Generic placeholder image

Current Psychopharmacology

Editor-in-Chief

ISSN (Print): 2211-5560
ISSN (Online): 2211-5579

Perspective

Transmodulation of Dopaminergic Signaling to Mitigate Hypodopminergia and Pharmaceutical Opioid-induced Hyperalgesia

Author(s): Raymond Brewer, Kenneth Blum*, Abdalla Bowirrat, Edward J. Modestino, David Baron, Rajendra D. Badgaiyan, Mark Moran, Brent Boyett and Mark S. Gold

Volume 9, Issue 3, 2020

Page: [164 - 184] Pages: 21

DOI: 10.2174/2211556009999200628093231

Abstract

Neuroscientists and psychiatrists working in the areas of “pain and addiction” are asked in this perspective article to reconsider the current use of dopaminergic blockade (like chronic opioid agonist therapy), and instead to consider induction of dopamine homeostasis by putative pro-dopamine regulation. Pro-dopamine regulation could help pharmaceutical opioid analgesic agents to mitigate hypodopaminergia-induced hyperalgesia by inducing transmodulation of dopaminergic signaling. An optimistic view is that early predisposition to diagnosis based on genetic testing, (pharmacogenetic/pharmacogenomic monitoring), combined with appropriate urine drug screening, and treatment with pro-dopamine regulators, could conceivably reduce stress, craving, relapse, enhance well-being and attenuate unwanted hyperalgesia. These concepts require intensive investigation. However, based on the rationale provided herein, there is a good chance that combining opioid analgesics with genetically directed pro-dopamine-regulation using KB220 (supported by 43 clinical studies). This prodopamine regulator may become a front-line technology with the potential to overcome, in part, the current heightened rates of chronic opioid-induced hyperalgesia and concomitant Reward Deficiency Syndrome (RDS) behaviors. Current research does support the hypothesis that low or hypodopaminergic function in the brain may predispose individuals to low pain tolerance or hyperalgesia.

Keywords: Chronic pain, dopamine homeostasis, dopaminergic signaling, hyperalgesia, hypodopaminergia, opioid analgesics, precision, trans-modulation.

Graphical Abstract
[1]
Blum K, Whitney D, Fried L, et al. Hypothesizing that a pro-dopaminergic regulator (KB220z™ liquid variant) can Induce “Dopamine Homeostasis” and provide adjunctive detoxification benefits in opiate/ opioid dependence. Clin Med Rev Case Rep 2016; 3(8): 125.
[http://dx.doi.org/10.23937/2378-3656/1410125] [PMID: 29034323]
[2]
Blum K, Modestino EJ, Badgaiyan RD, et al. Analysis of evidence for the combination of pro-dopamine regulator (KB220PAM) and Naltrexone to prevent opioid use disorder relapse. EC Psychol Psychiatr 2018; 7(8): 564-79.
[PMID: 30417173]
[3]
Blum K, Modestino EJ, Gondré-Lewis M, et al. “Dopamine homeostasis” requires balanced polypharmacy: issue with destructive, powerful dopamine agents to combat America’s drug epidemic. J Syst Integr Neurosci 2017; 3(6): 1-6.
[http://dx.doi.org/10.15761/JSIN.1000183] [PMID: 30197787]
[4]
Blum K, Oscar-Berman M, Femino J, et al. Withdrawal From Buprenorphine/Naloxone And Maintenance With A Natural Dopaminergic Agonist: A Cautionary Note. J Addict Res Ther 2013; 4(2)
[http://dx.doi.org/10.4172/2155-6105.1000146] [PMID: 24273683]
[5]
Blum K, Liu Y, Wang W, et al. rsfMRI effects of KB220Z™ on neural pathways in reward circuitry of abstinent genotyped heroin addicts. Postgrad Med 2015; 127(2): 232-41.
[http://dx.doi.org/10.1080/00325481.2015.994879] [PMID: 25526228]
[6]
Febo M, Blum K, Badgaiyan RD, et al. Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z. PLoS One 2017; 12(4): e0174774.
[http://dx.doi.org/10.1371/journal.pone.0174774] [PMID: 28445527]
[7]
Solanki N, Abijo T, Galvao C, Darius P, Blum K, Gondré-Lewis MC. Administration of a putative pro-dopamine regulator, a neuronutrient, mitigates alcohol intake in alcohol-preferring rats. Behav Brain Res 2020; 385: 112563.
[http://dx.doi.org/10.1016/j.bbr.2020.112563] [PMID: 32070691]
[8]
Blum K, Modestino EJ, Barron D, et al. Prodopamine regulator (KB220) a fifty year sojourn to combat Reward Deficiency Syndrome (RDS): evidence based bibliography (annotated). CPQ Neurol Psychol 2018; 1(2): https://www.cientperiodique.com/journal/fulltext/CPQNP/1/2/13
[9]
Montagna P. Recent advances in the pharmacogenomics of pain and headache. Neurol Sci 2007; 28(Suppl. 2): S208-12.
[http://dx.doi.org/10.1007/s10072-007-0778-0]
[10]
Stamer UM, Stüber F. Genetic factors in pain and its treatment. Curr Opin Anaesthesiol 2007; 20(5): 478-84.
[http://dx.doi.org/10.1097/ACO.0b013e3282ef6b2c] [PMID: 17873601]
[11]
Crettol S, Déglon JJ, Besson J, et al. ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther 2006; 80(6): 668-81.
[http://dx.doi.org/10.1016/j.clpt.2006.09.012] [PMID: 17178267]
[12]
Marien M, Brien J, Jhamandas K. Regional release of [3H] dopamine from rat brain in vitro: effects of opioids on release induced by potassium, nicotine, and L-glutamic acid. Can J Physiol Pharmacol 1983; 61(1): 43-60.
[http://dx.doi.org/10.1139/y83-005] [PMID: 6132674]
[13]
Morgan MJ, Franklin KB. 6-Hydroxydopamine lesions of the ventral tegmentum abolish D-amphetamine and morphine analgesia in the formalin test but not in the tail flick test. Brain Res 1990; 519(1-2): 144-9.
[http://dx.doi.org/10.1016/0006-8993(90)90072-J] [PMID: 2118819]
[14]
Taylor BK, Joshi C, Uppal H. Stimulation of dopamine D2 receptors in the nucleus accumbens inhibits inflammatory pain. Brain Res 2003; 987(2): 135-43.
[http://dx.doi.org/10.1016/S0006-8993(03)03318-3] [PMID: 14499957]
[15]
Yamanaka Y, Walsh MJ, Davis VE. Salsolinol, an alkaloid derivative of dopamine formed in vitro during alcohol metabolism. Nature 1970; 227(5263): 1143-4.
[http://dx.doi.org/10.1038/2271143a0] [PMID: 4317952]
[16]
Halushka PV, Hoffmann PC. Alcohol addiction and tetrahydropapaveroline. Science 1970; 169(3950): 1104-5.
[http://dx.doi.org/10.1126/science.169.3950.1104] [PMID: 5465178]
[17]
Walsh MJ, Davis VE, Yamanaka Y. Tetrahydropapaveroline: an alkaloid metabolite of dopamine in vitro. J Pharmacol Exp Ther 1970; 174(3): 388-400.
[PMID: 4318487]
[18]
Hamilton MG, Hirst M, Blum K. Opiate-like activity of salsolinol on the electrically stimulated guinea pig ileum. Life Sci 1979; 25(26): 2205-10.
[http://dx.doi.org/10.1016/0024-3205(79)90093-6] [PMID: 542098]
[19]
Hamilton MG, Blum K, Hirst M. In vivo formation of isoquinoline alkaloids: effect of time and route of administration of ethanol. Adv Exp Med Biol 1980; 126: 73-86.
[http://dx.doi.org/10.1007/978-1-4684-3632-7_8] [PMID: 7405709]
[20]
Hamilton MG, Blum K, Hirst M. Identification of an isoquinoline alkaloid after chronic exposure to ethanol. Alcohol Clin Exp Res 1978; 2(2): 133-7.
[http://dx.doi.org/10.1111/j.1530-0277.1978.tb04713.x] [PMID: 350076]
[21]
Blum K, Baron D, McLaughlin T, Gold MS. Molecular neurological correlates of endorphinergic/dopaminergic mechanisms in reward circuitry linked to endorphinergic deficiency syndrome (EDS). J Neurol Sci 2020; 411: 116733.
[http://dx.doi.org/10.1016/j.jns.2020.116733] [PMID: 32088516]
[22]
Magnusson JE, Fisher K. The involvement of dopamine in nociception: the role of D(1) and D(2) receptors in the dorsolateral striatum. Brain Res 2000; 855(2): 260-6.
[http://dx.doi.org/10.1016/S0006-8993(99)02396-3] [PMID: 10677598]
[23]
Hagelberg N, Forssell H, Rinne JO, et al. Striatal dopamine D1 and D2 receptors in burning mouth syndrome. Pain 2003; 101(1-2): 149-54.
[http://dx.doi.org/10.1016/S0304-3959(02)00323-8] [PMID: 12507709]
[24]
Hagelberg N, Kajander JK, Någren K, Hinkka S, Hietala J, Scheinin H. Mu-receptor agonism with alfentanil increases striatal dopamine D2 receptor binding in man. Synapse 2002; 45(1): 25-30.
[http://dx.doi.org/10.1002/syn.10078] [PMID: 12112410]
[25]
Volkow ND, Morales M. The brain on drugs: from reward to addiction.. Cell 2015; 162(4): 712-25.
[http://dx.doi.org/10.1016/j.cell.2015.07.046] [PMID: 26276628]
[26]
Kreek MJ, Koob GF. Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend 1998; 51(1-2): 23-47.
[http://dx.doi.org/10.1016/S0376-8716(98)00064-7] [PMID: 9716928]
[27]
Comings DE, Muhleman D, Gysin R. Dopamine D2 receptor (DRD2) gene and susceptibility to posttraumatic stress disorder: a study and replication. Biol Psychiatry 1996; 40(5): 368-72.
[http://dx.doi.org/10.1016/0006-3223(95)00519-6] [PMID: 8874837]
[28]
Deutch AY, Clark WA, Roth RH. Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Res 1990; 521(1-2): 311-5.
[http://dx.doi.org/10.1016/0006-8993(90)91557-W] [PMID: 2119850]
[29]
Kalivas PW, Abhold R. Enkephalin release into the ventral tegmental area in response to stress: modulation of mesocorticolimbic dopamine. Brain Res 1987; 414(2): 339-48.
[http://dx.doi.org/10.1016/0006-8993(87)90015-1] [PMID: 3620936]
[30]
Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965; 150(3699): 971-9.
[http://dx.doi.org/10.1126/science.150.3699.971] [PMID: 5320816]
[31]
Altier N, Stewart J. The tachykinin NK-1 receptor antagonist, RP-67580, infused into the ventral tegmental area prevents stress-induced analgesia in the formalin test. Physiol Behav 1999; 66(4): 717-21.
[http://dx.doi.org/10.1016/S0031-9384(98)00246-7] [PMID: 10386919]
[32]
Altier N, Stewart J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci 1999; 65(22): 2269-87.
[http://dx.doi.org/10.1016/S0024-3205(99)00298-2] [PMID: 10597883]
[33]
Blum K, Noble EP, Sheridan PJ, et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990; 263(15): 2055-60.
[http://dx.doi.org/10.1001/jama.1990.03440150063027] [PMID: 1969501]
[34]
Blum K, Modestino EJ, Gondré-Lewis MC, et al. Global opioid epidemic: doomed to fail without genetically based precision addiction medicine (PAM™): lessons learned from America. Precis Med (Bangalore) 2017; 2(1): 17-22.
[PMID: 29372187]
[35]
Blum K, Downs BW, Dushaj K, et al. the benefits of customized dna directed nutrition to balance the brain reward circuitry and reduce addictive behaviors. Precis Med (Bangalore) 2016; 1(1): 18-33.
[PMID: 28066828]
[36]
Blum K, Madigan MA, Fried L, Braverman ER, Giordano J, Badgaiyan RD. Coupling Genetic Addiction Risk Score (GARS) and pro dopamine regulation (KB220) to combat Substance Use Disorder (SUD). Glob J Addict Rehabil Med 2017; 1(2): 555556.
[37]
Blum K, Oscar-Berman M, Dinubile N, et al. Coupling genetic addiction risk score (gars) with electrotherapy: fighting iatrogenic opioid dependence. J Addict Res Ther 2013; 4(163): 1000163.
[PMID: 24616834]
[38]
Blum K, Oscar-Berman M, Demetrovics Z, Barh D, Gold MS. Genetic Addiction Risk Score (GARS): molecular neurogenetic evidence for predisposition to Reward Deficiency Syndrome (RDS). Mol Neurobiol 2014; 50(3): 765-96.
[http://dx.doi.org/10.1007/s12035-014-8726-5] [PMID: 24878765]
[39]
Mogil JS, Marek P, Flodman P, et al. One or two genetic loci mediate high opiate analgesia in selectively bred mice. Pain 1995; 60(2): 125-35.
[http://dx.doi.org/10.1016/0304-3959(94)00098-Y] [PMID: 7784097]
[40]
Coller JK, Barratt DT, Dahlen K, Loennechen MH, Somogyi AA. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther 2006; 80(6): 682-90.
[http://dx.doi.org/10.1016/j.clpt.2006.09.011] [PMID: 17178268]
[41]
McClung CA, Nestler EJ, Zachariou V. Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 2005; 25(25): 6005-15.
[http://dx.doi.org/10.1523/JNEUROSCI.0062-05.2005] [PMID: 15976090]
[42]
Lötsch J, Skarke C, Liefhold J, Geisslinger G. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet 2004; 43(14): 983-1013.
[http://dx.doi.org/10.2165/00003088-200443140-00003] [PMID: 15530129]
[43]
Lötsch J, Zimmermann M, Darimont J, et al. Does the A118G polymorphism at the mu-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology 2002; 97(4): 814-9.
[http://dx.doi.org/10.1097/00000542-200210000-00011] [PMID: 12357145]
[44]
Li CY, Mao X, Wei L. Genes and (common) pathways underlying drug addiction. PLOS Comput Biol 2008; 4(1): e2.
[http://dx.doi.org/10.1371/journal.pcbi.0040002] [PMID: 18179280]
[45]
Muhuri PK, Gfroerer JC. Associations of nonmedical pain reliever use and initiation of heroin use in the United States. Center for behavioral health statistics and quality. SAMHSA 2013; 1: 17.
[46]
Rosenblum A, Joseph H, Fong C, Kipnis S, Cleland C, Portenoy RK. Prevalence and characteristics of chronic pain among chemically dependent patients in methadone maintenance and residential treatment facilities. JAMA 2003; 289(18): 2370-8.
[http://dx.doi.org/10.1001/jama.289.18.2370] [PMID: 12746360]
[47]
Potter JS, Prather K, Weiss RD. Physical pain and associated clinical characteristics in treatment-seeking patients in four substance use disorder treatment modalities. Am J Addict 2008; 17(2): 121-5.
[http://dx.doi.org/10.1080/10550490701862902]
[48]
Chang YP, Compton P. Management of chronic pain with chronic opioid therapy in patients with substance use disorders. Addict Sci Clin Pract 2013; 8: 21.
[http://dx.doi.org/10.1186/1940-0640-8-21] [PMID: 24341916]
[49]
Comer SD, Sullivan MA, Vosburg SK, et al. Abuse liability of intravenous buprenorphine/naloxone and buprenorphine alone in buprenorphine-maintained intravenous heroin abusers. Addiction 2010; 105(4): 709-18.
[http://dx.doi.org/10.1111/j.1360-0443.2009.02843.x] [PMID: 20403021]
[50]
Turk DC, Swanson KS, Gatchel RJ. Predicting opioid misuse by chronic pain patients: a systematic review and literature synthesis. Clin J Pain 2008; 24(6): 497-508.
[http://dx.doi.org/10.1097/AJP.0b013e31816b1070] [PMID: 18574359]
[51]
Boscarino JA, Rukstalis M, Hoffman SN, et al. Risk factors for drug dependence among out-patients on opioid therapy in a large US health-care system. Addiction 2010; 105(10): 1776-82.
[http://dx.doi.org/10.1111/j.1360-0443.2010.03052.x] [PMID: 20712819]
[52]
Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 2008; 154(2): 384-96
[http://dx.doi.org/10.1038/bjp.2008.100] [PMID: 18414400]
[53]
Margolis EB, Hjelmstad GO, Fujita W, Fields HL. Direct bidirectional μ-opioid control of midbrain dopamine neurons. J Neurosci 2014; 34(44): 14707-16.
[http://dx.doi.org/10.1523/JNEUROSCI.2144-14.2014] [PMID: 25355223]
[54]
Cui Y, Ostlund SB, James AS, et al. Targeted expression of μ-opioid receptors in a subset of striatal direct-pathway neurons restores opiate reward. Nat Neurosci 2014; 17(2): 254-61.
[http://dx.doi.org/10.1038/nn.3622] [PMID: 24413699]
[55]
Bozarth MA, Wise RA. Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci 1981; 28(5): 551-5.
[http://dx.doi.org/10.1016/0024-3205(81)90148-X] [PMID: 7207031]
[56]
Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci 2015; 38(4): 217-25.
[http://dx.doi.org/10.1016/j.tins.2015.01.002] [PMID: 25637939]
[57]
Narita M, Kishimoto Y, Ise Y, Yajima Y, Misawa K, Suzuki T. Direct evidence for the involvement of the mesolimbic kappa-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology 2005; 30(1): 111-8.
[58]
Zhou HH, Wu DL, Gao LY, Fang Y, Ge WH. L-Tetrahydropalmatine alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice. Neuroreport 2016; 27(7): 476-80.
[http://dx.doi.org/10.1097/WNR.0000000000000560] [PMID: 26981712]
[59]
Dias EV, Sartori CR, Marião PR, et al. Nucleus accumbens dopaminergic neurotransmission switches its modulatory action in chronification of inflammatory hyperalgesia. Eur J Neurosci 2015; 42(7): 2380-9.
[http://dx.doi.org/10.1111/ejn.13015] [PMID: 26173870]
[60]
Hoshino H, Obata H, Nakajima K, Mieda R, Saito S. The antihyperalgesic effects of intrathecal bupropion, a dopamine and noradrenaline reuptake inhibitor, in a rat model of neuropathic pain. Anesth Analg 2015; 120(2): 460-6.
[http://dx.doi.org/10.1213/ANE.0000000000000540] [PMID: 25427287]
[61]
Shou Y, Yang Y, Xu MS, Zhao YQ, Ge LB, Zhang BM. Electroacupuncture inhibition of hyperalgesia in rats with adjuvant arthritis: involvement of cannabinoid receptor 1 and dopamine receptor subtypes in striatum. Evid Based Complement Alternat Med 2013; 2013: 393460.
[http://dx.doi.org/10.1155/2013/393460] [PMID: 23762129]
[62]
Zhang Y, Zhang F, Yang C, Jin H, Yang Y, Xu M. Dopamine affects the change of pain-related electrical activity induced by morphine dependence. Neurochem Res 2012; 37(5): 977-82.
[http://dx.doi.org/10.1007/s11064-011-0690-0] [PMID: 22240902]
[63]
Lopez-Alvarez VM, Puigdomenech M, Navarro X, Cobianchi S. Monoaminergic descending pathways contribute to modulation of neuropathic pain by increasing-intensity treadmill exercise after peripheral nerve injury. Experim Neurol 2018; 299(Pt A): 42-55.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.007]
[64]
Ferland CE, Parent AJ, Saran N, et al. Preoperative norepinephrine levels in cerebrospinal fluid and plasma correlate with pain intensity after pediatric spine surgery. Spine Deform 2017; 5(5): 325-33.
[http://dx.doi.org/10.1016/j.jspd.2017.03.012] [PMID: 28882350]
[65]
Sagen J, Proudfit HK. Evidence for pain modulation by pre- and postsynaptic noradrenergic receptors in the medulla oblongata. Brain Res 1985; 331(2): 285-93.
[http://dx.doi.org/10.1016/0006-8993(85)91554-9] [PMID: 2859092]
[66]
Zhou XJ, Yang J, Yan FL, et al. Norepinephrine plays an important role in antinociceptive modulation of hypothalamic paraventricular nucleus in the rat. Int J Neurosci 2010; 120(6): 428-38.
[http://dx.doi.org/10.3109/00207450802333649] [PMID: 20504214]
[67]
Zhu J, Chen Y, Lai J, et al. Dopamine D3 receptor regulates basal but not amphetamine-induced changes in pain sensitivity in mice. Neurosci Lett 2010; 477(3): 134-7.
[http://dx.doi.org/10.1016/j.neulet.2010.04.049] [PMID: 20433900]
[68]
Zhan J, Jordan CJ, Bi GH, et al. Genetic deletion of the dopamine D3 receptor increases vulnerability to heroin in mice. Neuropharmacology 2018; 141: 11-20.
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.016] [PMID: 30138692]
[69]
You ZB, Gao JT, Bi GH, et al. The novel dopamine D3 receptor antagonists/partial agonists CAB2-015 and BAK4-54 inhibit oxycodone-taking and oxycodone-seeking behavior in rats. Neuropharmacology 2017; 126: 190-9.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.007] [PMID: 28888944]
[70]
Treister R, Pud D, Ebstein RP, et al. Associations between polymorphisms in dopamine neurotransmitter pathway genes and pain response in healthy humans. Pain 2009; 147(1-3): 187-93.
[http://dx.doi.org/10.1016/j.pain.2009.09.001] [PMID: 19796878]
[71]
Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology 2017; 124: 105-20.
[http://dx.doi.org/10.1016/j.neuropharm.2017.06.015] [PMID: 28625720]
[72]
François A, Low SA, Sypek EI, et al. A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by gaba and enkephalins. Neuron 2017; 93(4): 822-839.e6.
[http://dx.doi.org/10.1016/j.neuron.2017.01.008] [PMID: 28162807]
[73]
Rizvi SJ, Iskric A, Calati R, Courtet P. Psychological and physical pain as predictors of suicide risk: evidence from clinical and neuroimaging findings. Curr Opin Psychiatry 2017; 30(2): 159-67.
[http://dx.doi.org/10.1097/YCO.0000000000000314] [PMID: 28067727]
[74]
Borsook D, Linnman C, Faria V, Strassman AM, Becerra L, Elman I. Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 2016; 68: 282-97.
[http://dx.doi.org/10.1016/j.neubiorev.2016.05.033] [PMID: 27246519]
[75]
Lau BK, Vaughan CW. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol 2014; 29: 159-64.
[http://dx.doi.org/10.1016/j.conb.2014.07.010] [PMID: 25064178]
[76]
Berlit S, Lis S, Häfner K, et al. Changes in birth-related pain perception impact of neurobiological and psycho-social factors. Arch Gynecol Obstet 2018; 297(3): 591-9.
[http://dx.doi.org/10.1007/s00404-017-4605-4] [PMID: 29196870]
[77]
Barrett JE, Haas DA. Perspectives and trends in pharmacological approaches to the modulation of pain. Adv Pharmacol 2016; 75: 1-33.
[http://dx.doi.org/10.1016/bs.apha.2015.12.004] [PMID: 26920007]
[78]
Qiao-Tasserit E, Corradi-Dell'Acqua C, Vuilleumier P. The good, the bad, and the suffering. Transient emotional episodes modulate the neural circuits of pain and empathy Neuropsychologia 2018; 116(Pt A): 99-116.
[79]
Poznański P, Lesniak A, Bujalska-Zadrozny M, Strzemecka J, Sacharczuk M. Bidirectional selection for high and low stress-induced analgesia affects G-protein activity. Neuropharmacology 2019; 144: 37-42.
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.014] [PMID: 30326238]
[80]
Mansikka H, Erbs E, Borrelli E, Pertovaara A. Influence of the dopamine D2 receptor knockout on pain-related behavior in the mouse. Brain Res 2005; 1052(1): 82-7.
[http://dx.doi.org/10.1016/j.brainres.2005.06.021] [PMID: 15996639]
[81]
Wood PB. Stress and dopamine: implications for the pathophysiology of chronic widespread pain. Med Hypotheses 2004; 62(3): 420-4.
[http://dx.doi.org/10.1016/j.mehy.2003.10.013] [PMID: 14975515]
[82]
Verma A, Kulkarni SK. Modulatory role of D-1 and D-2 dopamine receptor subtypes in nociception in mice. J Psychopharmacol (Oxford) 1993; 7(3): 270-5.
[http://dx.doi.org/10.1177/026988119300700306] [PMID: 22290841]
[83]
Matamales M, McGovern AE, Mi JD, Mazzone SB, Balleine BW, Bertran-Gonzalez J. Local D2- to D1- neuron transmodulation updates goal-directed learning in the striatum. Science 2020; 367(6477): 549-55.
[http://dx.doi.org/10.1126/science.aaz5751] [PMID: 32001651]
[84]
Capper-Loup C, Canales JJ, Kadaba N, Graybiel AM. Concurrent activation of dopamine D1 and D2 receptors is required to evoke neural and behavioral phenotypes of cocaine sensitization. J Neurosci 2002; 22(14): 6218-27.
[http://dx.doi.org/10.1523/JNEUROSCI.22-14-06218.2002] [PMID: 12122080]
[85]
Dada O, Gonzalez Zacarias A, Ongaigui C, et al. Does rebound pain after peripheral nerve block for orthopedic surgery impact postoperative analgesia and opioid consumption? A narrative review. Int J Environ Res Public Health 2019; 16(18): E3257.
[http://dx.doi.org/10.3390/ijerph16183257] [PMID: 31491863]
[86]
Aley KO, Levine JD. Different mechanisms mediate development and expression of tolerance and dependence for peripheral mu-opioid antinociception in rat. J Neurosci 1997; 17(20): 8018-23.
[http://dx.doi.org/10.1523/JNEUROSCI.17-20-08018.1997] [PMID: 9315920]
[87]
Orrù A, Marchese G, Casu G, et al. Withania somnifera root extract prolongs analgesia and suppresses hyperalgesia in mice treated with morphine. Phytomedicine 2014; 21(5): 745-52.
[http://dx.doi.org/10.1016/j.phymed.2013.10.021] [PMID: 24268297]
[88]
Yang HY, Wu ZY, Bian JS. Hydrogen sulfide inhibits opioid withdrawal-induced pain sensitization in rats by down-regulation of spinal calcitonin gene-related peptide expression in the spine. Int J Neuropsychopharmacol 2014; 17(9): 1387-95.
[http://dx.doi.org/10.1017/S1461145714000583]
[89]
Kissin I, Bright CA, Bradley EL Jr. The effect of ketamine on opioid-induced acute tolerance: can it explain reduction of opioid consumption with ketamine-opioid analgesic combinations? Anesth Analg 2000; 91(6): 1483-8.
[http://dx.doi.org/10.1097/00000539-200012000-00035] [PMID: 11094005]
[90]
Curtin LI, Grakowsky JA, Suarez M, et al. Evaluation of buprenorphine in a postoperative pain model in rats. Comp Med 2009; 59(1): 60-71.
[PMID: 19295055]
[91]
Kimbrough A, Kononoff J, Simpson S, et al. Oxycodone self-administration and withdrawal behaviors in male and female Wistar rats. Psychopharmacology (Berl) 2020; 237(5): 1545-55.
[http://dx.doi.org/10.1007/s00213-020-05479-y] [PMID: 32114633]
[92]
McLeod AL, Ritchie J, Cuello AC, Julien JP, Henry JL, Ribeiro-da-Silva A. Upregulation of an opioid-mediated antinociceptive mechanism in transgenic mice over-expressing substance P in the spinal cord. Neuroscience 2000; 96(4): 785-9.
[http://dx.doi.org/10.1016/S0306-4522(99)00606-5] [PMID: 10727796]
[93]
Feng J, Kendig JJ. N-methyl-D-aspartate receptors are implicated in hyperresponsiveness following naloxone reversal of alfentanil in isolated rat spinal cord. Neurosci Lett 1995; 189(2): 128-30.
[http://dx.doi.org/10.1016/0304-3940(95)11465-9] [PMID: 7609918]
[94]
Haleem DJ. Serotonin-1A receptor dependent modulation of pain and reward for improving therapy of chronic pain. Pharmacol Res 2018; 134: 212-9.
[http://dx.doi.org/10.1016/j.phrs.2018.06.030] [PMID: 29969666]
[95]
Ferdousi M, Finn DP. Stress-induced modulation of pain: Role of the endogenous opioid system. Prog Brain Res 2018; 239: 121-77.
[http://dx.doi.org/10.1016/bs.pbr.2018.07.002] [PMID: 30314566 ]
[96]
Palazzo E, de Novellis V, Petrosino S, et al. Neuropathic pain and the endocannabinoid system in the dorsal raphe: pharmacological treatment and interactions with the serotonergic system. Eur J Neurosci 2006; 24(7): 2011-20.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05086.x] [PMID: 17040473]
[97]
Schrepf A, Harper DE, Harte SE, et al. Endogenous opioidergic dysregulation of pain in fibromyalgia: a PET and fMRI study. Pain 2016; 157(10): 2217-25.
[http://dx.doi.org/10.1097/j.pain.0000000000000633] [PMID: 27420606]
[98]
Dean BJ, Snelling SJ, Dakin SG, Murphy RJ, Javaid MK, Carr AJ. Differences in glutamate receptors and inflammatory cell numbers are associated with the resolution of pain in human rotator cuff tendinopathy. Arthritis Res Ther 2015; 17: 176.
[http://dx.doi.org/10.1186/s13075-015-0691-5] [PMID: 26160609]
[99]
Dieb W, Ouachikh O, Durif F, Hafidi A. Lesion of the dopaminergic nigrostriatal pathway induces trigeminal dynamic mechanical allodynia. Brain Behav 2014; 4(3): 368-80.
[http://dx.doi.org/10.1002/brb3.214] [PMID: 24944866]
[100]
Cordeiro Matos S, Zamfir M, Longo G, Ribeiro-da-Silva A, Séguéla P. Noradrenergic fiber sprouting and altered transduction in neuropathic prefrontal cortex. Brain Struct Funct 2018; 223(3): 1149-64.
[PMID: 29094305]
[101]
Fried L, Modestino EJ, Siwicki D, et al. Hypodopaminergia and “Precision Behavioral Management” (PBM): it is a generational family affair. Curr Pharm Biotechnol 2019; 21(6): 528-41.
[PMID: 31820688]
[102]
Bodnar RJ, Lattner M, Wallace MM. Antagonism of stress-induced analgesia by D-phenylalanine, an anti-enkephalinase. Pharmacol Biochem Behav 1980; 13(6): 829-33.
[http://dx.doi.org/10.1016/0091-3057(80)90215-4] [PMID: 7208549]
[103]
Ehrenpreis S. D-phenylalanine and other enkephalinase inhibitors as pharmacological agents: implications for some important therapeutic application. Acupunct Electrother Res 1982; 7(2-3): 157-72.
[http://dx.doi.org/10.3727/036012982816952099] [PMID: 6128872]
[104]
Blum K, Chen TJ, Meshkin B, et al. Manipulation of catechol-O-methyl-transferase (COMT) activity to influence the attenuation of substance seeking behavior, a subtype of Reward Deficiency Syndrome (RDS), is dependent upon gene polymorphisms: a hypothesis. Med Hypotheses 2007; 69(5): 1054-60.
[http://dx.doi.org/10.1016/j.mehy.2006.12.062] [PMID: 17467918]
[105]
O’Gorman Tuura R, Warnock G, Ametamey S, et al. Imaging glutamate redistribution after acute N-acetylcysteine administration: a simultaneous PET/MR study. Neuroimage 2019; 184: 826-33.
[http://dx.doi.org/10.1016/j.neuroimage.2018.10.017] [PMID: 30296554]
[106]
Ciubotariu D, Nechifor M, Dimitriu G. Chromium picolinate reduces morphine-dependence in rats, while increasing brain serotonin levels. J Trace Elem Med Biol 2018; 50: 676-83.
[http://dx.doi.org/10.1016/j.jtemb.2018.06.025] [PMID: 30269760]
[107]
Sierra S, Lippold KM, Stevens DL, Poklis JL, Dewey WL, González-Maeso J. Adjunctive effect of the serotonin 5-HT2C receptor agonist lorcaserin on opioid-induced antinociception in mice. Neuropharmacology 2020; 167: 107949.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107949] [PMID: 31987863]
[108]
Vrecko K, Storga D, Birkmayer JG, et al. NADH stimulates endogenous dopamine biosynthesis by enhancing the recycling of tetrahydrobiopterin in rat phaeochromocytoma cells. Biochim Biophys Acta 1997; 1361(1): 59-65.
[http://dx.doi.org/10.1016/S0925-4439(97)00016-1] [PMID: 9247090]
[109]
Moon Y, Lee KH, Park JH, Geum D, Kim K. Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J Neurochem 2005; 93(5): 1199-208.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03112.x] [PMID: 15934940]
[110]
Peraza AV, Guzmán DC, Brizuela NO, et al. Riboflavin and pyridoxine restore dopamine levels and reduce oxidative stress in brain of rats. BMC Neurosci 2018; 19(1): 71.
[http://dx.doi.org/10.1186/s12868-018-0474-4] [PMID: 30413185]
[111]
Mori T, Yoshizawa K, Ueno T, et al. Involvement of dopamine D2 receptor signal transduction in the discriminative stimulus effects of the κ-opioid receptor agonist U-50,488H in rats. Behav Pharmacol 2013; 24(4): 275-81.
[http://dx.doi.org/10.1097/FBP.0b013e3283635f6b] [PMID: 23838963]
[112]
Blum K, Gondré-Lewis MC, Baron D, et al. Introducing precision addiction management of reward deficiency syndrome, the construct that underpins all addictive behaviors. Front Psychiatry 2018; 9: 548.
[http://dx.doi.org/10.3389/fpsyt.2018.00548] [PMID: 30542299]
[113]
Blum K, Siwicki D, Baron D, Modestino EJ, Badgaiyan RD. The benefits of genetic addiction risk score (GARS™) and pro-dopamine regulation in combating suicide in the American Indian population. J Syst Integr Neurosci 2018; 4: 1-6.
[http://dx.doi.org/10.15761/JSIN.1000195] [PMID: 31660252]
[114]
Downs BW, Blum K, Baron D, et al. Death by Opioids: are there non-addictive scientific solutions? J Syst Integr Neurosci 2019; 5: 5.
[http://dx.doi.org/10.15761/JSIN.1000211] [PMID: 31824737]
[115]
Blum K, Baron D. Opioid substitution therapy: achieving harm reduction while searching for a prophylactic solution. Curr Pharm Biotechnol 2019; 20(3): 180-2.
[http://dx.doi.org/10.2174/138920102003190422150527] [PMID: 31146660]
[116]
Baron D, Blum K, Chen A, Gold M, Badgaiyan RD. Conceptualizing addiction from an osteopathic perspective: dopamine homeostasis. J Am Osteopath Assoc 2018; 118(2): 115-8.
[http://dx.doi.org/10.7556/jaoa.2018.026] [PMID: 29379966]

© 2024 Bentham Science Publishers | Privacy Policy