Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Photocatalytic Treatment of Environmental Pollutants using Multilevel- Structure TiO2-based Organic and Inorganic Nanocomposites

Author(s): Jiabai Cai* and Shunxing Li

Volume 7, Issue 3, 2020

Page: [161 - 178] Pages: 18

DOI: 10.2174/2213337207999200701214637

Price: $65

Abstract

Nanostructured materials often exhibit unique physical properties, such as fast carrier transport, subwavelength optical waveguiding, and a high surface-area-to-volume ratio. When the size of a material is reduced to nanoscale dimensions, its physical and chemical properties can change dramatically. In addition, nanostructures offer exciting new opportunities for environmental applications. In this review, we aim to provide an up-to-date summary of recent research related to multifunctional TiO2-based inorganic and organic semiconductor nanomaterials, covering both their synthesis and applications. After a brief introduction of the definition and classification of TiO2-based inorganic and organic semiconductor nanomaterial structures, we discuss various application strategies, such as sewage treatment, heavy metal removal, and the oxidation of alcohols to the corresponding aldehydes. In our previous work, we fabricated a variety of TiO2-based hollow spheres using a diverse range of materials from inorganic semiconductors to organic semiconductors and applied these structures as photocatalysts. Further, the development of these nanostructures may enable numerous applications in the field of environmental technology.

Keywords: Multilevel structure, TiO2, photocatalysis, environment, nanocomposites, photocatalytic.

Graphical Abstract
[1]
Braslavsky, S.E. Glossary of terms used in photochemistry. Pure Appl. Chem., 2007, 79(3), 239-465.
[http://dx.doi.org/10.1351/pac200779030293]
[2]
Rajput, R.S.; Pandey, S.; Bhadauria, S. Status of water pollution in relation to industrialization in Rajasthan. Rev. Environ. Health, 2017, 32(3), 245-252.
[http://dx.doi.org/10.1515/reveh-2016-0069] [PMID: 28384119]
[3]
Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett., 2010, 8(3), 199-216.
[http://dx.doi.org/10.1007/s10311-010-0297-8]
[4]
Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem., 2011, 4(4), 361-377.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.019]
[5]
Lu, Z.; Chang, D.; Ma, J.; Huang, G.; Cai, L.; Zhang, L. Behavior of metal ions in bioelectrochemical systems: A review. J. Power Sources, 2015, 275, 243-260.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.168]
[6]
Chen, G. Electrochemical technologies in wastewater treatment. Separ. Purif. Tech., 2004, 38(1), 11-41.
[http://dx.doi.org/10.1016/j.seppur.2003.10.006]
[7]
Ngah, W.W.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym., 2011, 83(4), 1446-1456.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.004]
[8]
Dialynas, E.; Diamadopoulos, E. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination, 2009, 238(1-3), 302-311.
[http://dx.doi.org/10.1016/j.desal.2008.01.046]
[9]
Abou-Shady, A. Recycling of polluted wastewater for agriculture purpose using electrodialysis: Perspective for large scale application. Chem. Eng. J., 2017, 323, 1-18.
[http://dx.doi.org/10.1016/j.cej.2017.04.083]
[10]
Das, R.; Vecitis, C.D.; Schulze, A.; Cao, B.; Ismail, A.F.; Lu, X.; Chen, J.; Ramakrishna, S. Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev., 2017, 46(22), 6946-7020.
[http://dx.doi.org/10.1039/C6CS00921B] [PMID: 28959815]
[11]
Shen, X.; Wang, Q.; Chen, W.; Pang, Y. One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury (II) removal from aqueous solutions. Appl. Surf. Sci., 2014, 317, 1028-1034.
[http://dx.doi.org/10.1016/j.apsusc.2014.09.033]
[12]
Herrmann, J.M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 1999, 53(1), 115-129.
[http://dx.doi.org/10.1016/S0920-5861(99)00107-8]
[13]
Chenthamarakshan, C.R.; Yang, H.; Ming, Y.; Rajeshwar, K. Photocatalytic reactivity of zinc and cadmium ions in UV-irradiated titania suspensions. J. Electroanal. Chem. (Lausanne Switz.), 2000, 494(2), 79-86.
[http://dx.doi.org/10.1016/S0022-0728(00)00374-0]
[14]
Foster, N.S.; Lancaster, A.N.; Noble, R.D.; Koval, C.A. Effect of organics on the photodeposition of copper in titanium dioxide aqueous suspensions. Ind. Eng. Chem. Res., 1995, 34(11), 3865-3871.
[http://dx.doi.org/10.1021/ie00038a025]
[15]
Forouzan, F.; Richards, T.C.; Bard, A.J. Photoinduced reaction at TiO2 particles, photodeposition from Ni(II) solutions with oxalate. J. Phys. Chem., 1996, 100(46), 18123-18127.
[http://dx.doi.org/10.1021/jp953241f]
[16]
Khalil, L.B.; Rophael, M.W.; Mourad, W.E. The removal of the toxic Hg(II) salts from water by photocatalysis. Appl. Catal. B, 2002, 36(2), 125-130.
[http://dx.doi.org/10.1016/S0926-3373(01)00285-5]
[17]
Skubal, L.R.; Meshkov, N.K.; Rajh, T.; Thurnauer, M. Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J. Photoch. Photobio. A, 2002, 148(1-3), 393-397.
[http://dx.doi.org/10.1016/S1010-6030(02)00069-2]
[18]
Nguyen, V.N.H.; Amal, R.; Beydoun, D. Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chem. Eng. Sci., 2003, 58(19), 4429-4439.
[http://dx.doi.org/10.1016/S0009-2509(03)00336-1]
[19]
Vohra, M.S.; Davis, A.P. TiO2-assisted photocatalysis of lead-EDTA. Water Res., 2000, 34(3), 952-964.
[http://dx.doi.org/10.1016/S0043-1354(99)00223-7]
[20]
Mohapatra, P.; Mishra, T.; Parida, K.M. Effect of microemulsion composition on textural and photocatalytic activity of titania nanomaterial. Appl. Catal. A, 2006, 310, 183-189.
[http://dx.doi.org/10.1016/j.apcata.2006.05.041]
[21]
Xie, L.; Liu, P.; Zheng, Z.; Weng, S.; Huang, J. Morphology engineering of V2O5/TiO2 nanocomposites with enhanced visible light-driven photofunctions for arsenic removal. Appl. Catal. B, 2016, 184, 347-354.
[http://dx.doi.org/10.1016/j.apcatb.2015.11.014]
[22]
Vaiano, V.; Iervolino, G.; Sannino, D.; Rizzo, L.; Sarno, G. MoOx/TiO2 immobilized on quartz support as structured catalyst for the photocatalytic oxidation of As(III) to As(V) in aqueous solutions. Chem. Eng. Res. Des., 2016, 109, 190-199.
[http://dx.doi.org/10.1016/j.cherd.2016.01.029]
[23]
Litter, M.I. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl. Catal. B, 1999, 23(2-3), 89-114.
[http://dx.doi.org/10.1016/S0926-3373(99)00069-7]
[24]
Cohen, M.D.; Kargacin, B.; Klein, C.B.; Costa, M. Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol., 1993, 23(3), 255-281.
[http://dx.doi.org/10.3109/10408449309105012] [PMID: 8260068]
[25]
Costa, M.; Klein, C.B. Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol., 2006, 36(2), 155-163.
[http://dx.doi.org/10.1080/10408440500534032] [PMID: 16736941]
[26]
Cheng, Q.; Wang, C.; Doudrick, K.; Chan, C.K. Hexavalent chromium removal using metal oxide photocatalysts. Appl. Catal. B, 2015, 176, 740-748.
[http://dx.doi.org/10.1016/j.apcatb.2015.04.047]
[27]
Fathima, N.N.; Aravindhan, R.; Rao, J.R.; Nair, B.U. Solid waste removes toxic liquid waste: adsorption of chromium(VI) by iron complexed protein waste. Environ. Sci. Technol., 2005, 39(8), 2804-2810.
[http://dx.doi.org/10.1021/es0499389] [PMID: 15884379]
[28]
Norouzi, S.; Heidari, M.; Alipour, V.; Rahmanian, O.; Fazlzadeh, M.; Mohammadi-Moghadam, F.; Nourmoradi, H.; Goudarzi, B.; Dindarloo, K. Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresour. Technol., 2018, 258, 48-56.
[http://dx.doi.org/10.1016/j.biortech.2018.02.106] [PMID: 29522925]
[29]
Testa, J.J.; Grela, M.A.; Litter, M.I. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. Environ. Sci. Technol., 2004, 38(5), 1589-1594.
[http://dx.doi.org/10.1021/es0346532] [PMID: 15046364]
[30]
Liu, W.; Ni, J.; Yin, X. Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes. Water Res., 2014, 53, 12-25.
[http://dx.doi.org/10.1016/j.watres.2013.12.043] [PMID: 24486715]
[31]
Zhang, Y.; Jiang, Z.; Huang, J.; Lim, L.Y.; Li, W.; Deng, J.; Chen, Z. Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Advances, 2015, 5(97), 79479-79510.
[http://dx.doi.org/10.1039/C5RA11298B]
[32]
Yang, L.; Xiao, Y.; Liu, S.; Li, Y.; Cai, Q.; Luo, S.; Zeng, G. Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid. Appl. Catal. B, 2010, 94(1-2), 142-149.
[http://dx.doi.org/10.1016/j.apcatb.2009.11.002]
[33]
Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J. Hazard. Mater., 2013, 250-251, 272-291.
[http://dx.doi.org/10.1016/j.jhazmat.2013.01.048] [PMID: 23467183]
[34]
Jiang, F.; Zheng, Z.; Xu, Z.; Zheng, S.; Guo, Z.; Chen, L. Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2. J. Hazard. Mater., 2006, 134(1-3), 94-103.
[http://dx.doi.org/10.1016/j.jhazmat.2005.10.041] [PMID: 16310949]
[35]
Sun, B.; Reddy, E.P.; Smirniotis, P.G. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environ. Sci. Technol., 2005, 39(16), 6251-6259.
[http://dx.doi.org/10.1021/es0480872] [PMID: 16173589]
[36]
Yoneyama, H.; Yamashita, Y.; Tamura, H. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature, 1979, 282(5741), 817.
[http://dx.doi.org/10.1038/282817a0]
[37]
Wan, Z.; Zhang, G.; Wu, X.; Yin, S. Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction. Appl. Catal. B, 2017, 207, 17-26.
[http://dx.doi.org/10.1016/j.apcatb.2017.02.014]
[38]
Xue, C.; Yan, X.; An, H.; Li, H.; Wei, J.; Yang, G. Bonding CdS-Sn2S3 eutectic clusters on graphene nanosheets with unusually photoreaction-driven structural reconfiguration effect for excellent H2 evolution and Cr(VI) reduction. Appl. Catal. B, 2018, 222, 157-166.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.008]
[39]
Yang, Y.; Yang, X.A.; Leng, D.; Wang, S.B.; Zhang, W.B. Fabrication of g-C3N4/SnS2/SnO2 nanocomposites for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Chem. Eng. J., 2018, 335, 491-500.
[http://dx.doi.org/10.1016/j.cej.2017.10.173]
[40]
He, Z.; Cai, Q.; Wu, M.; Shi, Y.; Fang, H.; Li, L.; Song, S. Photocatalytic reduction of Cr(VI) in an aqueous suspension of surface-fluorinated anatase TiO2 nanosheets with exposed 001 facets. Ind. Eng. Chem. Res., 2013, 52(28), 9556-9565.
[http://dx.doi.org/10.1021/ie400812m]
[41]
He, Z.; Jiang, L.; Wang, D.; Qiu, J.; Chen, J.; Song, S. Simultaneous oxidation of p-chlorophenol and reduction of Cr(VI) on fluorinated anatase TiO2 nanosheets with dominant 001 facets under visible irradiation. Ind. Eng. Chem. Res., 2015, 54(3), 808-818.
[http://dx.doi.org/10.1021/ie503997m]
[42]
Li, Y.; Cui, W.; Liu, L.; Zong, R.; Yao, W.; Liang, Y.; Zhu, Y. Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Appl. Catal. B, 2016, 199, 412-423.
[http://dx.doi.org/10.1016/j.apcatb.2016.06.053]
[43]
Choi, Y.; Koo, M.S.; Bokare, A.D.; Kim, D.H.; Bahnemann, D.W.; Choi, W. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr(VI) using Ag/TiO2. Environ. Sci. Technol., 2017, 51(7), 3973-3981.
[http://dx.doi.org/10.1021/acs.est.6b06303] [PMID: 28277657]
[44]
Wang, L.; Zhang, C.; Gao, F.; Mailhot, G.; Pan, G. Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light. Chem. Eng. J., 2017, 314, 622-630.
[http://dx.doi.org/10.1016/j.cej.2016.12.020]
[45]
Liu, X.; Pan, L.; Lv, T.; Lu, T.; Zhu, G.; Sun, Z.; Sun, C. Microwave-assisted synthesis of ZnO-graphene composite for photocatalytic reduction of Cr(VI). Catal. Sci. Technol., 2011, 1(7), 1189-1193.
[http://dx.doi.org/10.1039/c1cy00109d]
[46]
Liu, X.; Pan, L.; Zhao, Q.; Lv, T.; Zhu, G.; Chen, T.; Sun, C. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem. Eng. J., 2012, 183, 238-243.
[http://dx.doi.org/10.1016/j.cej.2011.12.068]
[47]
Mekatel, H.; Amokrane, S.; Bellal, B.; Trari, M.; Nibou, D. Photocatalytic reduction of Cr(VI) on nanosized Fe2O3 supported on natural Algerian clay: characteristics, kinetic and thermodynamic study. Chem. Eng. J., 2012, 200, 611-618.
[http://dx.doi.org/10.1016/j.cej.2012.06.121]
[48]
Mu, Y.; Wu, H.; Ai, Z. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires. J. Hazard. Mater., 2015, 298, 1-10.
[http://dx.doi.org/10.1016/j.jhazmat.2015.05.008] [PMID: 25988715]
[49]
Velegraki, G.; Miao, J.; Drivas, C.; Liu, B.; Kennou, S.; Armatas, G.S. Fabrication of 3D mesoporous networks of assembled CoO nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI). Appl. Catal. B, 2018, 221, 635-644.
[http://dx.doi.org/10.1016/j.apcatb.2017.09.064]
[50]
Wu, J.; Wang, J.; Du, Y.; Li, H.; Yang, Y.; Jia, X. Chemically controlled growth of porous CeO2 nanotubes for Cr(VI) photoreduction. Appl. Catal. B, 2015, 174, 435-444.
[http://dx.doi.org/10.1016/j.apcatb.2015.03.040]
[51]
Xu, S.C.; Pan, S.S.; Xu, Y.; Luo, Y.Y.; Zhang, Y.X.; Li, G.H. Efficient removal of Cr(VI) from wastewater under sunlight by Fe(II)-doped TiO2 spherical shell. J. Hazard. Mater., 2015, 283, 7-13.
[http://dx.doi.org/10.1016/j.jhazmat.2014.08.071] [PMID: 25261756]
[52]
Tanaka, A.; Nakanishi, K.; Hamada, R.; Hashimoto, K.; Kominami, H. Simultaneous and stoichiometric water oxidation and Cr(VI) reduction in aqueous suspensions of functionalized plasmonic photocatalyst Au/TiO2-Pt under irradiation of green light. ACS Catal., 2013, 3(8), 1886-1891.
[http://dx.doi.org/10.1021/cs400433r]
[53]
Lei, X.F.; Xue, X.X.; Yang, H. Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Appl. Surf. Sci., 2014, 321, 396-403.
[http://dx.doi.org/10.1016/j.apsusc.2014.10.045]
[54]
Yoon, S.H.; Oh, S.E.; Yang, J.E.; Lee, J.H.; Lee, M.; Yu, S.; Pak, D. TiO2 photocatalytic oxidation mechanism of As(III). Environ. Sci. Technol., 2009, 43(3), 864-869.
[http://dx.doi.org/10.1021/es801480u] [PMID: 19245028]
[55]
Choi, W.; Yeo, J.; Ryu, J.; Tachikawa, T.; Majima, T. Photocatalytic oxidation mechanism of As(III) on TiO2: unique role of As(III) as a charge recombinant species. Environ. Sci. Technol., 2010, 44(23), 9099-9104.
[http://dx.doi.org/10.1021/es102507u] [PMID: 21062045]
[56]
Kim, J.; Kim, J. Arsenite oxidation-enhanced photocatalytic degradation of phenolic pollutants on platinized TiO2. Environ. Sci. Technol., 2014, 48(22), 13384-13391.
[http://dx.doi.org/10.1021/es504082r] [PMID: 25329010]
[57]
Liu, W.; Zhao, X.; Borthwick, A.G.; Wang, Y.; Ni, J. Dual-enhanced photocatalytic activity of Fe-deposited titanate nanotubes used for simultaneous removal of As(III) and As(V). ACS Appl. ACS Appl. Mater. Interfaces, 2015, 7(35), 19726-19735.
[http://dx.doi.org/10.1021/acsami.5b05263] [PMID: 26302042]
[58]
Monllor-Satoca, D.; Gómez, R.; Choi, W. Concentration-dependent photoredox conversion of As(III)/As(V) on illuminated titanium dioxide electrodes. Environ. Sci. Technol., 2012, 46(10), 5519-5527.
[http://dx.doi.org/10.1021/es203922g] [PMID: 22519293]
[59]
Wei, Z.; Liang, K.; Wu, Y.; Zou, Y.; Zuo, J.; Arriagada, D.C.; Pan, Z.; Hu, G. The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO2 anatase [101] surface. J. Colloid Interface Sci., 2016, 462, 252-259.
[http://dx.doi.org/10.1016/j.jcis.2015.10.018] [PMID: 26469543]
[60]
Zhang, X.; Wu, M.; Dong, H.; Li, H.; Pan, B. Simultaneous oxidation and sequestration of As(III) from water by using redox polymer-based Fe(III) oxide nanocomposite. Environ. Sci. Technol., 2017, 51(11), 6326-6334.
[http://dx.doi.org/10.1021/acs.est.7b00724] [PMID: 28499085]
[61]
Rivas, B.L. Aguirre, Mdel.C. Removal of As(III) and As(V) by Tin(II) compounds. Water Res., 2010, 44(19), 5730-5739.
[http://dx.doi.org/10.1016/j.watres.2010.06.031] [PMID: 20630558]
[62]
Huang, M.; Feng, W.; Xu, W.; Liu, P. An in situ gold-decorated 3D branched ZnO nanocomposite and its enhanced absorption and photo-oxidation performance for removing arsenic from water. RSC Advances, 2016, 6(114), 112877-112884.
[http://dx.doi.org/10.1039/C6RA22243A]
[63]
Samad, A.; Furukawa, M.; Katsumata, H.; Suzuki, T.; Kaneco, S. Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalyst. J. Photoch. Photobio. A, 2016, 325, 97-103.
[http://dx.doi.org/10.1016/j.jphotochem.2016.03.035]
[64]
Huang, Y.; Zhang, W.; Zhang, M.; Zhang, X.; Zhao, Y. Hydroxyl-functionalized TiO2@SiO2@Ni/nZVI nanocomposites fabrication, characterization and enhanced simultaneous visible light photocatalytic oxidation and adsorption of arsenite. Chem. Eng. J., 2018, 338, 369-382.
[http://dx.doi.org/10.1016/j.cej.2018.01.019]
[65]
Jiang, X.H.; Xing, Q.J.; Luo, X.B.; Li, F.; Zou, J.P.; Liu, S.S.; Wang, X.K. Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B, 2018, 228, 29-38.
[http://dx.doi.org/10.1016/j.apcatb.2018.01.062]
[66]
Di, J.; Xia, J.; Ge, Y.; Li, H.; Ji, H.; Xu, H.; Li, M. Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl. Catal. B, 2015, 168, 51-61.
[http://dx.doi.org/10.1016/j.apcatb.2014.11.057]
[67]
Yang, X.; Qin, J.; Jiang, Y.; Chen, K.; Yan, X.; Zhang, D.; Tang, H. Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Appl. Catal. B, 2015, 166, 231-240.
[http://dx.doi.org/10.1016/j.apcatb.2014.11.028]
[68]
Li, K.; Zeng, Z.; Yan, L.; Huo, M.; Guo, Y.; Luo, S.; Luo, X. Fabrication of C/X-TiO2@C3N4 NTs (X= N, F, Cl) composites by using phenolic organic pollutants as raw materials and their visible-light photocatalytic performance in different photocatalytic systems. Appl. Catal. B, 2016, 187, 269-280.
[http://dx.doi.org/10.1016/j.apcatb.2016.01.046]
[69]
Chen, J.J.; Wang, W.K.; Li, W.W.; Pei, D.N.; Yu, H.Q. Roles of crystal surface in Pt-loaded titania for photocatalytic conversion of organic pollutants: A first-principle theoretical calculation. ACS Appl. Mater. Interfaces, 2015, 7(23), 12671-12678.
[http://dx.doi.org/10.1021/acsami.5b00079] [PMID: 26013255]
[70]
Wang, C.C.; Li, J.R.; Lv, X.L.; Zhang, Y.Q.; Guo, G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci., 2014, 7(9), 2831-2867.
[http://dx.doi.org/10.1039/C4EE01299B]
[71]
Qiu, B.; Xing, M.; Zhang, J. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc., 2014, 136(16), 5852-5855.
[http://dx.doi.org/10.1021/ja500873u] [PMID: 24712676]
[72]
Luo, X.; Deng, F.; Min, L.; Luo, S.; Guo, B.; Zeng, G.; Au, C. Facile one-step synthesis of inorganic-framework molecularly imprinted TiO2/WO3 nanocomposite and its molecular recognitive photocatalytic degradation of target contaminant. Environ. Sci. Technol., 2013, 47(13), 7404-7412.
[http://dx.doi.org/10.1021/es4013596] [PMID: 23746077]
[73]
Muñoz-Batista, M.J.; Gómez-Cerezo, M.N.; Kubacka, A.; Tudela, D.; Fernández-García, M. Role of interface contact in CeO2-TiO2 photocatalytic composite materials. ACS Catal., 2013, 4(1), 63-72.
[http://dx.doi.org/10.1021/cs400878b]
[74]
Sun, H.; Liu, S.; Liu, S.; Wang, S. A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue. Appl. Catal. B, 2014, 146, 162-168.
[http://dx.doi.org/10.1016/j.apcatb.2013.03.027]
[75]
Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res., 2015, 79, 128-146.
[http://dx.doi.org/10.1016/j.watres.2015.04.038] [PMID: 25980914]
[76]
Shang, S.; Jiao, X.; Chen, D. Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties. ACS Appl. Mater. Interfaces, 2012, 4(2), 860-865.
[http://dx.doi.org/10.1021/am201535u] [PMID: 22206432]
[77]
Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater., 2009, 170(2-3), 520-529.
[http://dx.doi.org/10.1016/j.jhazmat.2009.05.039] [PMID: 19505759]
[78]
Kaplan, R.; Erjavec, B.; Dražić, G.; Grdadolnik, J.; Pintar, A. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal. B, 2016, 181, 465-474.
[http://dx.doi.org/10.1016/j.apcatb.2015.08.027]
[79]
Jaiswal, R.; Patel, N.; Dashora, A.; Fernandes, R.; Yadav, M.; Edla, R.; Miotello, A. Efficient Co-B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light. Appl. Catal. B, 2016, 183, 242-253.
[http://dx.doi.org/10.1016/j.apcatb.2015.10.041]
[80]
Zhang, J.; Ma, Y.; Du, Y.; Jiang, H.; Zhou, D.; Dong, S. Carbon nanodots/WO3 nanorods Z-scheme composites: Remarkably enhanced photocatalytic performance under broad spectrum. Appl. Catal. B, 2017, 209, 253-264.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.017]
[81]
Ismail, A.A.; Faisal, M.; Al-Haddad, A. Mesoporous WO3-graphene photocatalyst for photocatalytic degradation of Methylene Blue dye under visible light illumination. J. Environ. Sci. (China), 2018, 66, 328-337.
[http://dx.doi.org/10.1016/j.jes.2017.05.001] [PMID: 29628102]
[82]
Liyanage, A.D.; Perera, S.D.; Tan, K.; Chabal, Y.; Balkus, K.J. Jr Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods. ACS Catal., 2014, 4(2), 577-584.
[http://dx.doi.org/10.1021/cs400889y]
[83]
Wen, X.J.; Niu, C.G.; Ruan, M.; Zhang, L.; Zeng, G.M. AgI nanoparticles-decorated CeO(2) microsheets photocatalyst for the degradation of organic dye and tetracycline under visible-light irradiation. J. Colloid Interface Sci., 2017, 497, 368-377.
[http://dx.doi.org/10.1016/j.jcis.2017.03.029] [PMID: 28301831]
[84]
Pouretedal, H.R.; Kadkhodaie, A. Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: kinetics and mechanism. Chin. J. Catal., 2010, 31(11-12), 1328-1334.
[http://dx.doi.org/10.1016/S1872-2067(10)60121-0]
[85]
He, W.; Kim, H.K.; Wamer, W.G.; Melka, D.; Callahan, J.H.; Yin, J.J. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc., 2014, 136(2), 750-757.
[http://dx.doi.org/10.1021/ja410800y] [PMID: 24354568]
[86]
Ren, C.; Yang, B.; Wu, M.; Xu, J.; Fu, Z.; Lv, Y.; Guo, T.; Zhao, Y.; Zhu, C. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J. Hazard. Mater., 2010, 182(1-3), 123-129.
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.141] [PMID: 20580489]
[87]
Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces, 2014, 6(16), 14405-14414.
[http://dx.doi.org/10.1021/am503674e] [PMID: 25089850]
[88]
Fagan, R.; McCormack, D.E.; Hinder, S.J.; Pillai, S.C. Photocatalytic properties of g-C3N4-TiO2 heterojunctions under UV and visible light conditions. Materials (Basel), 2016, 9(4), 286.
[http://dx.doi.org/10.3390/ma9040286] [PMID: 28773413]
[89]
Liu, X.; Chen, N.; Li, Y. Deng, D.; Xing, X.; Wang, Y. A general nonaqueous sol-gel route to g-C3N4-coupling photocatalysts: the case of Z-scheme g-C3N4/TiO2 with enhanced photodegradation toward RhB under visible-light. Sci. Rep., 2016, 6(1), 1-16.
[http://dx.doi.org/10.1038/srep39531] [PMID: 28442746]
[90]
Spasiano, D.; Rodriguez, L.D.P.P.; Olleros, J.C.; Malato, S.; Marotta, R.; Andreozzi, R. TiO2/Cu(II) photocatalytic production of benzaldehyde from benzyl alcohol in solar pilot plant reactor. Appl. Catal. B, 2013, 136, 56-63.
[http://dx.doi.org/10.1016/j.apcatb.2013.01.055]
[91]
Colmenares, J.C.; Ouyang, W.; Ojeda, M.; Kuna, E.; Chernyayeva, O.; Lisovytskiy, D.; Balu, A.M. Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol. Appl. Catal. B, 2016, 183, 107-112.
[http://dx.doi.org/10.1016/j.apcatb.2015.10.034]
[92]
Zhang, P.; Wu, P.; Bao, S.; Wang, Z.; Tian, B.; Zhang, J. Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes. Chem. Eng. J., 2016, 306, 1151-1161.
[http://dx.doi.org/10.1016/j.cej.2016.08.015]
[93]
Higashimoto, S.; Shirai, R.; Osano, Y.; Azuma, M.; Ohue, H.; Sakata, Y.; Kobayashi, H. Influence of metal ions on the photocatalytic activity: Selective oxidation of benzyl alcohol on iron (III) ion-modified TiO2 using visible light. J. Catal., 2014, 311, 137-143.
[http://dx.doi.org/10.1016/j.jcat.2013.11.013]
[94]
Ouyang, W.; Kuna, E.; Yepez, A.; Balu, A.M.; Romero, A.A.; Colmenares, J.C.; Luque, R. Mechanochemical synthesis of TiO2 nanocomposites as photocatalysts for benzyl alcohol photo-oxidation. Nanomaterials (Basel), 2016, 6(5), 93.
[http://dx.doi.org/10.3390/nano6050093] [PMID: 28335221]
[95]
Su, Y.; Han, Z.; Zhang, L.; Wang, W.; Duan, M.; Li, X.; Lei, X. Surface hydrogen bonds assisted meso-porous WO3 photocatalysts for high selective oxidation of benzylalcohol to benzylaldehyde. Appl. Catal. B, 2017, 217, 108-114.
[http://dx.doi.org/10.1016/j.apcatb.2017.05.075]
[96]
Unsworth, C.A.; Coulson, B.; Chechik, V.; Douthwaite, R.E. Aerobic oxidation of benzyl alcohols to benzaldehydes using monoclinic bismuth vanadate nanoparticles under visible light irradiation: Photocatalysis selectivity and inhibition. J. Catal., 2017, 354, 152-159.
[http://dx.doi.org/10.1016/j.jcat.2017.08.023]
[97]
Gu, Y.; Li, C.; Bai, J.; Liang, H. Construction of multivariate functionalized heterojunction and its application in selective oxidation of benzyl alcohol. J. Photoch. Photobio. A, 2018, 351, 87-94.
[http://dx.doi.org/10.1016/j.jphotochem.2017.10.013]
[98]
Sun, J.; Han, Y.; Fu, H.; Qu, X.; Xu, Z.; Zheng, S. Au@Pd/TiO2 with atomically dispersed Pd as highly active catalyst for solvent-free aerobic oxidation of benzyl alcohol. Chem. Eng. J., 2017, 313, 1-9.
[http://dx.doi.org/10.1016/j.cej.2016.12.024]
[99]
Yuan, M.; Tian, F.; Li, G.; Zhao, H.; Liu, Y.; Chen, R. Fe(III)-modified BiOBr hierarchitectures for improved photocatalytic benzyl alcohol oxidation and organic pollutants degradation. Ind. Eng. Chem. Res., 2017, 56(20), 5935-5943.
[http://dx.doi.org/10.1021/acs.iecr.7b00905]
[100]
Marotta, R.; Di Somma, I.; Spasiano, D.; Andreozzi, R.; Caprio, V. Selective oxidation of benzyl alcohol to benzaldehyde in water by TiO2/Cu(II)/UV solar system. Chem. Eng. J., 2011, 172(1), 243-249.
[http://dx.doi.org/10.1016/j.cej.2011.05.097]
[101]
Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. Chem., 2008, 9(1), 1-12.
[http://dx.doi.org/10.1016/j.jphotochemrev.2007.12.003]
[102]
Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7), 2891-2959.
[http://dx.doi.org/10.1021/cr0500535] [PMID: 17590053]
[103]
Li, S.X.; Zheng, F.Y.; Cai, W.L.; Han, A.Q.; Xie, Y.K. Surface modification of nanometer size TiO2 with salicylic acid for photocatalytic degradation of 4-nitrophenol. J. Hazard. Mater., 2006, 135(1-3), 431-436.
[http://dx.doi.org/10.1016/j.jhazmat.2005.12.010] [PMID: 16426745]
[104]
Li, S.X.; Zheng, F.Y.; Liu, X.L.; Wu, F.; Deng, N.S.; Yang, J.H. Photocatalytic degradation of p-nitrophenol on nanometer size titanium dioxide surface modified with 5-sulfosalicylic acid. Chemosphere, 2005, 61(4), 589-594.
[http://dx.doi.org/10.1016/j.chemosphere.2005.02.054] [PMID: 16202814]
[105]
Li, S.X.; Cai, S.J.; Zheng, F.Y. Self assembled TiO2 with 5-sulfosalicylic acid for improvement its surface properties and photodegradation activity of dye. Dyes Pigments, 2012, 95(2), 188-193.
[http://dx.doi.org/10.1016/j.dyepig.2012.04.006]
[106]
Chen, D.; Ray, A.K. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Appl. Catal. B, 1999, 23(2-3), 143-157.
[http://dx.doi.org/10.1016/S0926-3373(99)00068-5]
[107]
Bond, G.C.; Tahir, S.F. Vanadium oxide monolayer catalysts preparation, characterization and catalytic activity. Appl. Catal. B, 1991, 71(1), 1-31.
[http://dx.doi.org/10.1016/0166-9834(91)85002-D]
[108]
Zeng, M.; Li, Y.; Mao, M.; Bai, J.; Ren, L.; Zhao, X. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catal., 2015, 5(6), 3278-3286.
[http://dx.doi.org/10.1021/acscatal.5b00292]
[109]
Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C.H.; Yang, X.; Lee, S.T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. Engl., 2010, 49(26), 4430-4434.
[http://dx.doi.org/10.1002/anie.200906154] [PMID: 20461744]
[110]
Wang, X.; Bai, L.; Liu, H.; Yu, X.; Yin, Y.; Gao, C. A unique disintegration-reassembly route to mesoporous titania nanocrystalline hollow spheres with enhanced photocatalytic activity. Adv. Funct. Mater., 2018, 28(2)1704208
[http://dx.doi.org/10.1002/adfm.201704208]
[111]
Zhang, Q.; Lima, D.Q.; Lee, I.; Zaera, F.; Chi, M.; Yin, Y. A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. Int. Ed. Engl., 2011, 50(31), 7088-7092.
[http://dx.doi.org/10.1002/anie.201101969] [PMID: 21710514]
[112]
Joo, J.B.; Dahl, M.; Li, N.; Zaera, F.; Yin, Y. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy Environ. Sci., 2013, 6(7), 2082-2092.
[http://dx.doi.org/10.1039/c3ee41155a]
[113]
Wang, W.; Sa, Q.; Chen, J.; Wang, Y.; Jung, H.; Yin, Y. Porous TiO2/C nanocomposite shells as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2013, 5(14), 6478-6483.
[http://dx.doi.org/10.1021/am402350n] [PMID: 23829667]
[114]
Joo, J.B.; Zhang, Q.; Dahl, M.; Lee, I.; Goebl, J.; Zaera, F.; Yin, Y. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy Environ. Sci., 2012, 5, 6321-6327.
[http://dx.doi.org/10.1039/C1EE02533C]
[115]
Joo, J.B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. Mesoporous anatase titania hollow nanostructures though silica‐protected calcination. Adv. Funct. Mater., 2012, 22, 166-174.
[http://dx.doi.org/10.1002/adfm.201101927]
[116]
Zhang, N.; Liu, S.; Fu, X.; Xu, Y.J. Synthesis of M@TiO2 (M= Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C, 2011, 115(18), 9136-9145.
[http://dx.doi.org/10.1021/jp2009989]
[117]
Zhang, N.; Liu, S.; Fu, X.; Xu, Y.J. A simple strategy for fabrication of “plum-pudding” type Pd@CeO2 semiconductor nanocomposite as a visible-light-driven photocatalyst for selective oxidation. J. Phys. Chem. C, 2011, 115(46), 22901-22909.
[http://dx.doi.org/10.1021/jp205821b]
[118]
Li, W.; Yang, J.; Wu, Z.; Wang, J.; Li, B.; Feng, S.; Deng, Y.; Zhang, F.; Zhao, D. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. J. Am. Chem. Soc., 2012, 134(29), 11864-11867.
[http://dx.doi.org/10.1021/ja3037146] [PMID: 22746276]
[119]
Yue, Q.; Zhang, Y.; Jiang, Y.; Li, J.; Zhang, H.; Yu, C.; Elzatahry, A.A.; Alghamdi, A.; Deng, Y.; Zhao, D. Nanoengineering of core-shell magnetic mesoporous microspheres with tunable surface roughness. J. Am. Chem. Soc., 2017, 139(13), 4954-4961.
[http://dx.doi.org/10.1021/jacs.7b01464] [PMID: 28277651]
[120]
Wang, Y.; Yang, W.; Chen, X.; Wang, J.; Zhu, Y. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl. Catal. B, 2018, 220, 337-347.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.004]
[121]
Li, W.; Deng, Y.; Wu, Z.; Qian, X.; Yang, J.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc., 2011, 133(40), 15830-15833.
[http://dx.doi.org/10.1021/ja2055287] [PMID: 21905658]
[122]
Yue, Q.; Li, J.; Zhang, Y.; Cheng, X.; Chen, X.; Pan, P.; Su, J.; Elzatahry, A.A.; Alghamdi, A.; Deng, Y.; Zhao, D. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc., 2017, 139(43), 15486-15493.
[http://dx.doi.org/10.1021/jacs.7b09055] [PMID: 29016118]
[123]
Li, J.; Zeng, H.C. Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. Angew. Chem. Int. Ed. Engl., 2005, 44(28), 4342-4345.
[http://dx.doi.org/10.1002/anie.200500394] [PMID: 15952224]
[124]
Du, J.; Qi, J.; Wang, D.; Tang, Z. Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci., 2012, 5, 6914-6918.
[http://dx.doi.org/10.1039/c2ee21264a]
[125]
Cai, J.; Wu, X.; Li, S.; Zheng, F. Controllable location of Au nanoparticles as cocatalyst onto TiO2@CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity. Appl. Catal. B, 2017, 201, 12-21.
[http://dx.doi.org/10.1016/j.apcatb.2016.08.003]
[126]
Cai, J.; Wu, X.; Li, S.; Zheng, F.; Zhu, L.; Lai, Z. Synergistic effect of double-shelled and sandwiched TiO2@Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity. ACS Appl. Mater. Interfaces, 2015, 7(6), 3764-3772.
[http://dx.doi.org/10.1021/am508554t] [PMID: 25625611]
[127]
Li, S.; Cai, J.; Wu, X.; Liu, B.; Chen, Q.; Li, Y.; Zheng, F. TiO2@Pt@CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr (VI) and photo-oxidation of benzyl alcohol. J. Hazard. Mater., 2018, 346, 52-61.
[http://dx.doi.org/10.1016/j.jhazmat.2017.12.001] [PMID: 29247954]
[128]
Li, S.; Cai, J.; Wu, X.; Zheng, F. Sandwich-like TiO2@ZnO-based noble metal (Ag, Au, Pt, or Pd) for better photo-oxidation performance: synergistic effect between noble metal and metal oxide phases. Appl. Surf. Sci., 2018, 443, 603-612.
[http://dx.doi.org/10.1016/j.apsusc.2018.03.017]
[129]
Cai, J.; Wu, X.; Li, Y.; Lin, Y.; Yang, H.; Li, S. Noble metal sandwich-like TiO2@Pt@C3N4 hollow spheres enhance photocatalytic performance. J. Colloid Interface Sci., 2018, 514, 791-800.
[http://dx.doi.org/10.1016/j.jcis.2018.01.011] [PMID: 29316534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy