Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Nanoparticles Loaded with a New Thiourea Derivative: Development and In vitro Evaluation Against Leishmania amazonensis

Author(s): Paloma Wetler Meireles, Dandara Paiva Barroso de Souza, Marianne Grilo Rezende, Maria Paula Gonçalves Borsodi, Douglas Escrivani de Oliveira, Luiz Cláudio Rodrigues Pereira da Silva, Alessandra Mendonça Teles de Souza, Gil Mendes Viana, Carlos Rangel Rodrigues, Flavia Almada do Carmo, Valeria Pereira de Sousa, Bartira Rossi-Bergmann and Lucio Mendes Cabral*

Volume 17, Issue 8, 2020

Page: [694 - 702] Pages: 9

DOI: 10.2174/1567201817666200704132348

Price: $65

Abstract

Background: Leishmaniasis is a neglected tropical disease caused by protozoa of the genus Leishmania. Current treatments are restricted to a small number of drugs that display both severe side effects and a potential for parasites to develop resistance. A new N-(3,4-methylenedioxyphenyl)-N'- (2-phenethyl) thiourea compound (thiourea 1) has shown promising in vitro activity against Leishmania amazonensis with an IC50 of 54.14 μM for promastigotes and an IC50 of 70 μM for amastigotes.

Objective: To develop a formulation of thiourea 1 as an oral treatment for leishmaniasis, it was incorporated into Nanoparticles (NPs), a proven approach to provide long-acting drug delivery systems.

Methods: Poly (D,L-Lactic-co-Glycolic Acid) (PLGA) polymeric NPs containing thiourea 1 were obtained through a nanoprecipitation methodology associated with solvent evaporation. The NPs containing thiourea 1 were characterized for Encapsulation Efficiency (EE%), reaction yield (% w/w), surface charge, particle size and morphology by Transmission Electron Microscopy (TEM).

Results: NPs with thiourea 1 showed an improved in vitro leishmanicidal activity with a reduction in its cytotoxicity against macrophages (CC50>100 μg/mL) while preserving its IC50 against intracellular amastigotes (1.46 ± 0.09 μg/mL). This represents a parasite Selectivity Index (SI) of 68.49, which is a marked advancement from the reference drug pentamidine (SI = 30.14).

Conclusion: The results suggest that the incorporation into NPs potentiated the therapeutic effect of thiourea 1, most likely by improving the selective delivery of the drug to the phagocytic cells that are targeted for infection by L. amazonensis. This work reinforces the importance of nanotechnology in the acquisition of new therapeutic alternatives for oral treatments.

Keywords: Leishmaniasis, thiourea, polymeric nanoparticles, PLGA, cytotoxicity, macrophages, amastigotes, promastigotes.

Graphical Abstract
[1]
Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis., 2016, 10(3) e0004349
[http://dx.doi.org/10.1371/journal.pntd.0004349] [PMID: 26937644]
[2]
Van der Auwera, G.; Dujardin, J.C. Species typing in dermal Leishmaniasis. Clin. Microbiol. Rev., 2015, 28(2), 265-294.
[http://dx.doi.org/10.1128/CMR.00104-14] [PMID: 25672782]
[3]
Hermida, M.D.R.; Doria, P.G.; Taguchi, A.M.P.; Mengel, J.O.; dos-Santos, W. Leishmania amazonensis infection impairs dendritic cell migration from the inflammatory site to the draining lymph node. BMC Infect. Dis., 2014, 14, 450.
[http://dx.doi.org/10.1186/1471-2334-14-450] [PMID: 25142021]
[4]
Bates, P.A. Revising Leishmania’s life cycle. Nat. Microbiol., 2018, 3(5), 529-530.
[http://dx.doi.org/10.1038/s41564-018-0154-2] [PMID: 29693656]
[5]
Soulat, D.; Bogdan, C. Function of macrophage and parasite phosphatases in Leishmaniasis. Front. Immunol., 2017, 8, 1838.
[http://dx.doi.org/10.3389/fimmu.2017.01838] [PMID: 29312331]
[6]
Carlsen, E.D.; Liang, Y.; Shelite, T.R.; Walker, D.H.; Melby, P.C.; Soong, L. Permissive and protective roles for neutrophils in Leishmaniasis. Clin. Exp. Immunol., 2015, 182(2), 109-118.
[http://dx.doi.org/10.1111/cei.12674] [PMID: 26126690]
[7]
Salei, N.; Hellberg, L.; Köhl, J.; Laskay, T. Enhanced survival of Leishmania major in neutrophil granulocytes in the presence of apoptotic cells. PLoS One, 2017, 12(2) e0171850
[http://dx.doi.org/10.1371/journal.pone.0171850] [PMID: 28187163]
[8]
Kevric, I.; Cappel, M.A.; Keeling, J.H. New world and old world Leishmania infections: a practical review. Dermatol. Clin., 2015, 33(3), 579-593.
[http://dx.doi.org/10.1016/j.det.2015.03.018] [PMID: 26143433]
[9]
Bañuls, A.L.; Hide, M.; Prugnolle, F. Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv. Parasitol., 2007, 64, 1-109.
[http://dx.doi.org/10.1016/S0065-308X(06)64001-3] [PMID: 17499100]
[10]
Glans, H.; Dotevall, L.; Söbirk, S.K.; Färnert, A.; Bradley, M. Cutaneous, mucocutaneous and visceral Leishmaniasis in Sweden from 1996-2016: a retrospective study of clinical characteristics, treatments and outcomes. BMC Infect. Dis., 2018, 18(1), 632.
[http://dx.doi.org/10.1186/s12879-018-3539-1] [PMID: 30526519]
[11]
Scorza, B.M.; Carvalho, E.M.; Wilson, M.E. Cutaneous manifestations of human and murine Leishmaniasis. Int. J. Mol. Sci., 2017, 18(6) E1296
[http://dx.doi.org/10.3390/ijms18061296] [PMID: 28629171]
[12]
Patel, T.A.; Scadding, G.K.; Phillips, D.E.; Lockwood, D.N. Case report: old world mucosal leishmaniasis: report of five imported cases to the hospital for tropical diseases, London, United Kingdom. Am. J. Trop. Med. Hyg., 2017, 97(4), 1116-1119.
[http://dx.doi.org/10.4269/ajtmh.17-0162] [PMID: 29031288]
[13]
Jervis, S.; Chapman, L.A.C.; Dwivedi, S.; Karthick, M.; Das, A.; Le Rutte, E.A.; Courtenay, O.; Medley, G.F.; Banerjee, I.; Mahapatra, T.; Chaudhuri, I.; Srikantiah, S.; Hollingsworth, T.D. Variations in visceral Leishmaniasis burden, mortality and the pathway to care within Bihar, India. Parasit. Vectors, 2017, 10(1), 601.
[http://dx.doi.org/10.1186/s13071-017-2530-9] [PMID: 29216905]
[14]
Wilson, M.E.; Jeronimo, S.M.B.; Pearson, R.D. Immunopathogenesis of infection with the visceralizing Leishmania species. Microb. Pathog., 2005, 38(4), 147-160.
[http://dx.doi.org/10.1016/j.micpath.2004.11.002] [PMID: 15797810]
[15]
Mokni, M. Cutaneous Leishmaniasis. Ann. Dermatol. Venereol., 2019, 146(3), 232-246.
[http://dx.doi.org/10.1016/j.annder.2019.02.002] [PMID: 30879803]
[16]
Mosleh, I.M.; Schönian, G.; Kanani, K.; Shadfan, B. Leishmania major cutaneous leishmaniasis outbreak in the Jordanian side of the Northern Jordan valley. Pathog. Glob. Health, 2018, 112(1), 22-28.
[http://dx.doi.org/10.1080/20477724.2018.1431191] [PMID: 29392995]
[17]
el-On, J.; Halevy, S.; Grunwald, M.H.; Weinrauch, L. Topical treatment of old world cutaneous Leishmaniasis caused by Leishmania major: a double-blind control study. J. Am. Acad. Dermatol., 1992, 27(2 Pt 1), 227-231.
[http://dx.doi.org/10.1016/0190-9622(92)70175-F] [PMID: 1430361]
[18]
Kumar, R.; Bumb, R.A.; Ansari, N.A.; Mehta, R.D.; Salotra, P. Cutaneous Leishmaniasis caused by Leishmania tropica in Bikaner, India: parasite identification and characterization using molecular and immunologic tools. Am. J. Trop. Med. Hyg., 2007, 76(5), 896-901.
[http://dx.doi.org/10.4269/ajtmh.2007.76.896] [PMID: 17488912]
[19]
Rohoušová, I.; Talmi-Frank, D.; Vlková, M.; Spitzová, T.; Rishpon, K.; Jaffe, C.L.; Volf, P.; Baneth, G.; Ephros, M. Serological evaluation of cutaneous Leishmania tropica infection in Northern Israel. Am. J. Trop. Med. Hyg., 2018, 98(1), 139-141.
[http://dx.doi.org/10.4269/ajtmh.17-0370] [PMID: 29141753]
[20]
Martínez, E.; Le Pont, F.; Torrez, M.; Tellería, J.; Vargas, F.; Muñoz, M.; De Doncker, S.; Dujardin, J.C.; Dujardin, J.P. A new focus of cutaneous Leishmaniasis due to Leishmania amazonensis in a Sub Andean region of Bolivia. Acta Trop., 1998, 71(2), 97-106.
[http://dx.doi.org/10.1016/S0001-706X(98)00049-7] [PMID: 9821459]
[21]
Christensen, S.M.; Belew, A.T.; El-Sayed, N.M.; Tafuri, W.L.; Silveira, F.T.; Mosser, D.M. Host and parasite responses in human diffuse cutaneous Leishmaniasis caused by L. amazonensis. PLoS Negl. Trop. Dis., 2019, 13(3) e0007152
[http://dx.doi.org/10.1371/journal.pntd.0007152] [PMID: 30845223]
[22]
Guimarães, L.H.; Queiroz, A.; Silva, J.A.; Silva, S.C.; Magalhães, V.; Lago, E.L.; Machado, P.R.L.; Bacellar, O.; Wilson, M.E.; Beverley, S.M.; Carvalho, E.M.; Schriefer, A. Atypical manifestations of cutaneous Leishmaniasis in a region endemic for Leishmania braziliensis: clinical, immunological and parasitological aspects. PLoS Negl. Trop. Dis., 2016, 10(12) e0005100
[http://dx.doi.org/10.1371/journal.pntd.0005100] [PMID: 27906988]
[23]
de Moura, T.R.; Novais, F.O.; Oliveira, F.; Clarêncio, J.; Noronha, A.; Barral, A.; Brodskyn, C.; de Oliveira, C.I. Toward a novel experimental model of infection to study American cutaneous Leishmaniasis caused by Leishmania braziliensis. Infect. Immun., 2005, 73(9), 5827-5834.
[http://dx.doi.org/10.1128/IAI.73.9.5827-5834.2005] [PMID: 16113301]
[24]
Ehman, E.C.; Johnson, G.B.; Villanueva-meyer, J.E.; Cha, S.; Leynes, A.P.; Eric, P.; Larson, Z.; Hope, T.A. Meglumine antimoniate is more effective than sodium stibogluconate in the treatment of cutaneous Leishmaniasis. J. Dermatolog. Treat., 2017, 46, 1247-1262.
[http://dx.doi.org/10.1002/jmri.25711.PET/MRI]
[25]
Frézard, F.; Demicheli, C.; Kato, K.C.; Reis, P.G.; Lizarazo-Jaimes, E.H. Chemistry of antimony-based drugs in biological systems and studies of their mechanism of action. Rev. Inorg. Chem., 2013, 33, 1-12.
[http://dx.doi.org/10.1515/revic-2012-0006]
[26]
Kato, K.C.; Morais-Teixeira, E.; Reis, P.G.; Silva-Barcellos, N.M.; Salaün, P.; Campos, P.P.; Dias Corrêa-Junior, J.; Rabello, A.; Demicheli, C.; Frézard, F. Hepatotoxicity of pentavalent antimonial drug: possible role of residual Sb(III) and protective effect of ascorbic acid. Antimicrob. Agents Chemother., 2014, 58(1), 481-488.
[http://dx.doi.org/10.1128/AAC.01499-13] [PMID: 24189251]
[27]
Sundar, S.; More, D.K.; Singh, M.K.; Singh, V.P.; Sharma, S.; Makharia, A.; Kumar, P.C.; Murray, H.W. Failure of pentavalent antimony in visceral Leishmaniasis in India: report from the center of the Indian epidemic. Clin. Infect. Dis., 2000, 31(4), 1104-1107.
[http://dx.doi.org/10.1086/318121] [PMID: 11049798]
[28]
Machado, P.R.L.; Rosa, M.E.A.; Guimarães, L.H.; Prates, F.V.O.; Queiroz, A.; Schriefer, A.; Carvalho, E.M. Treatment of disseminated Leishmaniasis with liposomal amphotericin B. Clin. Infect. Dis., 2015, 61(6), 945-949.
[http://dx.doi.org/10.1093/cid/civ416] [PMID: 26048961]
[29]
Wortmann, G.; Zapor, M.; Ressner, R.; Fraser, S.; Hartzell, J.; Pierson, J.; Weintrob, A.; Magill, A. Lipsosomal amphotericin B for treatment of cutaneous Leishmaniasis. Am. J. Trop. Med. Hyg., 2010, 83(5), 1028-1033.
[http://dx.doi.org/10.4269/ajtmh.2010.10-0171] [PMID: 21036832]
[30]
Gadelha, E.P.N.; Ramasawmy, R.; da Costa Oliveira, B.; Morais Rocha, N.; de Oliveira Guerra, J.A.; Allan Villa Rouco da Silva, G.; Gabrielle Ramos de Mesquita, T.; Chrusciak Talhari Cortez, C.; Chrusciak Talhari, A. An open label randomized clinical trial comparing the safety and effectiveness of one, two or three weekly pentamidine isethionate doses (seven milligrams per kilogram) in the treatment of cutaneous Leishmaniasis in the Amazon region. PLoS Negl. Trop. Dis., 2018, 12(10) e0006850
[http://dx.doi.org/10.1371/journal.pntd.0006850] [PMID: 30379814]
[31]
Sosa, N.; Pascale, J.M.; Jiménez, A.I.; Norwood, J.A.; Kreishman-Detrick, M.; Weina, P.J.; Lawrence, K.; McCarthy, W.F.; Adams, R.C.; Scott, C.; Ransom, J.; Tang, D.; Grogl, M. Topical paromomycin for new world cutaneous Leishmaniasis. PLoS Negl. Trop. Dis., 2019, 13(5) e0007253
[http://dx.doi.org/10.1371/journal.pntd.0007253] [PMID: 31048871]
[32]
Shyam, M.D.S. FRCP; FAMS; FNA; FASc; FNASc; Jaya Chakravarty, M. An update on pharmacotherapy for Leishmaniasis. Expert Opin. Pharmacother., 2015, 16, 237-252.
[http://dx.doi.org/10.1517/14656566.2015.973850]
[33]
Murray, H.W.; Berman, J.D.; Davies, C.R.; Saravia, N.G. Advances in Leishmaniasis. Lancet, 2005, 366(9496), 1561-1577.
[http://dx.doi.org/10.1016/S0140-6736(05)67629-5] [PMID: 16257344]
[34]
Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in Leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis., 2017, 11(12) e0006052
[http://dx.doi.org/10.1371/journal.pntd.0006052] [PMID: 29240765]
[35]
Handler, M.Z.; Patel, P.A.; Kapila, R.; Al-Qubati, Y.; Schwartz, R.A.; Frcp, M.P.H. Cutaneous and mucocutaneous Leishmaniasis: differential diagnosis, diagnosis, histopathology, and management. J. Am. Acad. Dermatol., 2015, 73(6), 911-928.
[http://dx.doi.org/10.1016/j.jaad.2014.09.014] [PMID: 26568336]
[36]
Diseases and projects about Leishmaniasis.. 2019.https://www.dndi.org/diseasesprojects/leishmaniasis
[37]
Don, R.; Ioset, J.R. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology, 2014, 141(1), 140-146.
[http://dx.doi.org/10.1017/S003118201300142X] [PMID: 23985066]
[38]
Uliana, S.R.B.; Trinconi, C.T.; Coelho, A.C. Chemotherapy of Leishmaniasis: present challenges. Parasitology, 2018, 145(4), 464-480.
[http://dx.doi.org/10.1017/S0031182016002523] [PMID: 28103966]
[39]
[40]
Viana, G.M.; Soares, D.C.; Santana, M.V.; do Amaral, L.H.; Meireles, P.W.; Nunes, R.P.; da Silva, L.C.R.P.; Aguiar, L.C.S.; Rodrigues, C.R.; de Sousa, V.P.; Castro, H.C.; Abreu, P.A.; Sathler, P.C.; Saraiva, E.M.; Cabral, L.M. Antileishmanial thioureas: synthesis, biological activity and in silico evaluations of new promising derivatives. Chem. Pharm. Bull. (Tokyo), 2017, 65(10), 911-919.
[http://dx.doi.org/10.1248/cpb.c17-00293] [PMID: 28966275]
[41]
Kharkar, P.S.; Warrier, S.; Gaud, R.S. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med. Chem., 2014, 6(3), 333-342.
[http://dx.doi.org/10.4155/fmc.13.207] [PMID: 24575968]
[42]
Gülkok, Y.; Biçer, T.; Onurdaǧ, F.K.; Özgen, S.; Şahin, M.F.; Doǧruer, D.S. Synthesis of some new urea and thiourea derivatives and evaluation of their antimicrobial activities. Turk. J. Chem., 2012, 36, 279-291.
[http://dx.doi.org/10.3906/kim-1106-54]
[43]
Maddinedi, S.B.; Sonamuthu, J.; SuzuK Yildiz, S.; Han, G.; Cai, Y.; Gao, J.; Ni, Q.; Yao, J.; Yao, J. Silk sericin induced fabrication of reduced graphene oxide and its in-vitro cytotoxicity, photothermal evaluation. J. Photochem. Photobiol. B, 2018, 186, 189-196.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.07.020] [PMID: 30075424]
[44]
Asthana, S.; Gupta, P.K.; Chaurasia, M.; Dube, A.; Chourasia, M.K. Polymeric colloidal particulate systems: intelligent tools for intracellular targeting of antileishmanial cargos. Expert Opin. Drug Deliv., 2013, 10(12), 1633-1651.
[http://dx.doi.org/10.1517/17425247.2013.838216] [PMID: 24147603]
[45]
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.; Das, P. Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv., 2015, 22(3), 383-388.
[http://dx.doi.org/10.3109/10717544.2014.891271] [PMID: 24601828]
[46]
Bruni, N.; Stella, B.; Giraudo, L.; Della Pepa, C.; Gastaldi, D.; Dosio, F. Nanostructured delivery systems with improved leishmanicidal activity: a critical review. Int. J. Nanomedicine, 2017, 12, 5289-5311.
[http://dx.doi.org/10.2147/IJN.S140363] [PMID: 28794624]
[47]
Maddinedi, S.B.; Mandal, B.K.; Anna, K.K. Tyrosine assisted size controlled synthesis of silver nanoparticles and their catalytic, in-vitro cytotoxicity evaluation. Environ. Toxicol. Pharmacol., 2017, 51, 23-29.
[http://dx.doi.org/10.1016/j.etap.2017.02.020] [PMID: 28262509]
[48]
Maddinedi, S.B. Green synthesis of Au-Cu2-xSe heterodimer nanoparticles and their in-vitro cytotoxicity, photothermal assay. Environ. Toxicol. Pharmacol., 2017, 53, 29-33.
[http://dx.doi.org/10.1016/j.etap.2017.05.006] [PMID: 28501781]
[49]
Maddinedi, S.B.; Mandal, B.K.; Anna, K.K. Environment friendly approach for size controllable synthesis of biocompatible silver nanoparticles using diastase. Environ. Toxicol. Pharmacol., 2017, 49, 131-136.
[http://dx.doi.org/10.1016/j.etap.2016.11.019] [PMID: 27992806]
[50]
Maddinedi, S.B.; Mandal, B.K.; Pappu, G.; Anna, K.K.; Ghosh, A.R.; Reddy, P.S. Synthesis of CuO nanosheets and its applications towards catalysis and antimicrobial activity. J. Indian Chem. Soc., 2015, 92, 331-336.
[51]
Maddinedi, S.B.; Mandal, B.K.; Ranjan, S.; Dasgupta, N. Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Advances, 2015, 5, 26727-26733.
[http://dx.doi.org/10.1039/C5RA03117F]
[52]
Maddinedi, S.B.; Mandal, B.K.; Maddili, S.K. Biofabrication of size controllable silver nanoparticles - A green approach. J. Photochem. Photobiol. B, 2017, 167, 236-241.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.01.003] [PMID: 28088104]
[53]
Maddinedi, S.B.; Mandal, B.K.; Patil, S.H.; Andhalkar, V.V.; Ranjan, S.; Dasgupta, N. Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J. Photochem. Photobiol. B, 2017, 166, 252-258.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.008] [PMID: 28011435]
[54]
de Abreu, L.C.; Todaro, V.; Sathler, P.C.; da Silva, L.C.R.P.; do Carmo, F.A.; Costa, C.M.; Toma, H.K.; Castro, H.C.; Rodrigues, C.R.; de Sousa, V.P.; Cabral, L.M. development and characterization of nisin nanoparticles as potential alternative for the recurrent vaginal candidiasis treatment. AAPS PharmSciTech, 2016, 17(6), 1421-1427.
[http://dx.doi.org/10.1208/s12249-016-0477-3] [PMID: 26810491]
[55]
Chan, J.M.; Zhang, L.; Yuet, K.P.; Liao, G.; Rhee, J.W.; Langer, R.; Farokhzad, O.C. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials, 2009, 30(8), 1627-1634.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.013] [PMID: 19111339]
[56]
de Almeida Borges, V.R.; Tavares, M.R.; da Silva, J.H.; Tajber, L.; Boylan, F.; Ribeiro, A.F.; Nasciutti, L.E.; Cabral, L.M.; de Sousa, V.P. Development and characterization of poly(lactic-co-glycolic) acid nanoparticles loaded with copaiba oleoresin. Pharm. Dev. Technol., 2018, 23(4), 343-350.
[http://dx.doi.org/10.1080/10837450.2017.1290107] [PMID: 28145793]
[57]
de Carvalho, R.F.; Ribeiro, I.F.; Miranda-Vilela, A.L.; de Souza Filho, J.; Martins, O.P. Cintra e Silva, Dde.O.; Tedesco, A.C.; Lacava, Z.G.; Báo, S.N.; Sampaio, R.N. Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp. Parasitol., 2013, 135(2), 217-222.
[http://dx.doi.org/10.1016/j.exppara.2013.07.008] [PMID: 23891944]
[58]
Sathler, P.C.; Lourenço, A.L.; Rodrigues, C.R.; da Silva, L.C.R.P.; Cabral, L.M.; Jordão, A.K.; Cunha, A.C.; Vieira, M.C.B.; Ferreira, V.F.; Carvalho-Pinto, C.E.; Kang, H.C.; Castro, H.C. In vitro and in vivo analysis of the antithrombotic and toxicological profile of new antiplatelets N-acylhydrazone derivatives and development of nanosystems: determination of novel NAH derivatives antiplatelet and nanotechnological approach. Thromb. Res., 2014, 134(2), 376-383.
[http://dx.doi.org/10.1016/j.thromres.2014.05.009] [PMID: 24877647]
[59]
Günday Türeli, N.; Torge, A.; Juntke, J.; Schwarz, B.C.; Schneider-Daum, N.; Türeli, A.E.; Lehr, C.M.; Schneider, M. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur. J. Pharm. Biopharm., 2017, 117, 363-371.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.032] [PMID: 28476373]
[60]
Abulateefeh, S.R.; Spain, S.G.; Thurecht, K.J.; Aylott, J.W.; Chan, W.C.; Garnett, M.C.; Alexander, C. Enhanced uptake of nanoparticle drug carriers via a thermoresponsive shell enhances cytotoxicity in a cancer cell line. Biomater. Sci., 2013, 1, 434-442.
[http://dx.doi.org/10.1039/c2bm00184e]
[61]
Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine (Lond.), 2010, 6(2), 324-333.
[http://dx.doi.org/10.1016/j.nano.2009.10.004] [PMID: 19857606]
[62]
Mayol, L.; Serri, C.; Menale, C.; Crispi, S.; Piccolo, M.T.; Mita, L.; Giarra, S.; Forte, M.; Saija, A.; Biondi, M.; Mita, D.G. Curcumin loaded PLGA-poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells. Eur. J. Pharm. Biopharm., 2015, 93, 37-45.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.005] [PMID: 25794477]
[63]
Machado, V.O.; Andrade, A.L.; Simon, A.; Rodríguez-Fernández, D.E.; Fabris, J.D.; Domingues, R.Z.; da Silva, R.F.; Silva, T.C.E.; Peixoto, T.L.; dos Santo, C.T. Motta, A. C.; Duek, E. A. R.; Silva, M. B.; Gomes, A. V.; Cabral, L. M.; Carmo, F. A.; Elias, C. N. Development of a novel nano-biomaterial for medical applications. Mater. Res. Express, 2018, 5(12) e125014
[http://dx.doi.org/10.1088/1361-6463/aad7de]
[64]
Van De Ven, H.; Vermeersch, M.; Vandenbroucke, R.E.; Matheeussen, A.; Apers, S.; Weyenberg, W.; Smedt, S.C.; Cos, P.; Maes, L.; Ludwig, A. Intracellular drug delivery in Leishmania-infected macrophages : evaluation of saponin-loaded PLGA nanoparticles. J. Drug Target., 2011, 32, 1-13.
[http://dx.doi.org/10.3109/1061186X.2011.595491] [PMID: 22080813]
[65]
Wisse, E.; Leeuw, A.M. Structural elements determining transport and exchange processes in the liver. Microspheres Drug Ther. Pharm. Immunol. Med. Asp; , 1984, pp. 1-23.
[66]
Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res., 2009, 26(5), 1025-1058.
[http://dx.doi.org/10.1007/s11095-008-9800-3] [PMID: 19107579]
[67]
Chaubey, P.; Mishra, B. Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydr. Polym., 2014, 101, 1101-1108.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.044] [PMID: 24299880]
[68]
Hussain, A.; Ahsan, F. The vagina as a route for systemic drug delivery. J. Control. Release, 2005, 103(2), 301-313.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.034] [PMID: 15763615]
[69]
Gräfe, C.; Weidner, A.; Lühe, M.V.D.; Bergemann, C.; Schacher, F.H.; Clement, J.H.; Dutz, S. Intentional formation of a protein corona on nanoparticles: serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction. Int. J. Biochem. Cell Biol., 2016, 75, 196-202.
[http://dx.doi.org/10.1016/j.biocel.2015.11.005] [PMID: 26556312]
[70]
Barbero, F.; Russo, L.; Vitali, M.; Piella, J.; Salvo, I.; Borrajo, M.L.; Busquets-Fité, M.; Grandori, R.; Bastús, N.G.; Casals, E.; Puntes, V. Formation of the protein corona: the interface between nanoparticles and the immune system. Semin. Immunol., 2017, 34, 52-60.
[http://dx.doi.org/10.1016/j.smim.2017.10.001] [PMID: 29066063]
[71]
Schaffazick, S.R.; Guterres, S.S.; De Lucca Freitas, L.; Pohlmann, A.R. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quim. Nova, 2003, 26, 726-737.
[http://dx.doi.org/10.1590/S0100-40422003000500017]
[72]
Tempone, A.G.; Perez, D.; Rath, S.; Vilarinho, A.L.; Mortara, R.A.; de Andrade, H.F., Jr Targeting Leishmania (L.) chagasi amastigotes through macrophage scavenger receptors: the use of drugs entrapped in liposomes containing phosphatidylserine. J. Antimicrob. Chemother., 2004, 54(1), 60-68.
[http://dx.doi.org/10.1093/jac/dkh281] [PMID: 15163652]
[73]
Van de Ven, H.; Paulussen, C.; Feijens, P.B.; Matheeussen, A.; Rombaut, P.; Kayaert, P.; Van den Mooter, G.; Weyenberg, W.; Cos, P.; Maes, L.; Ludwig, A. PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J. Control. Release, 2012, 161(3), 795-803.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.037] [PMID: 22641062]
[74]
Barichello, J.M.; Morishita, M.; Nagai, T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev. Ind. Pharm., 1999, 25, 471-476.
[http://dx.doi.org/10.1081/ddc-10010219]
[75]
Salama, H.A.; Ghorab, M.; Mahmoud, A.A.; Abdel Hady, M. PLGA nanoparticles as subconjunctival injection for management of glaucoma. AAPS PharmSciTech, 2017, 18(7), 2517-2528.
[http://dx.doi.org/10.1208/s12249-017-0710-8] [PMID: 28224390]
[76]
Boyd, R.D.; Pichaimuthu, S.K.; Cuenat, A. New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering. Colloids Surf. A Physicochem. Eng. Asp., 2011, 387, 35-42.
[http://dx.doi.org/10.1016/j.colsurfa.2011.07.020]
[77]
Shokri, A.; Sharifi, I.; Khamesipour, A.; Nakhaee, N.; Fasihi Harandi, M.; Nosratabadi, J.; Hakimi Parizi, M.; Barati, M. The effect of verapamil on in vitro susceptibility of promastigote and amastigote stages of Leishmania tropica to meglumine antimoniate. Parasitol. Res., 2012, 110(3), 1113-1117.
[http://dx.doi.org/10.1007/s00436-011-2599-6] [PMID: 21847598]
[78]
Nafee, N.; Schneider, M.; Schaefer, U.F.; Lehr, C.M. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int. J. Pharm., 2009, 381(2), 130-139.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.049] [PMID: 19450671]
[79]
Olivier, J.C.; Huertas, R.; Lee, H.J.; Calon, F.; Pardridge, W.M. Synthesis of pegylated immunonanoparticles. Pharm. Res., 2002, 19(8), 1137-1143.
[http://dx.doi.org/10.1023/A:1019842024814] [PMID: 12240939]
[80]
Kreuter, J. Liposomes and nanoparticles as vehicles for antibiotics. In: Springer; , 1991; 19, pp. 224-228.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy