Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Review Article

Genetic Anomalies of Growth Hormone Deficiency in Pediatrics

Author(s): Majid Firouzi, Hamidreza Sherkatolabbasieh* and Shiva Shafizadeh

Volume 21, Issue 2, 2021

Published on: 04 July, 2020

Page: [288 - 297] Pages: 10

DOI: 10.2174/1871530320666200704144912

Price: $65

Abstract

Several different proteins regulate, directly or indirectly, the production of growth hormones from the pituitary gland, thereby complex genetics is involved. Defects in these genes are related to the deficiency of growth hormones solely, or deficiency of other hormones, secreted from the pituitary gland including growth hormones. These studies can aid clinicians to trace the pattern of the disease between the families, start early treatment and predict possible future consequences. This paper highlights some of the most common and novel genetic anomalies concerning growth hormones, which are responsible for various genetic defects in isolated growth and combined pituitary hormone deficiency disease.

Keywords: Hormone deficiency, growth hormone, genetic defects, pediatrics, pituitary disease, genetic anomalies.

Graphical Abstract
[1]
Corazzini, V.; Salvatori, R. Molecular and clinical aspects of GHRH receptor mutations. Endocr. Dev., 2013, 24, 106-117.
[http://dx.doi.org/10.1159/000342575] [PMID: 23392099]
[2]
John, M.; Koledova, E.; Kumar, K.M.; Chaudhari, H. Challenges in the diagnosis and management of growth hormone deficiency in India. Int. J. Endocrinol., 2016, 2016, 2967578-2967578.
[http://dx.doi.org/10.1155/2016/2967578] [PMID: 27867396]
[3]
Mullis, P.E. Genetics of isolated growth hormone deficiency. J. Clin. Res. Pediatr. Endocrinol., 2010, 2(2), 52-62.
[http://dx.doi.org/10.4274/jcrpe.v2i2.52] [PMID: 21274339]
[4]
Di Iorgi, N.; Morana, G.; Allegri, A.E.; Napoli, F.; Gastaldi, R.; Calcagno, A.; Patti, G.; Loche, S.; Maghnie, M. Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract. Res. Clin. Endocrinol. Metab., 2016, 30(6), 705-736.
[http://dx.doi.org/10.1016/j.beem.2016.11.008] [PMID: 27974186]
[5]
Maghnie, M.; Lindberg, A.; Koltowska-Häggström, M.; Ranke, M.B. Magnetic resonance imaging of CNS in 15,043 children with GH deficiency in KIGS (Pfizer International Growth Database). Eur. J. Endocrinol., 2013, 168(2), 211-217.
[http://dx.doi.org/10.1530/EJE-12-0801] [PMID: 23152438]
[6]
Nezami, A.; Tarhani, F.; Shoshtari, N. Organic lesions in the brain MRI of children with febrile seizure. Curr. Med. Imaging, 2020.
[http://dx.doi.org/10.2174/1573405616666200226103615] [PMID: 32101131]
[7]
Faraji-Goodarzi, M.; Tarhani, F.; Taee, N. Dyserythropoiesis and myelodysplasia in thiamine-responsive megaloblastic anemia syndrome. Clin. Case Rep., 2020, 8(6), 991-994.
[http://dx.doi.org/10.1002/ccr3.2791] [PMID: 32577249]
[8]
Firouzi, M. The prevalence of the ABO hemolytic disease of the newborn and its complications in an Iranian population. Iran. J. Ped. Hematol. Oncol., 2018, 8(1), 37-47.
[9]
Shahsavari, G. Phototherapy motivates protein and lipid oxidation in jaundiced term and late term neonates. Caspian J. Pediatrics., 2017, 3(2), 248-252.
[http://dx.doi.org/10.22088/acadpub.BUMS.3.2.248]
[10]
Nicholls, A.R.; Holt, R.I. Growth hormone and insulin-like growth factor-1. Front. Horm. Res., 2016, 47, 101-114.
[http://dx.doi.org/10.1159/000445173] [PMID: 27347885]
[11]
Sherkatolabbasieh, H.R.; Zare, M.E.; Nasir, K.A.; Shafiezadeh, S.; Mahruei, A. Serum procalcitonin level and other biological markers in children with bacterial or non-bacterial meningitis. Arch. Adv. Biosci., 2013, 4(4), 16-21.
[12]
Shohreh, R.; Sherafat-Kazemzadeh, R.; Jee, Y.H.; Blitz, A.; Salvatori, R. A novel frame shift mutation in the GHRH receptor gene in familial isolated GH deficiency: early occurrence of anterior pituitary hypoplasia. J. Clin. Endocrinol. Metab., 2011, 96(10), 2982-2986.
[http://dx.doi.org/10.1210/jc.2011-1031] [PMID: 21816782]
[13]
Alatzoglou, K.S.; Webb, E.A.; Le Tissier, P.; Dattani, M.T. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr. Rev., 2014, 35(3), 376-432.
[http://dx.doi.org/10.1210/er.2013-1067] [PMID: 24450934]
[14]
Tarhani, F.; Nezami, A. Role of probiotics in treatment of congenital heart disease and necrotizing enterocolitis. PharmaNutrition, 2019, 8100144
[http://dx.doi.org/10.1016/j.phanu.2019.100144]
[15]
Lido, A.C.; França, M.M.; Correa, F.A.; Otto, A.P.; Carvalho, L.R.; Quedas, E.P.; Nishi, M.Y.; Mendonca, B.B.; Arnhold, I.J.; Jorge, A.A. Autosomal recessive form of isolated growth hormone deficiency is more frequent than the autosomal dominant form in a Brazilian cohort. Growth Horm. IGF Res., 2014, 24(5), 180-186.
[http://dx.doi.org/10.1016/j.ghir.2014.07.001] [PMID: 25116472]
[16]
Moradniani, M.; Mirbeik-Sabzevari, Z.; Jaferian, S.; Shafiezadeh, S.; Ehsani Ardakani, M.J.; Mirzaee Roozbahany, M.; Azadbakht, S.; Sherkatolabbasieh, H. Levofloxacin based vs clarithromycin based sequential therapy in helicobacter pylori eradication; a randomized clinical trial. Gastroenterol. Hepatol. Bed Bench, 2018, 11(1), 19-26.
[PMID: 29564061]
[17]
Moradniani, M. Levofloxacin based vs clarithromycin based sequential therapy in helicobacter Pylori eradication; a randomized clinical trial. Gastroenterol. Hepatol. Bed Bench, 2018, 11(1), 20-26.
[http://dx.doi.org/10.22037/ghfbb.v0i0.1191]]
[18]
Sherkatolabbasieh, H.R. Effect of natural antioxidants and important herbal medicines on blood infections and sepsis: A systematic review. International Journal of Research in Pharmaceutical Sciences, 2019, 10(2), 1372-1381.
[http://dx.doi.org/10.26452/ijrps.v10i2.546]
[19]
Aguiar-Oliveira, M.H. MECHANISMS IN ENDOCRINOLOGY: The multiple facets of GHRH/GH/IGF-I axis: lessons from lifetime, untreated, isolated GH deficiency due to a GHRH receptor gene mutation 2017, 177(2), 85.
[20]
Fang, Q.; George, A.S.; Brinkmeier, M.L.; Mortensen, A.H.; Gergics, P.; Cheung, L.Y.; Daly, A.Z.; Ajmal, A.; Pérez Millán, M.I.; Ozel, A.B.; Kitzman, J.O.; Mills, R.E.; Li, J.Z.; Camper, S.A. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr. Rev., 2016, 37(6), 636-675.
[http://dx.doi.org/10.1210/er.2016-1101] [PMID: 27828722]
[21]
Godi, M.; Mellone, S.; Petri, A.; Arrigo, T.; Bardelli, C.; Corrado, L.; Bellone, S.; Prodam, F.; Momigliano-Richiardi, P.; Bona, G.; Giordano, M. A recurrent signal peptide mutation in the growth hormone releasing hormone receptor with defective translocation to the cell surface and isolated growth hormone deficiency. J. Clin. Endocrinol. Metab., 2009, 94(10), 3939-3947.
[http://dx.doi.org/10.1210/jc.2009-0833] [PMID: 19622623]
[22]
de Silva, K.S.; Tennekoon, K.H.; Sundralingam, T.; Navarathne, B.; Hewage, A.S.; de Silva, W.S.; Ganihigama, D.; Jayasinghe, H.D.; Muhandiram, M.E. Growth hormone releasing hormone receptor codon 72 mutation in a cohort of Sri Lankan patients with growth hormone deficiency. Ceylon Med. J., 2016, 61(1), 18-21.
[http://dx.doi.org/10.4038/cmj.v61i1.8257] [PMID: 27031974]
[23]
Sundralingam, T.; Tennekoon, K.H.; de Silva, S.; De Silva, S.; Hewage, A.S. Pathogenic and likely pathogenic genetic alterations and polymorphisms in growth hormone gene (GH1) and growth hormone releasing hormone receptor gene (GHRHR) in a cohort of isolated growth hormone deficient (IGHD) children in Sri Lanka. Growth Horm. IGF Res., 2017, 36, 22-29.
[http://dx.doi.org/10.1016/j.ghir.2017.08.006] [PMID: 28910730]
[24]
Galli-Tsinopoulou, A.; Kotanidou, E.P.; Kleisarchaki, A.N.; Kauli, R.; Laron, Z. A Novel Variant c.97C>T of the Growth Hormone Releasing Hormone Receptor Gene Causes Isolated Growth Hormone Deficiency Type Ib. J. Clin. Res. Pediatr. Endocrinol., 2018, 10(3), 284-288.
[http://dx.doi.org/10.4274/jcrpe.5188] [PMID: 29537382]
[25]
Aguiar-Oliveira, M.H.; Davalos, C.; Campos, V.C.; Oliveira Neto, L.A.; Marinho, C.G.; Oliveira, C.R.P. Hypothalamic abnormalities: Growth failure due to defects of the GHRH receptor. Growth Horm. IGF Res., 2018, 38, 14-18.
[http://dx.doi.org/10.1016/j.ghir.2017.12.011] [PMID: 29277338]
[26]
Inoue, H.; Kangawa, N.; Kinouchi, A.; Sakamoto, Y.; Kimura, C.; Horikawa, R.; Shigematsu, Y.; Itakura, M.; Ogata, T.; Fujieda, K. Japan Growth Genome Consortium. Identification and functional analysis of novel human growth hormone-releasing hormone receptor (GHRHR) gene mutations in Japanese subjects with short stature. Clin. Endocrinol. (Oxf.), 2011, 74(2), 223-233.
[http://dx.doi.org/10.1111/j.1365-2265.2010.03911.x.] [PMID: 21044116]
[27]
Arman, A.; Dündar, B.N.; Çetinkaya, E.; Erzaim, N.; Büyükgebiz, A. Novel growth hormone-releasing hormone receptor gene mutations in Turkish children with isolated growth hormone deficiency. J. Clin. Res. Pediatr. Endocrinol., 2014, 6(4), 202-208.
[http://dx.doi.org/10.4274/jcrpe.1518] [PMID: 25541890]
[28]
Demirbilek, H.; Tahir, S.; Baran, R.T.; Sherif, M.; Shah, P.; Ozbek, M.N.; Hatipoglu, N.; Baran, A.; Arya, V.B.; Hussain, K. Familial isolated growth hormone deficiency due to a novel homozygous missense mutation in the growth hormone releasing hormone receptor gene: clinical presentation with hypoglycemia. J. Clin. Endocrinol. Metab., 2014, 99(12), E2730-E2734.
[http://dx.doi.org/10.1210/jc.2014-2696] [PMID: 25226297]
[29]
Kale, S.; Budyal, S.; Kasaliwal, R.; Shivane, V.; Raghavan, V.; Lila, A.; Bandgar, T.; Shah, N. A novel gross indel in the growth hormone releasing hormone receptor gene of Indian IGHD patients. Growth Horm. IGF Res., 2014, 24(6), 227-232.
[http://dx.doi.org/10.1016/j.ghir.2014.07.003] [PMID: 25153028]
[30]
Birla, S.; Khadgawat, R.; Jyotsna, V.P.; Jain, V.; Garg, M.K.; Bhalla, A.S.; Sharma, A. Identification of novel GHRHR and GH1 mutations in patients with isolated growth hormone deficiency. Growth Horm. IGF Res., 2016, 29, 50-56.
[http://dx.doi.org/10.1016/j.ghir.2016.04.001] [PMID: 27114065]
[31]
Alatzoglou, K.S.; Dattani, M.T. Genetic causes and treatment of isolated growth hormone deficiency-an update. Nat. Rev. Endocrinol., 2010, 6(10), 562-576.
[http://dx.doi.org/10.1038/nrendo.2010.147] [PMID: 20852587]
[32]
Desai, M.P.; Mithbawkar, S.M.; Upadhye, P.S.; Shalia, K.K. Growth hormone (GH-1) gene deletions in children with isolated growth hormone deficiency (IGHD). Indian J. Pediatr., 2012, 79(7), 875-883.
[http://dx.doi.org/10.1007/s12098-011-0588-5] [PMID: 22016154]
[33]
Juanes, M. Presence of GH1 and absence of GHRHR gene mutations in a large cohort of Argentinian patients with severe short stature and isolated GH deficiency., 2014, 80(4), 618-620.
[34]
Kempers, M.J.; van der Crabben, S.N.; de Vroede, M.; Alfen-van der Velden, J.; Netea-Maier, R.T.; Duim, R.A.; Otten, B.J.; Losekoot, M.; Wit, J.M. Splice site mutations in GH1 detected in previously (Genetically) undiagnosed families with congenital isolated growth hormone deficiency type II. Horm. Res. Paediatr., 2013, 80(6), 390-396.
[http://dx.doi.org/10.1159/000355403] [PMID: 24280736]
[35]
Madeira, J.L.; Jorge, A.A.; Martin, R.M.; Montenegro, L.R.; Franca, M.M.; Costalonga, E.F.; Correa, F.A.; Otto, A.P.; Arnhold, I.J.; Freitas, H.S.; Machado, U.F.; Mendonca, B.B.; Carvalho, L.R. A homozygous point mutation in the GH1 promoter (c.-223C>T) leads to reduced GH1 expression in siblings with isolated GH deficiency (IGHD). Eur. J. Endocrinol., 2016, 175(2), K7-K15.
[http://dx.doi.org/10.1530/EJE-15-0149] [PMID: 27252485]
[36]
Baş, F.; Uyguner, Z.O.; Darendeliler, F.; Aycan, Z.; Çetinkaya, E.; Berberoğlu, M.; Şiklar, Z.; Öcal, G.; Darcan, Ş.; Gökşen, D.; Topaloğlu, A.K.; Yüksel, B.; Özbek, M.N.; Ercan, O.; Evliyaoğlu, O.; Çetinkaya, S.; Şen, Y.; Atabek, E.; Toksoy, G.; Aydin, B.K.; Bundak, R. Molecular analysis of PROP1, POU1F1, LHX3, and HESX1 in Turkish patients with combined pituitary hormone deficiency: a multicenter study. Endocrine, 2015, 49(2), 479-491.
[http://dx.doi.org/10.1007/s12020-014-0498-1] [PMID: 25500790]
[37]
Giordano, M. Genetic causes of isolated and combined pituitary hormone deficiency. Best Pract. Res. Clin. Endocrinol. Metab., 2016, 30(6), 679-691.
[http://dx.doi.org/10.1016/j.beem.2016.09.005] [PMID: 27974184]
[38]
Gorbenko Del Blanco, D.; Romero, C.J.; Diaczok, D.; de Graaff, L.C.; Radovick, S.; Hokken-Koelega, A.C. A novel OTX2 mutation in a patient with combined pituitary hormone deficiency, pituitary malformation, and an underdeveloped left optic nerve. Eur. J. Endocrinol., 2012, 167(3), 441-452.
[http://dx.doi.org/10.1530/EJE-12-0333] [PMID: 22715480]
[39]
Shimada, A.; Takagi, M.; Nagashima, Y.; Miyai, K.; Hasegawa, Y. A Novel Mutation in OTX2 Causes Combined Pituitary Hormone Deficiency, Bilateral Microphthalmia, and Agenesis of the Left Internal Carotid Artery. Horm. Res. Paediatr., 2016, 86(1), 62-69.
[http://dx.doi.org/10.1159/000446280] [PMID: 27299576]
[40]
Dateki, S. OTX2 Mutation in a Patient with Anophthalmia, Short Stature, and Partial Growth Hormone Deficiency: Functional Studies Using the IRBP , HESX1 , and POU1F1 Promoters 2008, 93, 3697-702.
[41]
Choi, J.H.; Jung, C.W.; Kang, E.; Kim, Y.M.; Heo, S.H.; Lee, B.H.; Kim, G.H.; Yoo, H.W. Rare Frequency of Mutations in Pituitary Transcription Factor Genes in Combined Pituitary Hormone or Isolated Growth Hormone Deficiencies in Korea. Yonsei Med. J., 2017, 58(3), 527-532.
[http://dx.doi.org/10.3349/ymj.2017.58.3.527] [PMID: 28332357]
[42]
Durmaz, B.; Cogulu, O.; Dizdarer, C.; Stobbe, H.; Pfaeffle, R.; Ozkinay, F. A novel homozygous HESX1 mutation causes panhypopituitarism without midline defects and optic nerve anomalies. J. Pediatr. Endocrinol. Metab., 2011, 24(9-10), 779-782.
[http://dx.doi.org/10.1515/JPEM.2011.162] [PMID: 22145475]
[43]
Raeisi, D. Sex Hormones and Prolactin Levels and Their Association with Anti Cardiolipin Antibody in Patients with Systemic Lupus Erythematosus. Iran. J. Allergy Asthma Immunol., 2018.
[44]
Macchiaroli, A.; Kelberman, D.; Auriemma, R.S.; Drury, S.; Islam, L.; Giangiobbe, S.; Ironi, G.; Lench, N.; Sowden, J.C.; Colao, A.; Pivonello, R.; Cavallo, L.; Gasperi, M.; Faienza, M.F. A novel heterozygous SOX2 mutation causing congenital bilateral anophthalmia, hypogonadotropic hypogonadism and growth hormone deficiency. Gene, 2014, 534(2), 282-285.
[http://dx.doi.org/10.1016/j.gene.2013.10.043] [PMID: 24211324]
[45]
Stark, Z.; Storen, R.; Bennetts, B.; Savarirayan, R.; Jamieson, R.V. Isolated hypogonadotropic hypogonadism with SOX2 mutation and anophthalmia/microphthalmia in offspring. Eur. J. Hum. Genet., 2011, 19(7), 753-756.
[http://dx.doi.org/10.1038/ejhg.2011.11] [PMID: 21326281]
[46]
Stagi, S.; Lapi, E.; Pantaleo, M.; Traficante, G.; Giglio, S.; Seminara, S.; de Martino, M.A. SOX3 (Xq26.3-27.3) duplication in a boy with growth hormone deficiency, ocular dyspraxia, and intellectual disability: a long-term follow-up and literature review. Hormones (Athens), 2014, 13(4), 552-560.
[http://dx.doi.org/10.14310/horm.2002.1523] [PMID: 25402377]
[47]
Bertko, E.; Klammt, J.; Dusatkova, P.; Bahceci, M.; Gonc, N.; Ten Have, L.; Kandemir, N.; Mansmann, G.; Obermannova, B.; Oostdijk, W.; Pfäffle, H.; Rockstroh-Lippold, D.; Schlicke, M.; Tuzcu, A.K.; Pfäffle, R. Combined pituitary hormone deficiency due to gross deletions in the POU1F1 (PIT-1) and PROP1 genes. J. Hum. Genet., 2017, 62(8), 755-762.
[http://dx.doi.org/10.1038/jhg.2017.34] [PMID: 28356564]
[48]
Baş, F.; Abalı, Z.Y.; Toksoy, G.; Poyrazoğlu, Ş.; Bundak, R.; Güleç, Ç.; Uyguner, Z.O.; Darendeliler, F. Precocious or early puberty in patients with combined pituitary hormone deficiency due to POU1F1 gene mutation: case report and review of possible mechanisms. Hormones (Athens), 2018, 17(4), 581-588.
[http://dx.doi.org/10.1007/s42000-018-0079-4] [PMID: 30460459]
[49]
Sobrier, M-L.; Tsai, Y.C.; Pérez, C.; Leheup, B.; Bouceba, T.; Duquesnoy, P.; Copin, B.; Sizova, D.; Penzo, A.; Stanger, B.Z.; Cooke, N.E.; Liebhaber, S.A.; Amselem, S. Functional characterization of a human POU1F1 mutation associated with isolated growth hormone deficiency: a novel etiology for IGHD. Hum. Mol. Genet., 2016, 25(3), 472-483.
[http://dx.doi.org/10.1093/hmg/ddv486] [PMID: 26612202]
[50]
Turton, J.P. Two novel mutations in the POU1F1 gene generate null alleles through different mechanisms leading to combined pituitary hormone deficiency, 2012, 76(3), 387-393.
[http://dx.doi.org/10.1111/j.1365-2265.2011.04236.x]
[51]
Birla, S.; Khadgawat, R.; Jyotsna, V.P.; Jain, V.; Garg, M.K.; Bhalla, A.S.; Sharma, A. Identification of Novel PROP1 and POU1F1 Mutations in Patients with Combined Pituitary Hormone Deficiency. Horm. Metab. Res., 2016, 48(12), 822-827.
[http://dx.doi.org/10.1055/s-0042-117112] [PMID: 27756091]
[52]
Takagi, M.; Kamasaki, H.; Yagi, H.; Fukuzawa, R.; Narumi, S.; Hasegawa, T. A novel heterozygous intronic mutation in POU1F1 is associated with combined pituitary hormone deficiency. Endocr. J., 2017, 64(2), 229-234.
[http://dx.doi.org/10.1507/endocrj.EJ16-0361] [PMID: 27885216]
[53]
Madeira, J.L.; Nishi, M.Y.; Nakaguma, M.; Benedetti, A.F.; Biscotto, I.P.; Fernandes, T.; Pequeno, T.; Figueiredo, T.; Franca, M.M.; Correa, F.A.; Otto, A.P.; Abrão, M.; Miras, M.B.; Santos, S.; Jorge, A.A.; Costalonga, E.F.; Mendonca, B.B.; Arnhold, I.J.; Carvalho, L.R. Molecular analysis of brazilian patients with combined pituitary hormone deficiency and orthotopic posterior pituitary lobe reveals eight different PROP1 alterations with three novel mutations. Clin. Endocrinol. (Oxf.), 2017, 87(6), 725-732.
[http://dx.doi.org/10.1111/cen.13430] [PMID: 28734020]
[54]
Dusatkova, P.; Pfäffle, R.; Brown, M.R.; Akulevich, N.; Arnhold, I.J.; Kalina, M.A.; Kot, K.; Krzisnik, C.; Lemos, M.C.; Malikova, J.; Navardauskaite, R.; Obermannova, B.; Pribilincova, Z.; Sallai, A.; Stipancic, G.; Verkauskiene, R.; Cinek, O.; Blum, W.F.; Parks, J.S.; Austerlitz, F.; Lebl, J. Genesis of two most prevalent PROP1 gene variants causing combined pituitary hormone deficiency in 21 populations. Eur. J. Hum. Genet., 2016, 24(3), 415-420.
[http://dx.doi.org/10.1038/ejhg.2015.126] [PMID: 26059845]
[55]
Ziemnicka, K.; Budny, B.; Drobnik, K.; Baszko-Błaszyk, D.; Stajgis, M.; Katulska, K.; Waśko, R.; Wrotkowska, E.; Słomski, R.; Ruchała, M. Two coexisting heterozygous frameshift mutations in PROP1 are responsible for a different phenotype of combined pituitary hormone deficiency. J. Appl. Genet., 2016, 57(3), 373-381.
[http://dx.doi.org/10.1007/s13353-015-0328-z] [PMID: 26608600]
[56]
Elizabeth, M.; Hokken-Koelega, A.C.S.; Schuilwerve, J.; Peeters, R.P.; Visser, T.J.; de Graaff, L.C.G. Genetic screening of regulatory regions of pituitary transcription factors in patients with idiopathic pituitary hormone deficiencies. Pituitary, 2018, 21(1), 76-83.
[http://dx.doi.org/10.1007/s11102-017-0850-6] [PMID: 29255988]
[57]
Bechtold-Dalla Pozza, S.; Hiedl, S.; Roeb, J.; Lohse, P.; Malik, R.E.; Park, S.; Durán-Prado, M.; Rhodes, S.J. A recessive mutation resulting in a disabling amino acid substitution (T194R) in the LHX3 homeodomain causes combined pituitary hormone deficiency. Horm. Res. Paediatr., 2012, 77(1), 41-51.
[http://dx.doi.org/10.1159/000335929] [PMID: 22286346]
[58]
Ahern, S.; Daniels, M.; Bhangoo, A. LHX3 deficiency presenting in the United States with severe developmental delay in a child of Syrian refugee parents. Endocrinol. Diabetes Metab. Case Rep., 2018, 2018, 18-0079.
[http://dx.doi.org/10.1530/EDM-18-0079] [PMID: 30481152]
[59]
Bonfig, W.; Krude, H.; Schmidt, H. A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck-a case report and review of the literature. Eur. J. Pediatr., 2011, 170(8), 1017-1021.
[http://dx.doi.org/10.1007/s00431-011-1393-x] [PMID: 21249393]
[60]
Sobrier, M.L.; Brachet, C.; Vié-Luton, M.P.; Perez, C.; Copin, B.; Legendre, M.; Heinrichs, C.; Amselem, S. Symptomatic heterozygotes and prenatal diagnoses in a nonconsanguineous family with syndromic combined pituitary hormone deficiency resulting from two novel LHX3 mutations. J. Clin. Endocrinol. Metab., 2012, 97(3), E503-E509.
[http://dx.doi.org/10.1210/jc.2011-2095] [PMID: 22238406]
[61]
Arnhold, I.J.; França, M.M.; Carvalho, L.R.; Mendonca, B.B.; Jorge, A.A. Role of GLI2 in hypopituitarism phenotype. J. Mol. Endocrinol., 2015, 54(3), R141-R150.
[http://dx.doi.org/10.1530/JME-15-0009] [PMID: 25878059]
[62]
Babu, D. Novel GLI2 mutations identified in patients with Combined Pituitary Hormone Deficiency (CPHD): Evidence for a pathogenic effect by functional characterization. Clin. Endocrinol. (Oxf.), 2018.
[http://dx.doi.org/10.1111/cen.13914] [PMID: 30548673]
[63]
Flemming, G.M.; Klammt, J.; Ambler, G.; Bao, Y.; Blum, W.F.; Cowell, C.; Donaghue, K.; Howard, N.; Kumar, A.; Sanchez, J.; Stobbe, H.; Pfäffle, R.W. Functional characterization of a heterozygous GLI2 missense mutation in patients with multiple pituitary hormone deficiency. J. Clin. Endocrinol. Metab., 2013, 98(3), E567-E575.
[http://dx.doi.org/10.1210/jc.2012-3224] [PMID: 23408573]
[64]
França, M.M.; Jorge, A.A.; Carvalho, L.R.; Costalonga, E.F.; Otto, A.P.; Correa, F.A.; Mendonca, B.B.; Arnhold, I.J. Relatively high frequency of non-synonymous GLI2 variants in patients with congenital hypopituitarism without holoprosencephaly. Clin. Endocrinol. (Oxf.), 2013, 78(4), 551-557.
[http://dx.doi.org/10.1111/cen.12044] [PMID: 22967285]
[65]
Giri, D.; Vignola, M.L.; Gualtieri, A.; Scagliotti, V.; McNamara, P.; Peak, M.; Didi, M.; Gaston-Massuet, C.; Senniappan, S. Novel FOXA2 mutation causes Hyperinsulinism, Hypopituitarism with Craniofacial and Endoderm-derived organ abnormalities. Hum. Mol. Genet., 2017, 26(22), 4315-4326.
[http://dx.doi.org/10.1093/hmg/ddx318] [PMID: 28973288]
[66]
Boda, H. FOXA2 gene mutation in a patient with congenital complex pituitary hormone deficiency. Eur. J. Med. Genet., 2018.
[PMID: 30414530]
[67]
Correa, F.A.; Trarbach, E.B.; Tusset, C.; Latronico, A.C.; Montenegro, L.R.; Carvalho, L.R.; Franca, M.M.; Otto, A.P.; Costalonga, E.F.; Brito, V.N.; Abreu, A.P.; Nishi, M.Y.; Jorge, A.A.; Arnhold, I.J.; Sidis, Y.; Pitteloud, N.; Mendonca, B.B. FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocr. Connect., 2015, 4(2), 100-107.
[http://dx.doi.org/10.1530/EC-15-0015] [PMID: 25759380]
[68]
Raivio, T.; Avbelj, M.; McCabe, M.J.; Romero, C.J.; Dwyer, A.A.; Tommiska, J.; Sykiotis, G.P.; Gregory, L.C.; Diaczok, D.; Tziaferi, V.; Elting, M.W.; Padidela, R.; Plummer, L.; Martin, C.; Feng, B.; Zhang, C.; Zhou, Q.Y.; Chen, H.; Mohammadi, M.; Quinton, R.; Sidis, Y.; Radovick, S.; Dattani, M.T.; Pitteloud, N. Genetic overlap in Kallmann syndrome, combined pituitary hormone deficiency, and septo-optic dysplasia. J. Clin. Endocrinol. Metab., 2012, 97(4), E694-E699.
[http://dx.doi.org/10.1210/jc.2011-2938] [PMID: 22319038]
[69]
Webb, E. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies; 2013, 136
[http://dx.doi.org/10.1093/brain/awt218]
[70]
Takagi, M.; Narumi, S.; Hamada, R.; Hasegawa, Y.; Hasegawa, T. A novel KAL1 mutation is associated with combined pituitary hormone deficiency. Hum. Genome Var., 2014, 1, 14011-14011.
[http://dx.doi.org/10.1038/hgv.2014.11] [PMID: 27081504]
[71]
Simm, F.; Griesbeck, A.; Choukair, D.; Weiß, B.; Paramasivam, N.; Klammt, J.; Schlesner, M.; Wiemann, S.; Martinez, C.; Hoffmann, G.F.; Pfäffle, R.W.; Bettendorf, M.; Rappold, G.A. Identification of SLC20A1 and SLC15A4 among other genes as potential risk factors for combined pituitary hormone deficiency. Genet. Med., 2018, 20(7), 728-736.
[http://dx.doi.org/10.1038/gim.2017.165] [PMID: 29261175]
[72]
He, J.; Fang, Y.; Lin, X.; Zhou, H.; Zhu, S.; Zhang, Y.; Yang, H.; Ye, X. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency. Med. Sci. Monit., 2016, 22, 642-646.
[http://dx.doi.org/10.12659/MSM.894978] [PMID: 26915772]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy