J.; Nes, I.F.; Konings, W.N.; Driessen, A.J. Complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK. J. Bacteriol., 1999, 181(16), 4848-4852.
[http://dx.doi.org/10.1128/JB.181.16.4848-4852.1999] [PMID: 10438754]
[60]
Muriana, P.M.; Klaenhammer, T.R. Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl. Environ. Microbiol., 1991, 57(1), 114-121.
[http://dx.doi.org/10.1128/AEM.57.1.114-121.1991] [PMID: 1903624]
[61]
Moll, G.; Ubbink-Kok, T.; Hildeng-Hauge, H.; Nissen-Meyer, J.; Nes, I.F.; Konings, W.N.; Driessen, A.J. Lactococcin G is a potassium ion-conducting, two-component bacteriocin. J. Bacteriol., 1996, 178(3), 600-605.
[http://dx.doi.org/10.1128/JB.178.3.600-605.1996] [PMID: 8550488]
[62]
Moll, G.; Hildeng-Hauge, H.; Nissen-Meyer, J.; Nes, I.F.; Konings, W.N.; Driessen, A.J. Mechanistic properties of the two-component bacteriocin lactococcin G. J. Bacteriol., 1998, 180(1), 96-99.
[http://dx.doi.org/10.1128/JB.180.1.96-99.1998] [PMID: 9422598]
[63]
Daw, M.A.; Falkiner, F.R. Bacteriocins: Nature, function and structure. Micron, 1996, 27(6), 467-479.
[http://dx.doi.org/10.1016/S0968-4328(96)00028-5] [PMID: 9168627]
[64]
Nissen-Meyer, J.; Holo, H.; Håvarstein, L.S.; Sletten, K.; Nes, I.F. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol., 1992, 174(17), 5686-5692.
[http://dx.doi.org/10.1128/JB.174.17.5686-5692.1992] [PMID: 1512201]
[65]
Mulet-Powell, N.; Lacoste-Armynot, A.M.; Viñas, M.; Simeon de Buochberg, M. Interactions between pairs of bacteriocins from lactic bacteria. J. Food Prot., 1998, 61(9), 1210-1212.
[http://dx.doi.org/10.4315/0362-028X-61.9.1210] [PMID: 9766080]
[66]
Venema, K.; Abee, T.; Haandrikman, A.J.; Leenhouts, K.J.; Kok, J.; Konings, W.N.; Venema, G. Mode of Action of lactococcin B, a thiol-activated bacteriocin from Lactococcus lactis. Appl. Environ. Microbiol., 1993, 59(4), 1041-1048.
[http://dx.doi.org/10.1128/AEM.59.4.1041-1048.1993] [PMID: 16348905]
[67]
Kjos, M.; Nes, I.F.; Diep, D.B. Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology, 2009, 155(Pt 9), 2949-2961.
[http://dx.doi.org/10.1099/mic.0.030015-0] [PMID: 19477899]
[68]
Joerger, M.C.; Klaenhammer, T.R. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol., 1986, 167(2), 439-446.
[http://dx.doi.org/10.1128/JB.167.2.439-446.1986] [PMID: 3525512]
[69]
Sun, Z.; Wang, X.; Zhang, X.; Wu, H.; Zou, Y.; Li, P.; Sun, C.; Xu, W.; Liu, F.; Wang, D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. J. Ind. Microbiol. Biotechnol., 2018, 45(3), 213-227.
[http://dx.doi.org/10.1007/s10295-018-2008-6] [PMID: 29349568]
[70]
Fiani, T. Studio della produzione di batteriocine da parte di batteri lattici isolati da Boza e Koumis; University of Pisa, 2007.
[71]
Chen, H.H.D.G. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf., 2003, 2(3), 82-100.
[http://dx.doi.org/10.1111/j.1541-4337.2003.tb00016.x]
[72]
Patton, G.C.; van der Donk, W.A. New developments in lantibiotic biosynthesis and mode of action. Curr. Opin. Microbiol., 2005, 8(5), 543-551.
[http://dx.doi.org/10.1016/j.mib.2005.08.008] [PMID: 16118063]
[73]
Rashid, R.; Veleba, M.; Kline, K.A. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Front. Cell Dev. Biol., 2016, 4, 55.
[http://dx.doi.org/10.3389/fcell.2016.00055] [PMID: 27376064]
[74]
Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog., 2019, 128, 171-177.
[http://dx.doi.org/10.1016/j.micpath.2019.01.002] [PMID: 30610901]
[75]
Sheoran, P.; Tiwari, S.K. Anti-staphylococcal activity of bacteriocins of food isolates Enterococcus hirae LD3 and Lactobacillus plantarum LD4 in pasteurized milk 3 Biotech, 2019, 9(1), 8.
[76]
Carvalho, K.G.; Bambirra, F.H.S.; Nicoli, J.R.; Oliveira, J.S.; Santos, A.M.C.; Bemquerer, M.P.; Miranda, A.; Franco, B.D.G.M. Characterization of multiple antilisterial peptides produced by sakacin P-producing Lactobacillus sakei subsp. sakei 2a. Arch. Microbiol., 2018, 200(4), 635-644.
[http://dx.doi.org/10.1007/s00203-018-1477-3] [PMID: 29349489]
[77]
Wayah, S.B.; Philip, K. Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microb. Cell Fact., 2018, 17(1), 125.
[http://dx.doi.org/10.1186/s12934-018-0972-1] [PMID: 30103750]
[78]
Saraniya, A.; Jeevaratnam, K. Purification and mode of action of Antilisterial bacteriocins Produced by Lactobacillus pentosus Sj65 isolated from Uttapam batter. J. Food Biochem., 2014, 38(6), 612-619.
[http://dx.doi.org/10.1111/jfbc.12098]
[79]
Du, H.; Yang, J.; Lu, X.; Lu, Z.; Bie, X.; Zhao, H.; Zhang, C.; Lu, F. Purification, characterization, and mode of action of plantaricin GZ1-27, a novel bacteriocin against Bacillus cereus. J. Agric. Food Chem., 2018, 66(18), 4716-4724.
[http://dx.doi.org/10.1021/acs.jafc.8b01124] [PMID: 29690762]
[80]
Steinstraesser, L.; Kraneburg, U.; Jacobsen, F.; Al-Benna, S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology, 2011, 216(3), 322-333.
[http://dx.doi.org/10.1016/j.imbio.2010.07.003] [PMID: 20828865]
[81]
Perez, R.H.; Zendo, T.; Sonomoto, K. Circular and leaderless bacteriocins: Biosynthesis, mode of action, applications, and prospects. Front. Microbiol., 2018, 9, 2085.
[http://dx.doi.org/10.3389/fmicb.2018.02085] [PMID: 30233551]
[82]
Vogel, R.F.; Pohle, B.S.; Tichaczek, P.S.; Hammes, W.P. The competitive advantage of Lactobacillus curvatus Lth 1174 in sausage fermentations is caused by formation of curvacin A. Syst. Appl. Microbiol., 1993, 16(3), 457-462.
[http://dx.doi.org/10.1016/S0723-2020(11)80280-8]
[83]
Seddik, H.A.; Bendali, F.; Gancel, F.; Fliss, I.; Spano, G.; Drider, D. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob. Proteins, 2017, 9(2), 111-122.
[http://dx.doi.org/10.1007/s12602-017-9264-z] [PMID: 28271469]
[84]
Jiang, M.; Zhang, F.; Wan, C.; Xiong, Y.; Shah, N.P.; Wei, H.; Tao, X. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. J. Dairy Sci., 2016, 99(3), 1736-1746.
[http://dx.doi.org/10.3168/jds.2015-10434] [PMID: 26805974]
[85]
Amortegui, J.; Rodríguez-López, A.; Rodríguez, D.; Carrascal, A.K.; Alméciga-Díaz, C.J. Melendez, Adel.P.; Sánchez, O.F. Characterization of a new bacteriocin from Lactobacillus plantarum LE5 and LE27 isolated from ensiled corn. Appl. Biochem. Biotechnol., 2014, 172(7), 3374-3389.
[http://dx.doi.org/10.1007/s12010-014-0757-x] [PMID: 24532444]
[86]
Borrero, J.; Kelly, E.; O’Connor, P.M.; Kelleher, P.; Scully, C.; Cotter, P.D.; Mahony, J.; van Sinderen, D.; Plantaricyclin, A. Plantaricyclin A, a novel circular bacteriocin produced by Lactobacillus plantarum NI326: Purification, characterization, and Heterologous production. Appl. Environ. Microbiol., 2017, 84(1), e01801-e01817.
[http://dx.doi.org/10.1128/AEM.01801-17] [PMID: 29030449]
[87]
Gupta, A.; Tiwari, S.K. Plantaricin LD1: A bacteriocin produced by food isolate of Lactobacillus plantarum LD1. Appl. Biochem. Biotechnol., 2014, 172(7), 3354-3362.
[http://dx.doi.org/10.1007/s12010-014-0775-8] [PMID: 24522411]
[88]
Lv, X.; Miao, L.; Ma, H.; Bai, F.; Lin, Y.; Sun, M.; Li, J. Purification, characterization and action mechanism of plantaricin JY22, a novel bacteriocin against Bacillus cereus produced by Lactobacillus plantarum JY22 from golden carp intestine. Food Sci. Biotechnol., 2017, 27(3), 695-703.
[http://dx.doi.org/10.1007/s10068-017-0280-2] [PMID: 30263795]
[89]
Tulini, F.L.; Winkelströter, L.K.; De Martinis, E.C. Identification and evaluation of the probiotic potential of Lactobacillus paraplantarum FT259, a bacteriocinogenic strain isolated from Brazilian semi-hard artisanal cheese. Anaerobe, 2013, 22, 57-63.
[http://dx.doi.org/10.1016/j.anaerobe.2013.06.006] [PMID: 23792229]
[90]
Zhang, J.; Yang, Y.; Yang, H.; Bu, Y.; Yi, H.; Zhang, L.; Han, X.; Ai, L. Purification and partial characterization of Bacteriocin lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from Chinese traditional fermented milk. Front. Microbiol., 2018, 9, 2165.
[http://dx.doi.org/10.3389/fmicb.2018.02165] [PMID: 30327641]
[91]
Wang, Y.; Qin, Y.; Xie, Q.; Zhang, Y.; Hu, J.; Li, P. Purification and characterization of plantaricin LPL-1, a novel class IIa bacteriocin produced by Lactobacillus plantarum LPL-1 isolated from fermented fish. Front. Microbiol., 2018, 9, 2276.
[http://dx.doi.org/10.3389/fmicb.2018.02276] [PMID: 30323792]
[92]
Wang, Y.; Shang, N.; Qin, Y.; Zhang, Y.; Zhang, J.; Li, P. The complete genome sequence of Lactobacillus plantarum LPL-1, a novel antibacterial probiotic producing class IIa bacteriocin. J. Biotechnol., 2018, 266, 84-88.
[http://dx.doi.org/10.1016/j.jbiotec.2017.12.006] [PMID: 29229543]
[93]
Rumjuankiat, K.; Perez, R.H.; Pilasombut, K.; Keawsompong, S.; Zendo, T.; Sonomoto, K.; Nitisinprasert, S. Purification and characterization of a novel plantaricin, KL-1Y, from Lactobacillus plantarum KL-1. World J. Microbiol. Biotechnol., 2015, 31(6), 983-994.
[http://dx.doi.org/10.1007/s11274-015-1851-0] [PMID: 25862353]
[94]
Zhang, H.; Liu, L.; Hao, Y.; Zhong, S.; Liu, H.; Han, T.; Xie, Y. Isolation and partial characterization of a bacteriocin produced by Lactobacillus plantarum BM-1 isolated from a traditionally fermented Chinese meat product. Microbiol. Immunol., 2013, 57(11), 746-755.
[http://dx.doi.org/10.1111/1348-0421.12091] [PMID: 24033418]
[95]
Smaoui, S.; Elleuch, L.; Bejar, W.; Karray-Rebai, I.; Ayadi, I.; Jaouadi, B.; Mathieu, F.; Chouayekh, H.; Bejar, S.; Mellouli, L. Inhibition of fungi and gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635. Appl. Biochem. Biotechnol., 2010, 162(4), 1132-1146.
[http://dx.doi.org/10.1007/s12010-009-8821-7] [PMID: 19888697]
[96]
Müller, D.M.; Carrasco, M.S.; Tonarelli, G.G.; Simonetta, A.C. Characterization and purification of a new bacteriocin with a broad inhibitory spectrum produced by Lactobacillus plantarum lp 31 strain isolated from dry-fermented sausage. J. Appl. Microbiol., 2009, 106(6), 2031-2040.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04173.x] [PMID: 19302495]
[97]
Zhao, S.; Han, J.; Bie, X.; Lu, Z.; Zhang, C.; Lv, F. Purification and characterization of plantaricin JLA-9: A novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional chinese fermented cabbage. J. Agric. Food Chem., 2016, 64(13), 2754-2764.
[http://dx.doi.org/10.1021/acs.jafc.5b05717] [PMID: 26985692]
[98]
Chung, J.H.; Bae, Y.S.; Kim, Y.; Lee, J.H. Characteristics of bacteriocin produced by a Lactobacillus plantarum strain isolated from Kimchi. Korean J. Microbiol. Biotechnol., 2010, 38(4), 481-485.
[99]
Gui, M.; Zhao, B.; Song, J.; Zhang, Z.; Peng, Z.; Li, P. Paraplantaricin L-ZB1, a novel bacteriocin and its application as a biopreservative agent on quality and shelf life of rainbow trout fillets stored at 4°C. Appl. Biochem. Biotechnol., 2014, 174(6), 2295-2306.
[http://dx.doi.org/10.1007/s12010-014-1160-3] [PMID: 25178418]
[100]
Fuochi, V.; Coniglio, M.A.; Laghi, L.; Rescifina, A.; Caruso, M.; Stivala, A.; Furneri, P.M. Metabolic characterization of supernatants produced by Lactobacillus spp. With in vitro anti-legionella activity. Front. Microbiol., 2019, 10, 1403.
[http://dx.doi.org/10.3389/fmicb.2019.01403] [PMID: 31293545]
[101]
Kaewnopparat, S.; Dangmanee, N.; Kaewnopparat, N.; Srichana, T.; Chulasiri, M.; Settharaksa, S. In vitro probiotic properties of Lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe, 2013, 22, 6-13.
[http://dx.doi.org/10.1016/j.anaerobe.2013.04.009] [PMID: 23624069]
[102]
Pascual, L.M.; Daniele, M.B.; Giordano, W.; Pájaro, M.C.; Barberis, I.L. Purification and partial characterization of novel bacteriocin L23 produced by Lactobacillus fermentum L23. Curr. Microbiol., 2008, 56(4), 397-402.
[http://dx.doi.org/10.1007/s00284-007-9094-4] [PMID: 18172715]
[103]
Reid, G.; Charbonneau, D.; Erb, J.; Kochanowski, B.; Beuerman, D.; Poehner, R.; Bruce, A.W. Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: Randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol. Med. Microbiol., 2003, 35(2), 131-134.
[http://dx.doi.org/10.1016/S0928-8244(02)00465-0] [PMID: 12628548]
[104]
Sabia, C.; Anacarso, I.; Bergonzini, A.; Gargiulo, R.; Sarti, M.; Condò, C.; Messi, P.; de Niederhausern, S.; Iseppi, R.; Bondi, M. Detection and partial characterization of a bacteriocin-like substance produced by Lactobacillus fermentum CS57 isolated from human vaginal secretions. Anaerobe, 2014, 26, 41-45.
[http://dx.doi.org/10.1016/j.anaerobe.2014.01.004] [PMID: 24462825]
[105]
Wannun, P.; Piwat, S.; Teanpaisan, R. Purification, characterization, and optimum conditions of fermencin SD11, a bacteriocin produced by human orally Lactobacillus fermentum SD11. Appl. Biochem. Biotechnol., 2016, 179(4), 572-582.
[http://dx.doi.org/10.1007/s12010-016-2014-y] [PMID: 26892008]
[106]
Maragkoudakis, P.A.; Mountzouris, K.C.; Psyrras, D.; Cremonese, S.; Fischer, J.; Cantor, M.D.; Tsakalidou, E. Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int. J. Food Microbiol., 2009, 130(3), 219-226.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.01.027] [PMID: 19249112]
[107]
Stefanovic, E.; Thierry, A.; Maillard, M.B.; Bertuzzi, A.; Rea, M.C.; Fitzgerald, G.; McAuliffe, O.; Kilcawley, K.N. Strains of the Lactobacillus casei group show diverse abilities for the production of flavor compounds in 2 model systems. J. Dairy Sci., 2017, 100(9), 6918-6929.
[http://dx.doi.org/10.3168/jds.2016-12408] [PMID: 28711258]
[108]
Steele, J.; Broadbent, J.; Kok, J. Perspectives on the contribution of lactic acid bacteria to cheese flavor development. Curr. Opin. Biotechnol., 2013, 24(2), 135-141.
[http://dx.doi.org/10.1016/j.copbio.2012.12.001] [PMID: 23279928]
[109]
Settanni, L.; Franciosi, E.; Cavazza, A.; Cocconcelli, P.S.; Poznanski, E. Extension of Tosèla cheese shelf-life using non-starter lactic acid bacteria. Food Microbiol., 2011, 28(5), 883-890.
[http://dx.doi.org/10.1016/j.fm.2010.12.003] [PMID: 21569930]
[110]
Nami, Y.; Gharekhani, M.; Aalami, M.; Hejazi, M.A. Lactobacillus-fermented sourdoughs improve the quality of gluten-free bread made from pearl millet flour. J. Food Sci. Technol., 2019, 56(9), 4057-4067.
[http://dx.doi.org/10.1007/s13197-019-03874-8] [PMID: 31477977]
[111]
Uraipan, S.; Hongpattarakere, T. Antagonistic characteristics against food-borne pathogenic bacteria of lactic acid bacteria and bifidobacteria isolated from feces of healthy Thai infants. Jundishapur J. Microbiol., 2015, 8(6)e18264
[http://dx.doi.org/10.5812/jjm.8(5)2015.18264] [PMID: 26301060]
[112]
Aymerich, T.; Rodríguez, M.; Garriga, M.; Bover-Cid, S. Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes on vacuum-packed cold-smoked salmon stored at 8°C. Food Microbiol., 2019, 83, 64-70.
[http://dx.doi.org/10.1016/j.fm.2019.04.011] [PMID: 31202420]
[113]
Mkrtchyan, H.; Gibbons, S.; Heidelberger, S.; Zloh, M.; Limaki, H.K. Purification, characterisation and identification of acidocin LCHV, an antimicrobial peptide produced by Lactobacillus acidophilus n.v. Er 317/402 strain Narine. Int. J. Antimicrob. Agents, 2010, 35(3), 255-260.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.11.017] [PMID: 20045288]
[114]
Rammelsberg, M.; Radler, F. Antibacterial polypeptides of Lactobacillus species. J. Appl. Bacteriol., 1990, 69(2), 177-184.
[http://dx.doi.org/10.1111/j.1365-2672.1990.tb01507.x]
[115]
Noda, M.; Miyauchi, R.; Danshiitsoodol, N.; Higashikawa, F.; Kumagai, T.; Matoba, Y.; Sugiyama, M. Characterization and mutational analysis of a two-polypeptide bacteriocin produced by citrus Iyo-derived Lactobacillus brevis 174A. Biol. Pharm. Bull., 2015, 38(12), 1902-1909.
[http://dx.doi.org/10.1248/bpb.b15-00505] [PMID: 26632181]
[116]
Trivedi, D.; Jena, P.K.; Patel, J.K.; Seshadri, S. Partial purification and characterization of a bacteriocin DT24 produced by probiotic vaginal Lactobacillus brevis DT24 and determination of its anti-uropathogenic escherichia coli potential. Probiotics Antimicrob. Proteins, 2013, 5(2), 142-151.
[http://dx.doi.org/10.1007/s12602-013-9132-4] [PMID: 26782739]
[117]
Banerjee, S.P.; Dora, K.C.; Chowdhury, S. Detection, partial purification and characterization of bacteriocin produced by Lactobacillus brevis FPTLB3 isolated from freshwater fish: Bacteriocin from Lb. brevis FPTLB3. J. Food Sci. Technol., 2013, 50(1), 17-25.
[http://dx.doi.org/10.1007/s13197-011-0240-4] [PMID: 24425883]
[118]
Gautam, N.; Sharma, N.; Ahlawat, O.P. Purification and characterization of bacteriocin produced by Lactobacillus brevis UN isolated from Dhulliachar: A traditional food product of North East India. Indian J. Microbiol., 2014, 54(2), 185-189.
[http://dx.doi.org/10.1007/s12088-013-0427-7] [PMID: 25320420]
[119]
Kuo, Y.C.; Liu, C.F.; Lin, J.F.; Li, A.C.; Lo, T.C.; Lin, T.H. Characterization of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334. Appl. Microbiol. Biotechnol., 2013, 97(1), 237-246.
[http://dx.doi.org/10.1007/s00253-012-4149-2] [PMID: 22688903]
[120]
Sharma, D.; Singh, S.B. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int. J. Microbiol., 2014.2014698713
[http://dx.doi.org/10.1155/2014/698713] [PMID: 24669225]
[121]
Jeong, Y.J.; Moon, G.S. Antilisterial bacteriocin from Lactobacillus rhamnosus CJNU 0519 presenting a narrow antimicrobial spectrum. Han-gug Chugsan Sigpum Hag-hoeji, 2015, 35(1), 137-142.
[http://dx.doi.org/10.5851/kosfa.2015.35.1.137] [PMID: 26761811]
[122]
Dimitrijević, R.; Stojanović, M.; Zivković, I.; Petersen, A.; Jankov, R.M.; Dimitrijević, L.; Gavrović-Jankulović, M. The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68. J. Appl. Microbiol., 2009, 107(6), 2108-2115.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04539.x] [PMID: 19796123]
[123]
Rivas, F.P.; Castro, M.P.; Vallejo, M.; Marguet, E.; Campos, C.A. Sakacin Q produced by Lactobacillus curvatus ACU-1: Functionality characterization and antilisterial activity on cooked meat surface. Meat Sci., 2014, 97(4), 475-479.
[http://dx.doi.org/10.1016/j.meatsci.2014.03.003] [PMID: 24769146]
[124]
Mathiesen, G.; Huehne, K.; Kroeckel, L.; Axelsson, L.; Eijsink, V.G. Characterization of a new bacteriocin operon in sakacin P-producing Lactobacillus sakei, showing strong translational coupling between the bacteriocin and immunity genes. Appl. Environ. Microbiol., 2005, 71(7), 3565-3574.
[http://dx.doi.org/10.1128/AEM.71.7.3565-3574.2005] [PMID: 16000763]
[125]
Zommiti, M.; Almohammed, H.; Ferchichi, M. Purification and characterization of a novel anti-Campylobacter bacteriocin produced by Lactobacillus curvatus DN317. Probiotics Antimicrob. Proteins, 2016, 8(4), 191-201.
[http://dx.doi.org/10.1007/s12602-016-9237-7] [PMID: 27812926]
[126]
Kawai, Y.; Saito, T.; Toba, T.; Samant, S.K.; Itoh, T. Isolation and characterization of a highly hydrophobic new bacteriocin (gassericin A) from Lactobacillus gasseri LA39. Biosci. Biotechnol. Biochem., 1994, 58(7), 1218-1221.
[http://dx.doi.org/10.1271/bbb.58.1218] [PMID: 7765246]
[127]
Nakamura, K.; Arakawa, K.; Kawai, Y.; Yasuta, N.; Chujo, T.; Watanabe, M.; Iioka, H.; Tanioka, M.; Nishimura, J.; Kitazawa, H.; Tsurumi, K.; Saito, T. Food preservative potential of gassericin A-containing concentrate prepared from a cheese whey culture supernatant from Lactobacillus gasseri LA39. Anim. Sci. J., 2013, 84(2), 144-149.
[http://dx.doi.org/10.1111/j.1740-0929.2012.01048.x] [PMID: 23384356]
[128]
Zhu, W.M.; Liu, W.; Wu, D.Q. Isolation and characterization of a new bacteriocin from Lactobacillus gasseri KT7. J. Appl. Microbiol., 2000, 88(5), 877-886.
[http://dx.doi.org/10.1046/j.1365-2672.2000.01027.x] [PMID: 10792549]
[129]
Jena, P.K.; Trivedi, D.; Chaudhary, H.; Sahoo, T.K.; Seshadri, S. Bacteriocin PJ4 active against enteric pathogen produced by Lactobacillus helveticus PJ4 isolated from gut microflora of wistar rat (Rattus norvegicus): Partial purification and characterization of bacteriocin. Appl. Biochem. Biotechnol., 2013, 169(7), 2088-2100.
[http://dx.doi.org/10.1007/s12010-012-0044-7] [PMID: 23371780]
[130]
Hata, T.; Tanaka, R.; Ohmomo, S. Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. Int. J. Food Microbiol., 2010, 137(1), 94-99.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.10.021] [PMID: 19939484]
[131]
Tiwari, S.K.; Srivastava, S. Purification and characterization of plantaricin LR14: A novel bacteriocin produced by Lactobacillus plantarum LR/14. Appl. Microbiol. Biotechnol., 2008, 79(5), 759-767.
[http://dx.doi.org/10.1007/s00253-008-1482-6] [PMID: 18496687]
[132]
Song, D.F.; Zhu, M.Y.; Gu, Q. Purification and characterization of Plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5. PLoS One, 2014, 9(8)e105549
[http://dx.doi.org/10.1371/journal.pone.0105549] [PMID: 25147943]
[133]
Zhu, X.; Zhao, Y.; Sun, Y.; Gu, Q. Purification and characterisation of plantaricin ZJ008, a novel bacteriocin against Staphylococcus spp. from Lactobacillus plantarum ZJ008. Food Chem., 2014, 165, 216-223.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.034] [PMID: 25038669]
[134]
Rogne, P.; Haugen, C.; Fimland, G.; Nissen-Meyer, J.; Kristiansen, P.E. Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Peptides, 2009, 30(9), 1613-1621.
[http://dx.doi.org/10.1016/j.peptides.2009.06.010] [PMID: 19538999]
[135]
Anderssen, E.L.; Diep, D.B.; Nes, I.F.; Eijsink, V.G.; Nissen-Meyer, J. Antagonistic activity of Lactobacillus plantarum C11: Two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl. Environ. Microbiol., 1998, 64(6), 2269-2272.
[http://dx.doi.org/10.1128/AEM.64.6.2269-2272.1998] [PMID: 9603847]
[136]
Fimland, N.; Rogne, P.; Fimland, G.; Nissen-Meyer, J.; Kristiansen, P.E. Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF. Biochim. Biophys. Acta, 2008, 1784(11), 1711-1719.
[http://dx.doi.org/10.1016/j.bbapap.2008.05.003] [PMID: 18555030]
[137]
Holo, H.; Jeknic, Z.; Daeschel, M.; Stevanovic, S.; Nes, I.F. Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology, 2001, 147(Pt 3), 643-651.
[http://dx.doi.org/10.1099/00221287-147-3-643] [PMID: 11238971]
[138]
Daeschel, M.A.M.M.C.; McDonald, L.C. Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiol., 1990, 7(2), 8.
[http://dx.doi.org/10.1016/0740-0020(90)90014-9]
[139]
Jiménez-Díaz, R.; Rios-Sánchez, R.M.; Desmazeaud, M.; Ruiz-Barba, J.L.; Piard, J.C. Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl. Environ. Microbiol., 1993, 59(5), 1416-1424.
[http://dx.doi.org/10.1128/AEM.59.5.1416-1424.1993] [PMID: 16348933]
[140]
West, C.A.; Warner, P.J. Plantacin-B, a bacteriocin produced by Lactobacillus-plantarum Ncdo-1193. FEMS Microbiol. Lett., 1988, 49(2), 163-165.
[http://dx.doi.org/10.1111/j.1574-6968.1988.tb02708.x]
[141]
Lee, K.H.; Park, J.Y.; Jeong, S.J.; Kwon, G.H.; Lee, H.J.; Chang, H.C.; Chung, D.K.; Lee, J.H.; Kim, J.H. Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolated from kimchi. J. Microbiol. Biotechnol., 2007, 17(2), 287-296.
[http://dx.doi.org/10.4014/jmb.1309.09070] [PMID: 18051760]
[142]
Talarico, T.L.; Casas, I.A.; Chung, T.C.; Dobrogosz, W.J. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 1988, 32(12), 1854-1858.
[http://dx.doi.org/10.1128/AAC.32.12.1854] [PMID: 3245697]
[143]
Kabuki, T.; Saito, T.; Kawai, Y.; Uemura, J.; Itoh, T. Production, purification and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. Int. J. Food Microbiol., 1997, 34(2), 145-156.
[http://dx.doi.org/10.1016/S0168-1605(96)01180-4] [PMID: 9039561]
[144]
Barbosa, M.S.; Todorov, S.D.; Belguesmia, Y.; Choiset, Y.; Rabesona, H.; Ivanova, I.V.; Chobert, J.M.; Haertlé, T.; Franco, B.D. Purification and characterization of the bacteriocin produced by Lactobacillus sakei MBSa1 isolated from Brazilian salami. J. Appl. Microbiol., 2014, 116(5), 1195-1208.
[http://dx.doi.org/10.1111/jam.12438] [PMID: 24506656]
[145]
Todorov, S.D.; Rachman, C.; Fourrier, A.; Dicks, L.M.; van Reenen, C.A.; Prévost, H.; Dousset, X. Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon. Anaerobe, 2011, 17(1), 23-31.
[http://dx.doi.org/10.1016/j.anaerobe.2010.01.004] [PMID: 20152920]
[146]
Schillinger, U.; Lücke, F.K. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol., 1989, 55(8), 1901-1906.
[http://dx.doi.org/10.1128/AEM.55.8.1901-1906.1989] [PMID: 2782870]
[147]
Mortvedt, C.I.; Nes, I.F. plasmid-associated bacteriocin production by a Lactobacillus-sake strain. J. Gen. Microbiol., 1990, 136, 1601-1607.
[http://dx.doi.org/10.1099/00221287-136-8-1601]
[148]
Busarcevic, M.; Kojic, M.; Dalgalarrondo, M.; Chobert, J.M.; Haertlé, T.; Topisirovic, L. Purification of bacteriocin LS1 produced by human oral isolate Lactobacillus salivarius BGHO1. Oral Microbiol. Immunol., 2008, 23(3), 254-258.
[http://dx.doi.org/10.1111/j.1399-302X.2007.00420.x] [PMID: 18402613]
[149]
Busarcevic, M.; Dalgalarrondo, M. Purification and genetic characterisation of the novel bacteriocin LS2 produced by the human oral strain Lactobacillus salivarius BGHO1. Int. J. Antimicrob. Agents, 2012, 40(2), 127-134.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.04.011] [PMID: 22739096]
[150]
Therdtatha, P.; Tandumrongpong, C.; Pilasombut, K.; Matsusaki, H.; Keawsompong, S.; Nitisinprasert, S. Characterization of antimicrobial substance from Lactobacillus salivarius KL-D4 and its application as biopreservative for creamy filling. Springerplus, 2016, 5(1), 1060.
[http://dx.doi.org/10.1186/s40064-016-2693-4] [PMID: 27462508]
[151]
Messaoudi, S.; Kergourlay, G.; Dalgalarrondo, M.; Choiset, Y.; Ferchichi, M.; Prévost, H.; Pilet, M.F.; Chobert, J.M.; Manai, M.; Dousset, X. Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51. Food Microbiol., 2012, 32(1), 129-134.
[http://dx.doi.org/10.1016/j.fm.2012.05.002] [PMID: 22850384]
[152]
Choyam, S.; Srivastava, A.K.; Shin, J.H.; Kammara, R. Ocins for food safety. Front. Microbiol., 2019, 10, 1736.
[http://dx.doi.org/10.3389/fmicb.2019.01736] [PMID: 31428063]
[153]
Mesa-Pereira, B.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. heterologous expression of biopreservative bacteriocins with a view to low cost production. Front. Microbiol., 2018, 9, 1654.
[http://dx.doi.org/10.3389/fmicb.2018.01654] [PMID: 30093889]
[154]
Furneri, P.M.; Petronio, G.P.; Fuochi, V.; Cupri, S.; Pignatello, R. Nanostructures for drug delivery; Micro Nano Technol, 2017, pp. 697-748.
[http://dx.doi.org/10.1016/B978-0-323-46143-6.00023-3]
[155]
Pignatello, R.; Fuochi, V.; Petronio, G.P.; Greco, A.S.; Furneri, P.M. Formulation and characterization of erythromycin-loaded solid lipid nanoparticles. Biointerface Res. Appl. Chem., 2017, 7(5), 2145-2150.
[156]
Pignatello, R.; Leonardi, A.; Fuochi, V.; Petronio, G.; Greco, A.S.; Furneri, P.M. A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: Formulation and microbiological evaluation. Nanomaterials (Basel), 2018, 8(5)E304
[http://dx.doi.org/10.3390/nano8050304] [PMID: 29734771]
[157]
Yousefi, M.; Ehsani, A.; Jafari, S.M. Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Adv. Colloid Interface Sci., 2019, 270, 263-277.
[http://dx.doi.org/10.1016/j.cis.2019.07.005] [PMID: 31306852]
[158]
Sidhu, P.K.; Nehra, K. Bacteriocin-capped silver nanoparticles for enhanced antimicrobial efficacy against food pathogens. IET Nanobiotechnol, 2020, 14(3), 245-252.
[http://dx.doi.org/10.1049/iet-nbt.2019.0323] [PMID: 32338634]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy