Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nutraceutical Status and Scientific Strategies for Enhancing Production of Omega-3 Fatty Acids from Microalgae and their Role in Healthcare

Author(s): Jitendra Gupta* and Reena Gupta

Volume 21, Issue 15, 2020

Page: [1616 - 1631] Pages: 16

DOI: 10.2174/1389201021666200703201014

Price: $65

Abstract

Adherence to Omega-3 fatty acids (O3FAs) as Nutraceuticals for medicinal applications provides health improvement. The prevention and treatment of diseases with O3FAs hold promise in clinical therapy and significantly reduces the risk of chronic disorders. Polyunsaturated fatty acids (PUFA) O3FAs have beneficial effects in the treatment of cardiovascular disorders, diabetic disease, foetal development, Alzheimer’s disease, retinal problem, growth and brain development of infants and antitumor effects. Association to current analysis promotes the application of algal biomass for production of O3FAs, mode of action, fate, weight management, immune functions, pharmaceutical and therapeutic applications serving potent sources in healthcare management. A search of the literature was conducted in the databases of WHO website, Sci.org, PubMed, academics and Google. The authors performed search strategies and current scenario of O3FAs in health associated disorders. Promising outcomes and future strategies towards O3FAs may play a pivotal role in Nutraceutical industries in the cure of human health in the future.

Keywords: Omega-3 fatty acids, algae, pharmaceutical application, health disorders, nutraceuticals, healthcare.

Graphical Abstract
[1]
Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; Shimizu, T.; Spener, F.; van Meer, G.; VanNieuwenhze, M.S.; White, S.H.; Witztum, J.L.; Dennis, E.A. A comprehensive classification system for lipids. J. Lipid Res., 2005, 46(5), 839-861.
[http://dx.doi.org/10.1194/jlr.E400004-JLR200] [PMID: 15722563]
[2]
Deckelbaum, R.J.; Torrejon, C. The omega-3 fatty acid nutritional landscape: Health benefits and sources. J. Nutr., 2012, 142(3), 587S-591S.
[http://dx.doi.org/10.3945/jn.111.148080] [PMID: 22323763]
[3]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[4]
Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 2016, 8(3), 128.
[http://dx.doi.org/10.3390/nu8030128] [PMID: 26950145]
[5]
Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev., 2010, 68(5), 280-289.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00287.x] [PMID: 20500789]
[6]
Calder, P.C. Very long chain omega-3 (n=3) fatty acids and human health. Eur. J. Lipid Sci. Technol., 2014, 116(10), 1280-1300.
[http://dx.doi.org/10.1002/ejlt.201400025]
[7]
Yang, Z.; Huffman, S.L. Review of fortified food and beverage products for pregnant and lactating women and their impact on nutritional status. Matern. Child Nutr., 2011, 7(3)(Suppl. 3), 19-43.
[http://dx.doi.org/10.1111/j.1740-8709.2011.00350.x] [PMID: 21929634]
[8]
Calder, P.C.; Dangour, A.D.; Diekman, C.; Eilander, A.; Koletzko, B.; Meijer, G.W.; Mozaffarian, D.; Niinikoski, H.; Osendarp, S.J.M.; Pietinen, P.; Schuit, J.; Uauy, R. Essential fats for future health. Proceedings of the 9th Unilever Nutrition Symposium, 26-27 May 2010. Eur. J. Clin. Nutr., 2010, 64(S4)(Suppl. 4), S1-S13.
[http://dx.doi.org/10.1038/ejcn.2010.242] [PMID: 21119686]
[9]
Kris-Etherton, P.M.; Akabas, S.R.; Bales, C.W.; Bistrian, B.; Braun, L.; Edwards, M.S.; Laur, C.; Lenders, C.M.; Levy, M.D.; Palmer, C.A.; Pratt, C.A.; Ray, S.; Rock, C.L.; Saltzman, E.; Seidner, D.L.; Van Horn, L. The need to advance nutrition education in the training of health care professionals and recommended research to evaluate implementation and effectiveness. Am. J. Clin. Nutr., 2014, 99(5)(Suppl.), 1153S-1166S.
[http://dx.doi.org/10.3945/ajcn.113.073502] [PMID: 24717343]
[10]
Adarme-Vega, T.C.; Thomas-Hall, S.R.; Schenk, P.M. Towards sustainable sources for omega-3 fatty acids production. Curr. Opin. Biotechnol., 2014, 26, 14-18.
[http://dx.doi.org/10.1016/j.copbio.2013.08.003] [PMID: 24607804]
[11]
Martins, D.A.; Custódio, L.; Barreira, L.; Pereira, H.; Ben-Hamadou, R.; Varela, J.; Abu-Salah, K.M. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar. Drugs, 2013, 11(7), 2259-2281.
[http://dx.doi.org/10.3390/md11072259] [PMID: 23807546]
[12]
Senanayake, S.P.J.N.; Fichtali, J. Single-cell oils as sources of nutraceutical and specialty lipids: Processing technologies and applications. Nutraceutical and Specialty Lipids and their Co-Products; Shahidi, F., Ed.; CRC Press: Boca Raton, FL, 2006, pp. 251-280.
[13]
Rubio-Rodríguez, N.; Diego De, S.M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innov. Food Sci. Emerg. Technol., 2010, 11(1), 1-12.
[http://dx.doi.org/10.1016/j.ifset.2009.10.006]
[14]
Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 2014, 7(2), 60-72.
[http://dx.doi.org/10.2478/intox-2014-0009] [PMID: 26109881]
[15]
Adarme-Vega, T.C.; Lim, D.K.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact., 2012, 11, 96.
[http://dx.doi.org/10.1186/1475-2859-11-96] [PMID: 22830315]
[16]
Sayeda, A.M.; Ali, G.A.; El-Baz, F.K. Potential production of omega fatty acids from microalgae. Int. J. Pharm. Sci. Rev. Res., 2015, 34(2), 210-215.
[17]
Barman, N.; Satpati, G.G.; SenRoy, S.; Khatoon, N.; Sen, R.; Kanjilal, S.; Prasad, R.B.N.; Pal, R. Mapping algae of sundarban origin as lipid feedstock for potential biodiesel application. J. Algal Biomass Utilit., 2012, 3(2), 42-49.
[18]
Swaaf, M.E.; Rijk, T.C.; Eggink, G.; Sijtsma, L. Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. J. Biotechnol., 1999, 70, 185-192.
[http://dx.doi.org/10.1016/S0168-1656(99)00071-1]
[19]
Eryalcın, K.M.; Ganuza, E.; Atalah, E.; Cruz, M.C.H. Nannochloropsis gaditana and Crypthecodinium cohnii, two microalgae as alternative sources of essential fatty acids in early weaning for gilthead seabream. Hidrobiologica, 2015, 25(2), 193-203.
[20]
Yongmanitchai, W.; Ward, O.P. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol., 1991, 57(2), 419-425.
[http://dx.doi.org/10.1128/AEM.57.2.419-425.1991] [PMID: 2014989]
[21]
Fernández, F.G.; Pérez, J.A.; Sevilla, J.M.; Camacho, F.G.; Grima, E.M. Modeling of Eicosapentaenoic Acid (EPA) production from Phaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter, and solar irradiance. Biotechnol. Bioeng., 2000, 68(2), 173-183.
[http://dx.doi.org/10.1002/(SICI)1097-0290(20000420)68:2<173:AID-BIT6>3.0.CO;2-C] [PMID: 10712733]
[22]
Kumar, A.; Castellano, I.; Patti, F.P.; Palumbo, A.; Buia, M.C. Nitric oxide in marine photosynthetic organisms. Nitric Oxide, 2015, 47, 34-39.
[http://dx.doi.org/10.1016/j.niox.2015.03.001] [PMID: 25795592]
[23]
Guiheneuf, F.; Mimouni, V.; Ulmann, L.; Gerard, T. Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalgae. Pavlova lutheri commonly used in mariculture. J. Exp. Mar. Biol. Ecol., 2009, 369(2), 136-143.
[http://dx.doi.org/10.1016/j.jembe.2008.11.009]
[24]
Qi, K.; Hall, M.; Deckelbaum, R.J. Long-chain polyunsaturated fatty acid accretion in brain. Curr. Opin. Clin. Nutr. Metab. Care, 2002, 5(2), 133-138.
[http://dx.doi.org/10.1097/00075197-200203000-00003] [PMID: 11844978]
[25]
Yaguchi, T.; Tanaka, S.; Yokochi, T.; Nakahara, T.; Higashihara, T. Production of high yields of docosahexaenoic acid by Schizochytrium sp strain SR21. J. Am. Oil Chem., 1997, 74(11), 1431-1434.
[http://dx.doi.org/10.1007/s11746-997-0249-z]
[26]
Suzuki, N.; Koussevitzky, S.; Mittler, R.; Miller, G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ., 2012, 35(2), 259-270.
[http://dx.doi.org/10.1111/j.1365-3040.2011.02336.x] [PMID: 21486305]
[27]
Pérez-Massot, E.; Banakar, R.; Gómez-Galera, S.; Zorrilla-López, U.; Sanahuja, G.; Arjó, G.; Miralpeix, B.; Vamvaka, E.; Farré, G.; Rivera, S.M.; Dashevskaya, S.; Berman, J.; Sabalza, M.; Yuan, D.; Bai, C.; Bassie, L.; Twyman, R.M.; Capell, T.; Christou, P.; Zhu, C. The contribution of transgenic plants to better health through improved nutrition: Opportunities and constraints. Genes Nutr., 2013, 8(1), 29-41.
[http://dx.doi.org/10.1007/s12263-012-0315-5] [PMID: 22926437]
[28]
Roso, G.R.; dos Santos, A.M.; Queiroz, M.I.; Barin, J.S.; Zepka, L.Q.; Jacob-Lopes, E. The econometrics of production of bulk oil and lipid extracted algae in an agroindustrial biorefinery. Curr. Biotechnol., 2015, 4(4), 547-553.
[http://dx.doi.org/10.2174/2211550104666150911191836]
[29]
Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol., 2004, 65(6), 635-648.
[http://dx.doi.org/10.1007/s00253-004-1647-x] [PMID: 15300417]
[30]
Minhas, A.K.; Hodgson, P.; Barrow, C.J.; Adholeya, A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front. Microbiol., 2016, 7, 546.
[http://dx.doi.org/10.3389/fmicb.2016.00546] [PMID: 27199903]
[31]
Nabavi, S.F.; Bilotto, S.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Omega-3 polyunsaturated fatty acids and cancer: Lessons learned from clinical trials. Cancer Metastasis Rev., 2015, 34(3), 359-380.
[http://dx.doi.org/10.1007/s10555-015-9572-2] [PMID: 26227583]
[32]
Ruiz-Lopez, N.; Haslam, R.P.; Napier, J.A.; Sayanova, O. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J., 2014, 77(2), 198-208.
[http://dx.doi.org/10.1111/tpj.12378] [PMID: 24308505]
[33]
Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv., 2011, 29(5), 483-501.
[http://dx.doi.org/10.1016/j.biotechadv.2011.05.016] [PMID: 21672617]
[34]
Khozin-Goldberg, I.; Iskandarov, U.; Cohen, Z. LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Appl. Microbiol. Biotechnol., 2011, 91(4), 905-915.
[http://dx.doi.org/10.1007/s00253-011-3441-x] [PMID: 21720821]
[35]
Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr., 2014, 2(5), 443-463.
[http://dx.doi.org/10.1002/fsn3.121] [PMID: 25473503]
[36]
Borowitzka, M.A. High-value products from microalgae their development and commercialization. J. Appl. Phycol., 2013, 25(3), 743-756.
[http://dx.doi.org/10.1007/s10811-013-9983-9]
[37]
Klok, A.J.; Lamers, P.P.; Martens, D.E.; Draaisma, R.B.; Wijffels, R.H. Edible oils from microalgae: Insights in TAG accumulation. Trends Biotechnol., 2014, 32(10), 521-528.
[http://dx.doi.org/10.1016/j.tibtech.2014.07.004] [PMID: 25168414]
[38]
Wen, Z.Y.; Chen, F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv., 2003, 21(4), 273-294.
[http://dx.doi.org/10.1016/S0734-9750(03)00051-X] [PMID: 14499126]
[39]
Singh, J.; Gu, S. Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev., 2010, 14(9), 2596-2610.
[http://dx.doi.org/10.1016/j.rser.2010.06.014]
[40]
Ji, X.J.; Ren, L.J.; Huang, H. Omega-3 biotechnology: A green and sustainable process for omega-3 fatty acids production. Front. Bioeng. Biotechnol., 2015, 3, 158.
[http://dx.doi.org/10.3389/fbioe.2015.00158] [PMID: 26528474]
[41]
Bigogno, C.; Khozin-Goldberg, I.; Boussiba, S.; Vonshak, A.; Cohen, Z. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry, 2002, 60(5), 497-503.
[http://dx.doi.org/10.1016/S0031-9422(02)00100-0] [PMID: 12052516]
[42]
Hashmi, S.I.; Satwadhar, P.N.; Khotpal, R.R.; Deshpande, K.K.; Syed, K.A.; Vibhuta, B.P. Rapeseed meal nutraceuticals. J. Oilseed Brassica, 2010, 1(2), 43-54.
[43]
Venkataraman, L.V.; Somasekaran, T.; Becker, E.W. Replacement value of blue-green alga (Spirulina platensis) for fishmeal and a vitamin-mineral premix for broiler chicks. Br. Poult. Sci., 1994, 35(3), 373-381.
[http://dx.doi.org/10.1080/00071669408417702] [PMID: 7953781]
[44]
Becker, E.W. Microalgae: Biotechnology and microbiology, Cambridge; Cambridge University Press: U.K , 1994.
[45]
Parson, T.R.; Stephens, K.; Strickland, J.D.H. On the chemical composition of eleven species of marine phytoplankters. J. Fish. Res. Board Can., 1961, 18(6), 1001-1016.
[http://dx.doi.org/10.1139/f61-063]
[46]
Chakraborty, S.; Santra, S.C. Biochemical composition of eight benthic algae collected from Sunderban. Ind. J. Mar. Sci., 2008, 37(3), 329-332.
[47]
Brown, M.R. The amino acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol., 1991, 145(1), 79-99.
[http://dx.doi.org/10.1016/0022-0981(91)90007-J]
[48]
Ricketts, T.R. On the chemical composition of some unicellular algae. Phytochemistry, 1966, 5(1), 66-76.
[http://dx.doi.org/10.1016/S0031-9422(00)85082-7]
[49]
Roy, S.S.; Pal, R. Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics. Proc. Zool. Soc., 2015, 68(1), 1-8.
[http://dx.doi.org/10.1007/s12595-013-0089-9]
[50]
Mimouni, V.; Ulmann, L.; Pasquet, V.; Mathieu, M.; Picot, L.; Bougaran, G.; Cadoret, J.P.; Morant-Manceau, A.; Schoefs, B. The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr. Pharm. Biotechnol., 2012, 13(15), 2733-2750.
[http://dx.doi.org/10.2174/138920112804724828] [PMID: 23072388]
[51]
Ben-Amotz, A. Industrial production of microalgal cell-mass and secondary products: Major industrial species: Dunaliella. Hand Book of Microalgal Culture Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell: Oxford, 2004, pp. 273-280.
[52]
Guschina, I.A.; Harwood, J.L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res., 2006, 45(2), 160-186.
[http://dx.doi.org/10.1016/j.plipres.2006.01.001] [PMID: 16492482]
[53]
Pal, D.; Khozin-Goldberg, I.; Cohen, Z.; Boussiba, S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol., 2011, 90(4), 1429-1441.
[http://dx.doi.org/10.1007/s00253-011-3170-1] [PMID: 21431397]
[54]
Tatsuzawa, H.; Takizawa, E. Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry, 1995, 40(2), 397-400.
[http://dx.doi.org/10.1016/0031-9422(95)00327-4]
[55]
Sushchik, N.N.; Kalacheva, G.S.; Zhila, N.O. A temperature dependence of the intra- and extracellular fatty-acid composition of green algae and cyanobacterium. Russ. J. Plant Physiol., 2003, 50, 374-380.
[http://dx.doi.org/10.1023/A:1023830405898]
[56]
Zhu, C.J.; Lee, Y.K.; Chao, T.M. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J. Appl. Phycol., 1997, 9(2), 451-457.
[http://dx.doi.org/10.1023/A:1007973319348]
[57]
Thompson, G.A., Jr Lipids and membrane function in green algae. Biochim. Biophys. Acta, 1996, 1302(1), 17-45.
[http://dx.doi.org/10.1016/0005-2760(96)00045-8] [PMID: 8695653]
[58]
Azachi, M.; Sadka, A.; Fisher, M.; Goldshlag, P.; Gokhman, I.; Zamir, A. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol., 2002, 129(3), 1320-1329.
[http://dx.doi.org/10.1104/pp.001909] [PMID: 12114585]
[59]
Zhu, L.; Zhang, X.; Ji, L. Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem., 2007, 42(2), 210-214.
[http://dx.doi.org/10.1016/j.procbio.2006.08.002]
[60]
Liu, Z.Y.; Wang, G.C.; Zhou, B.C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol., 2008, 99(11), 4717-4722.
[http://dx.doi.org/10.1016/j.biortech.2007.09.073] [PMID: 17993270]
[61]
Carvalho, A.P.; Malcata, F.X. Optimization of ω-3 fatty acid production by microalgae: Crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar. Biotechnol. (NY), 2005, 7(4), 381-388.
[http://dx.doi.org/10.1007/s10126-004-4047-4] [PMID: 15976941]
[62]
Bandarra, N.M.; Pereira, P.A.; Batista, I.; Vilela, M.H. Fatty acids, sterols and α-tocopherol in Isochrysis galbana. J. Food Lipids, 2003, 10(1), 25-34.
[http://dx.doi.org/10.1111/j.1745-4522.2003.tb00003.x]
[63]
Liang, Y.; Beardall, J.; Heraud, P. Effect of UV radiation on growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Phycologia, 2006, 45(6), 605-615.
[http://dx.doi.org/10.2216/04-61.1]
[64]
Solovchenko, A.E.; Merzlyak, M.N. Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ. J. Plant Physiol., 2008, 55(6), 719-737.
[http://dx.doi.org/10.1134/S1021443708060010]
[65]
Ahlgren, G.; Gustafsson, I.B.; Boberg, M. Fatty acid content and chemical composition of fresh water microalgae. J. Phycol., 1992, 28, 37-50.
[http://dx.doi.org/10.1111/j.0022-3646.1992.00037.x]
[66]
Rismani, S.; Shariati, M. Changes of the total lipid and omega-3 fatty acid contents in two microalgae Dunaliella salina and Chlorella vulgaris under salt stress. Braz. Arch. Biol. Technol., 2017, 60, 1-11.
[http://dx.doi.org/10.1590/1678-4324-2017160555]
[67]
Paliwal, C.; Mitra, M.; Bhayani, K.; Bharadwaj, S.V.V.; Ghosh, T.; Dubey, S.; Mishra, S. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol., 2017, 244(Pt 2), 1216-1226.
[http://dx.doi.org/10.1016/j.biortech.2017.05.058] [PMID: 28552566]
[68]
Singh, R.; Upadhyay, A.K.; Chandra, P.; Singh, D.P. Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour. Technol., 2018, 270, 489-497.
[http://dx.doi.org/10.1016/j.biortech.2018.09.065] [PMID: 30245319]
[69]
Khan, F.; Mei, HuChun; Khan, N. Bioengineered plants can be a useful source of moega-3 fatty acids. In: Biomed Res., Inter; , 2017. Article ID 7348919
[71]
FAO. The State of World Fisheries and Aquaculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010, pp. 1-218.
[72]
Lakra, N.; Mahmood, S.; Marwal, A.; Sudheep, N.M.; Anwar, K. Bioengineered Plants Can Be an Alternative Source of Omega-3 Fatty Acids for Human Health: Phytochemistry and molecular aspects, K.R. Hakeem; Nature, S. ., Ed.; Hakeem Plant and Human Health; Switzerland, 2019, Vol. 2, pp. 361-382.
[http://dx.doi.org/10.1007/978-3-030-03344-6_16]
[73]
Napier, J.A.; Usher, S.; Haslam, R.P.; Ruiz-Lopez, N.; Sayanova, O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur. J. Lipid Sci. Technol., 2015, 117(9), 1317-1324.
[http://dx.doi.org/10.1002/ejlt.201400452] [PMID: 26900346]
[76]
Jun-Ji, X.; Amaro, R.D. Microbial lipid biotechnology to produce polyunsaturated fatty acids. Trends Biotechnol., 2020, 38(8), 1-3.
[77]
Aita, B.C.; Spannemberg, S.S.; Kuhn, R.C.; Mazutti, M.A. Production of polyunsaturated fatty acids by solid state fermentation: Principles and Applications of Fermentation Technology Kuila, A; Sharma, V., Ed.; Scrivener Publishing LLC, 2018, pp. 217-237.
[http://dx.doi.org/10.1002/9781119460381.ch12]
[78]
Naveena, K.C. Ramalingappa. Production of Polyunsaturated Fatty Acids (PUFAs) from microbes and their secondary metabolites. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7(12), 2680-2689.
[http://dx.doi.org/10.20546/ijcmas.2018.712.304]
[79]
Lopes da Silva, T.; Moniz, P.; Silva, C.; Reis, A. The dark side of microalgae biotechnology: A heterotrophic biorefinery platform directed to ω-3 rich lipid production. Microorganisms, 2019, 7(12), 1-21.
[http://dx.doi.org/10.3390/microorganisms7120670] [PMID: 31835511]
[80]
Cuellar-Bermudez, S.P.; Aguilar-Hernandez, I.; Cardenas-Chavez, D.L.; Ornelas-Soto, N.; Romero-Ogawa, M.A.; Parra-Saldivar, R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol., 2015, 8(2), 190-209.
[http://dx.doi.org/10.1111/1751-7915.12167] [PMID: 25223877]
[81]
Dillon, J.T.; Aponte, J.C.; Tarozo, R.; Huang, Y. Purification of omega-3 polyunsaturated fatty acids from fish oil using silver-thiolate chromatographic material and high performance liquid chromatography. J. Chromatogr. A, 2013, 1312, 18-25.
[http://dx.doi.org/10.1016/j.chroma.2013.08.064] [PMID: 24034136]
[82]
Seals, D.R. Translational physiology: From molecules to public health. J. Physiol., 2013, 591(14), 3457-3469.
[http://dx.doi.org/10.1113/jphysiol.2013.253195] [PMID: 23732641]
[83]
Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol., 2011, 23, 543-597.
[http://dx.doi.org/10.1007/s10811-010-9632-5]
[84]
Chang, C.L.; Deckelbaum, R.J. Omega-3 fatty acids: mechanisms underlying ‘protective effects’ in atherosclerosis. Curr. Opin. Lipidol., 2013, 24(4), 345-350.
[http://dx.doi.org/10.1097/MOL.0b013e3283616364] [PMID: 23594712]
[85]
Skulas-Ray, A.C.; Kris-Etherton, P.M.; Harris, W.S.; Vanden Heuvel, J.P.; Wagner, P.R.; West, S.G. Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am. J. Clin. Nutr., 2011, 93(2), 243-252.
[http://dx.doi.org/10.3945/ajcn.110.003871] [PMID: 21159789]
[86]
Barter, P.; Ginsberg, H.N. Effectiveness of combined statin plus omega-3 fatty acid therapy for mixed dyslipidemia. Am. J. Cardiol., 2008, 102(8), 1040-1045.
[http://dx.doi.org/10.1016/j.amjcard.2008.05.056] [PMID: 18929706]
[87]
Biscione, F.; Pignalberi, C.; Totteri, A.; Messina, F.; Altamura, G. Cardiovascular effects of omega-3 free Fatty acids. Curr. Vasc. Pharmacol., 2007, 5(2), 163-172.
[http://dx.doi.org/10.2174/157016107780368334] [PMID: 17430221]
[88]
Gerber, P.A.; Gouni-Berthold, I.; Berneis, K. Omega-3 fatty acids: Role in metabolism and cardiovascular disease. Curr. Pharm. Des., 2013, 19(17), 3074-3093.
[http://dx.doi.org/10.2174/1381612811319170016] [PMID: 23317405]
[89]
Verveniotis, A.; Siasos, G.; Oikonomou, E.; Tsigkou, V.; Papageorgiou, N.; Zaromitidou, M.; Psaltopoulou, T.; Marinos, G.; Deftereos, S.; Vavuranakis, M.; Stefanadis, C.; Papavassiliou, A.G.; Tousoulis, D. The impact of omega 3 fatty acids in atherosclerosis and arterial stiffness: An overview of their actions. Curr. Pharm. Des., 2018, 24(17), 1865-1872.
[http://dx.doi.org/10.2174/1381612824666180321095022] [PMID: 29564974]
[90]
Kabir, M.; Skurnik, G.; Naour, N.; Pechtner, V.; Meugnier, E.; Rome, S.; Quignard-Boulangé, A.; Vidal, H.; Slama, G.; Clément, K.; Guerre-Millo, M.; Rizkalla, S.W. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: A randomized controlled study. Am. J. Clin. Nutr., 2007, 86(6), 1670-1679.
[http://dx.doi.org/10.1093/ajcn/86.5.1670] [PMID: 18065585]
[91]
Doughman, S.D.; Krupanidhi, S.; Sanjeevi, C.B. Omega-3 fatty acids for nutrition and medicine: Considering microalgae oil as a vegetarian source of EPA and DHA. Curr. Diabetes Rev., 2007, 3(3), 198-203.
[http://dx.doi.org/10.2174/157339907781368968] [PMID: 18220672]
[92]
Steiner, A.A.; Ivanov, A.I.; Serrats, J.; Hosokawa, H.; Phayre, A.N.; Robbins, J.R.; Roberts, J.L.; Kobayashi, S.; Matsumura, K.; Sawchenko, P.E.; Romanovsky, A.A. Cellular and molecular bases of the initiation of fever. PLoS Biol., 2006, 4(9)e284
[http://dx.doi.org/10.1371/journal.pbio.0040284] [PMID: 16933973]
[93]
Jing, K.; Wu, T.; Lim, K. Omega-3 polyunsaturated fatty acids and cancer. Anticancer. Agents Med. Chem., 2013, 13(8), 1162-1177.
[http://dx.doi.org/10.2174/18715206113139990319] [PMID: 23919748]
[94]
Ott, J.; Hiesgen, C.; Mayer, K. Lipids in critical care medicine. Prostaglandins Leukot. Essent. Fatty Acids, 2011, 85(5), 267-273.
[http://dx.doi.org/10.1016/j.plefa.2011.04.011] [PMID: 21546231]
[95]
Devi, K.P.; Rajavel, T.; Russo, G.L.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Molecular targets of omega-3 fatty acids for cancer therapy. Anticancer. Agents Med. Chem., 2015, 15(7), 888-895.
[http://dx.doi.org/10.2174/1871520615666150424124606] [PMID: 25909897]
[96]
Huang, Q.; Mo, M.; Zhong, Y.; Yang, Q.; Zhang, J.; Ye, X.; Zhang, L.; Cai, C. The anticancer role of omega-3 polyunsaturated fatty acids was closely associated with the increase in genomic DNA hydroxymethylation. Anticancer. Agents Med. Chem., 2019, 19(3), 330-336.
[http://dx.doi.org/10.2174/1871520618666181018143026] [PMID: 30338745]
[97]
Feng, S.; Zhang, L.; Xie, W.; Kang, Z.; Chen, P. Progress in the role of ω-3 PUFAs in regulating the genesis and development of colorectal cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2019, 44(5), 588-595.
[PMID: 31303624]
[98]
Allard, J.P.; Aghdassi, E.; Mohammed, S.; Raman, M.; Avand, G.; Arendt, B.M.; Jalali, P.; Kandasamy, T.; Prayitno, N.; Sherman, M.; Guindi, M.; Ma, D.W.L.; Heathcote, J.E. Nutritional assessment and hepatic fatty acid composition in Non-Alcoholic Fatty Liver Disease (NAFLD): A cross-sectional study. J. Hepatol., 2008, 48(2), 300-307.
[http://dx.doi.org/10.1016/j.jhep.2007.09.009] [PMID: 18086506]
[99]
SanGiovanni, J.P.; Chew, E.Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res., 2005, 24(1), 87-138.
[http://dx.doi.org/10.1016/j.preteyeres.2004.06.002] [PMID: 15555528]
[100]
Sims-Robinson, C.; Kim, B.; Rosko, A.; Feldman, E.L. How does diabetes accelerate Alzheimer disease pathology? Nat. Rev. Neurol., 2010, 6(10), 551-559.
[http://dx.doi.org/10.1038/nrneurol.2010.130] [PMID: 20842183]
[101]
Tejada, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Omega-3 fatty acids in the management of epilepsy. Curr. Top. Med. Chem., 2016, 16(17), 1897-1905.
[http://dx.doi.org/10.2174/1568026616666160204123107] [PMID: 26845549]
[102]
Kang, J.X.; Gleason, E.D. Omega-3 Fatty acids and hippocampal neurogenesis in depression. CNS Neurol. Disord. Drug Targets, 2013, 12(4), 460-465.
[http://dx.doi.org/10.2174/1871527311312040004] [PMID: 23574158]
[103]
Ajith, T.A. A recent update on the effects of omega-3 fatty acids in Alzheimer’s disease. Curr. Clin. Pharmacol., 2018, 13(4), 252-260.
[http://dx.doi.org/10.2174/1574884713666180807145648] [PMID: 30084334]
[104]
Healy-Stoffel, M.; Levant, B. N-3 (Omega-3) fatty acids: Effects on brain dopamine systems and potential role in the etiology and treatment of neuropsychiatric disorders. CNS Neurol. Disord. Drug Targets, 2018, 17(3), 216-232.
[http://dx.doi.org/10.2174/1871527317666180412153612] [PMID: 29651972]
[105]
Makrides, M. DHA supplementation during the perinatal period and neurodevelopment: Do some babies benefit more than others? Prostaglandins Leukot. Essent. Fatty Acids, 2013, 88(1), 87-90.
[http://dx.doi.org/10.1016/j.plefa.2012.05.004] [PMID: 22698951]
[106]
Mithal, A.; Bonjour, J.P.; Boonen, S.; Burckhardt, P.; Degens, H.; El Hajj Fuleihan, G.; Josse, R.; Lips, P.; Morales Torres, J.; Rizzoli, R.; Yoshimura, N.; Wahl, D.A.; Cooper, C.; Dawson-Hughes, B. IOF CSA Nutrition Working Group. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int., 2013, 24(5), 1555-1566.
[http://dx.doi.org/10.1007/s00198-012-2236-y] [PMID: 23247327]
[107]
Cunnane, S.C.; Chouinard-Watkins, R.; Castellano, C.A.; Barberger-Gateau, P. Docosahexaenoic acid homeostasis, brain aging and Alzheimer’s disease: Can we reconcile the evidence? Prostaglandins Leukot. Essent. Fatty Acids, 2013, 88(1), 61-70.
[http://dx.doi.org/10.1016/j.plefa.2012.04.006] [PMID: 22575581]
[108]
Ayres, A.J.; Robbins, J. Pediatric Therapy Network: Sensory integration and the child: Understanding hidden sensory challenges; Western Psychological Services: Los Angeles, CA, 2005, pp. 27-43.
[109]
Krafft, C.; Neudert, L.; Simat, T.; Salzer, R. Near infrared Raman spectra of human brain lipids. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(7), 1529-1535.
[http://dx.doi.org/10.1016/j.saa.2004.11.017] [PMID: 15820887]
[110]
Bradbury, J. Docosahexaenoic Acid (DHA): An ancient nutrient for the modern human brain. Nutrients, 2011, 3(5), 529-554.
[http://dx.doi.org/10.3390/nu3050529] [PMID: 22254110]
[111]
Dang, R. Nutraceutical for healthy life. Ind. J. Pharm. Edu. Res., 2017, 51(3), S148-S151.
[http://dx.doi.org/10.5530/ijper.51.3s.2]
[112]
Nutraceuticals marketed products https://www.google.com/ search?q=marketed+product [Jan 2, 2020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy