Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Arylpyrazoles: Heterocyclic Scaffold of Immense Therapeutic Application

Author(s): Garima Tripathi, Anil Kumar Singh* and Abhijeet Kumar*

Volume 24, Issue 14, 2020

Page: [1555 - 1581] Pages: 27

DOI: 10.2174/1570179417999200628035645

Price: $65

Abstract

Among the major class of heterocycles, the N-heterocycles, such as pyrazoles, are scaffolds of vast medicinal values. Various drugs and other biologically active molecules are known to contain these N-heterocycles as core motifs. Specifically, arylpyrazoles have exhibited a diverse range of biological activities, including anti-inflammatory, anticancerous, antimicrobial and various others. For instance, arylpyrazoles are present as core moieties in various insecticides, fungicides and drugs such as Celebrex and Trocoxil. The present review will be highlighting the significant therapeutic importance of pyrazole derivatives developed in the last few years.

Keywords: Pyrazole, anti-inflammatory, anti-malarial, anti-cancerous, anti-viral, antifungal.

Graphical Abstract
[1]
Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[2]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[3]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[4]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 2020, 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[5]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[6]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[7]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020., 178104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[8]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[9]
Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[10]
Macchiagodena, M.; Pagliai, M.; Procacci, P. Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modelling. Chem. Phys. Lett., 2020, 750, 137489-137492.
[http://dx.doi.org/10.1016/j.cplett.2020.137489] [PMID: 32313296]
[11]
Cava, C.; Bertoli, G.; Castiglioni, I. In silico discovery of candidate drugs against Covid-19. Viruses, 2020, 12(4), 404.
[http://dx.doi.org/10.3390/v12040404] [PMID: 32268515]
[12]
Li, J.J. Heterocyclic Chemistry in Drug Discovery, 1st ed; John Wiley and Sons, 2013.
[13]
Majumdar, K.C.; Chattopadhyay, S.K. Heterocycles in Natural Product Synthesis, 1st ed; John Wiley and Sons, 2011.
[http://dx.doi.org/10.1002/9783527634880]
[14]
Kumar, A.; Rao, M.L.N. Pot-economic synthesis of diarylpyrazoles and pyrimidines involving Pd-catalyzed cross-coupling of 3-trifloxychromone and triarylbismuth. J. Chem. Sci., 2018, 130(12), 1-11.
[http://dx.doi.org/10.1007/s12039-018-1565-6]
[15]
Kumar, A.; Rao, M.L.N. Pd-catalyzed cross-coupling study of bi-functional 3-bromo-4-trifloxycoumarins with triarylbismuth reagents. Tetrahedron, 2015, 71, 5137-5147.
[http://dx.doi.org/10.1016/j.tet.2015.05.060]
[16]
Kumar, A.; Rao, M.L.N. Pd-Catalyzed chemo-selective mono-arylations and bis-arylations of functionalized 4-chlorocoumarins with triarylbismuths as threefold arylating reagents. Tetrahedron, 2014, 70, 6995-7005.
[http://dx.doi.org/10.1016/j.tet.2014.07.059]
[17]
Kumar, A.; Rao, M.L.N. Pd-catalyzed atom-economic couplings of triarylbismuth reagents with 2-bromo- and 2,6-dibromo-chromones and synthesis of a medicinally important fisetin molecule. Tetrahedron Lett., 2014, 55, 5764-5770.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.081]
[18]
Küçükgüzel, S.G.; Şenkardeş, S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem., 2015, 97, 786-815.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.059] [PMID: 25555743]
[19]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[http://dx.doi.org/10.1016/j.bmc.2017.09.035] [PMID: 28988624]
[20]
Chen, C. COX-2's new role in inflammation. Nat. Chem. Biol., 2010, 6(6), 401-402.
[http://dx.doi.org/10.1038/nchembio.375] [PMID: 20479749]
[21]
Muraoka, N.; Nara, K.; Tamura, F.; Kojima, H.; Yamakawa, H.; Sadahiro, T.; Miyamoto, K.; Isomi, M.; Haginiwa, S.; Tani, H.; Kurotsu, S.; Osakabe, R.; Torii, S.; Shimizu, S.; Okano, H.; Sugimoto, Y.; Fukuda, K.; Ieda, M. Role of cyclooxygenase-2-mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming. Nat. Commun., 2019, 10(1), 674.
[http://dx.doi.org/10.1038/s41467-019-08626-y] [PMID: 30787297]
[22]
Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A Comprehensive review of nonsteroidal anti-inflammatory drug use in the elderly. Aging Dis., 2018, 9(1), 143-150.
[http://dx.doi.org/10.14336/AD.2017.0306] [PMID: 29392089]
[23]
Wyatt, J.E.; Pettit, W.L.; Harirforoosh, S. Pharmacogenetics of nonsteroidal anti-inflammatory drugs. Pharmacogenomics J., 2012, 12(6), 462-467.
[http://dx.doi.org/10.1038/tpj.2012.40] [PMID: 23044603]
[24]
Mohsin, N.; Irfan, M. Selective cyclooxygenase-2 inhibitors: a review of recent chemical scaffolds with promising anti-inflammatory and COX-2 inhibitory activities. Med. Chem. Res., 2020, 29, 809-830.
[http://dx.doi.org/10.1007/s00044-020-02528-1]
[25]
Burnett, B.P.; Levy, R.M. 5-Lipoxygenase metabolic contributions to NSAID-induced organ toxicity. Adv. Ther., 2012, 29(2), 79-98.
[http://dx.doi.org/10.1007/s12325-011-0100-7] [PMID: 22351432]
[26]
Gedawy, E.M.; Kassab, A.E.; El Kerdawy, A.M. Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX-2/5-LOX inhibitors. Eur. J. Med. Chem., 2020, 189, 112066.
[http://dx.doi.org/10.1016/j.ejmech.2020.112066] [PMID: 31982653]
[27]
Hassan, G.S.; Abdel Rahman, D.E.; Abdelmajeed, E.A.; Refaey, R.H.; Alaraby Salem, M.; Nissan, Y.M. New pyrazole derivatives: synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur. J. Med. Chem., 2019, 171, 332-342.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.052] [PMID: 30928706]
[28]
Taher, E.S.; Ibrahim, T.S.; Fares, M.; Al-Mahmoudy, A.M.; Radwan, A.F.; Orabi, K.Y.; El-Sabbagh, O.I. Novel benzenesulfonamide and 1, 2-benzisothiazol-3 (2H)-one-1, 1-dioxide derivatives as Medicinal Chemistry Research potential selective COX-2 inhibitors. Eur. J. Med. Chem., 2019, 171, 372-382.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.042] [PMID: 30928709]
[29]
Nossaman, V.E.; Nossaman, B.D.; Kadowitz, P.J. Nitrates and nitrites in the treatment of ischemic cardiac disease. Cardiol. Rev., 2010, 18(4), 190-197.
[http://dx.doi.org/10.1097/CRD.0b013e3181c8e14a] [PMID: 20539102]
[30]
Ren, S.Z.; Wang, Z.C.; Zhu, D.; Zhu, X.H.; Shen, F.Q.; Wu, S.Y.; Chen, J.J.; Xu, C.; Zhu, H.L. Design, synthesis and biological evaluation of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy. Eur. J. Med. Chem., 2018, 157, 909-924.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.048] [PMID: 30149323]
[31]
Ren, S.Z.; Wang, Z.C.; Zhu, X.H.; Zhu, D.; Li, Z.; Shen, F.Q.; Duan, Y.T.; Cao, H.; Zhao, J.; Zhu, H.L. Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition. Bioorg. Med. Chem., 2018, 26(14), 4264-4275.
[http://dx.doi.org/10.1016/j.bmc.2018.07.022] [PMID: 30031652]
[32]
Shen, F.Q.; Wang, Z.C.; Wu, S.Y.; Ren, S.Z.; Man, R.J.; Wang, B.Z.; Zhu, H.L. Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorg. Med. Chem. Lett., 2017, 27(16), 3653-3660.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.020] [PMID: 28720504]
[33]
Ghareb, N.; Elshihawy, H.A.; Abdel-Daim, M.M.; Helal, M.A. Novel pyrazoles and pyrazolo[1,2-a]pyridazines as selective COX-2 inhibitors; Ultrasound-assisted synthesis, biological evaluation, and DFT calculations. Bioorg. Med. Chem. Lett., 2017, 27(11), 2377-2383.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.020] [PMID: 28427813]
[34]
Abdellatif, K.R.A.; Abdelgawad, M.A.; Labib, M.B.; Zidan, T.H. Synthesis and biological evaluation of new diarylpyrazole and triarylimidazoline derivatives as selective COX‐2 inhibitors. Arch. Pharm. (Weinheim), 2017, 350(8), e1600386.
[http://dx.doi.org/10.1002/ardp.201600386] [PMID: 28605057]
[35]
Faidallah, H.M.; Rostom, S.A.F. Synthesis, anti-inflammatory activity, and COX-1/2 inhibition profile of some novel non-acidic polysubstituted pyrazoles and pyrano[2,3-c]pyrazoles. Arch. Pharm. (Weinheim), 2017, 350(5), e1700025.
[http://dx.doi.org/10.1002/ardp.201700025] [PMID: 28370254]
[36]
Abd El Razik, H.A.; Badr, M.H.; Atta, A.H.; Mouneir, S.M.; Abu-Serie, M.M. Benzodioxole-pyrazole hybrids as anti-inflammatory and analgesic agents with COX-1,2/5-LOX Inhibition and antioxidant potential. Arch. Pharm. (Weinheim), 2017, 350(5), e1700026.
[http://dx.doi.org/10.1002/ardp.201700026] [PMID: 28418202]
[37]
Abdelall, E.K.; Kamel, G.M. Synthesis of new thiazolo-celecoxib analogues as dual cyclooxygenase-2/15-lipoxygenase inhibitors: Determination of regio-specific different pyrazole cyclization by 2D NMR. Eur. J. Med. Chem., 2016, 118, 250-258.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.049] [PMID: 27131067]
[38]
Mishra, S.; Pandey, A.; Manvati, S. Coumarin: an emerging antiviral agent. Heliyon, 2020, 6(1), e03217.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03217] [PMID: 32042967]
[39]
Lu, X.Y.; Wang, Z.C.; Ren, S.Z.; Shen, F.Q.; Man, R.J.; Zhu, H.L. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis. Bioorg. Med. Chem. Lett., 2016, 26(15), 3491-3498.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.037] [PMID: 27349331]
[40]
Bechmann, N.; Kniess, T.; Köckerling, M.; Pigorsch, A.; Steinbach, J.; Pietzsch, J. Novel (pyrazolyl)benzenesulfonamides with a nitric oxide-releasing moiety as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(16), 3295-3300.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.059] [PMID: 26081289]
[41]
Hassan, G.S.; Abou-Seri, S.M.; Kamel, G.; Ali, M.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: design, synthesis and evaluation as potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 482-493.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.033] [PMID: 24607877]
[42]
Kumar, P.; Chandak, N.; Kaushik, P.; Sharma, C.; Kaushik, D.; Aneja, K.R.; Sharma, P.K. Benzenesulfonamide bearing pyrazolylpyrazolines: synthesis and evaluation as anti-inflammatory antimicrobial agents. Med. Chem. Res., 2014, 23, 882-895.
[http://dx.doi.org/10.1007/s00044-013-0679-0]
[43]
Mohammed, K.O.; Nissan, Y.M. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents. Chem. Biol. Drug Des., 2014, 84(4), 473-488.
[http://dx.doi.org/10.1111/cbdd.12336] [PMID: 24720475]
[44]
Tewari, A.K.; Singh, V.P.; Yadav, P.; Gupta, G.; Singh, A.; Goel, R.K.; Shinde, P.; Mohan, C.G. Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorg. Chem., 2014, 56, 8-15.
[http://dx.doi.org/10.1016/j.bioorg.2014.05.004] [PMID: 24893208]
[45]
Alegaon, S.G.; Alagawadi, K.R.; Garg, M.K.; Dushyant, K.; Vinod, D. 1,3,4-Trisubstituted pyrazole analogues as promising anti-inflammatory agents. Bioorg. Chem., 2014, 54, 51-59.
[http://dx.doi.org/10.1016/j.bioorg.2014.04.001] [PMID: 24793214]
[46]
Bansal, S.; Bala, M.; Suthar, S.K.; Choudhary, S.; Bhattacharya, S.; Bhardwaj, V.; Singla, S.; Joseph, A. Design and synthesis of novel 2-phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2 inhibitors with potent anti-inflammatory activity. Eur. J. Med. Chem., 2014, 80, 167-174.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.045] [PMID: 24780593]
[47]
World Malaria Report. Geneva: World Health Organization, . , 2019. Licence: CC BY-NC-SA 3.0 IGO
[48]
Cunico, W.; Cechinel, C.A.; Bonacorso, H.G.; Martins, M.A.P.; Zanatta, N.; de Souza, M.V.N.; Freitas, I.O.; Soares, R.P.P.; Krettli, A.U. Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues. Bioorg. Med. Chem. Lett., 2006, 16(3), 649-653.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.033] [PMID: 16257205]
[49]
Vaidya, A.B.; Morrisey, J.M.; Zhang, Z.; Das, S.; Daly, T.M.; Otto, T.D.; Spillman, N.J.; Wyvratt, M.; Siegl, P.; Marfurt, J.; Wirjanata, G.; Sebayang, B.F.; Price, R.N.; Chatterjee, A.; Nagle, A.; Stasiak, M.; Charman, S.A.; Angulo-Barturen, I.; Ferrer, S.; Belén Jiménez-Díaz, M.; Martínez, M.S.; Gamo, F.J.; Avery, V.M.; Ruecker, A.; Delves, M.; Kirk, K.; Berriman, M.; Kortagere, S.; Burrows, J.; Fan, E.; Bergman, L.W. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nat. Commun., 2014, 5, 5521.
[http://dx.doi.org/10.1038/ncomms6521] [PMID: 25422853]
[50]
Das, S.; Bhatanagar, S.; Morrisey, J.M.; Daly, T.M.; Burns, J.M., Jr; Coppens, I.; Vaidya, A.B. Na+ Influx induced by new antimalarials causes rapid alterations in the cholesterol content and morphology of Plasmodium falciparum. PLoS Pathog., 2016, 12(5), e1005647.
[http://dx.doi.org/10.1371/journal.ppat.1005647] [PMID: 27227970]
[51]
Maron, M.I.; Magle, C.T.; Czesny, B.; Turturice, B.A.; Huang, R.; Zheng, W.; Vaidya, A.B.; Williamson, K.C. Maduramicin rapidly eliminates malaria parasites and potentiates the gametocytocidal activity of the pyrazoleamide PA21A050. Antimicrob. Agents Chemother., 2015, 60(3), 1492-1499.
[http://dx.doi.org/10.1128/AAC.01928-15] [PMID: 26711768]
[52]
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843] [PMID: 17665872]
[53]
Aggarwal, S.; Paliwal, D.; Kaushik, D.; Gupta, G.K.; Kumar, A. Pyrazole schiff base hybrids as anti-malarial agents: synthesis, in vitro screening and computational study. Comb. Chem. High Throughput Screen., 2018, 21(3), 194-203.
[http://dx.doi.org/10.2174/1386207321666180213092911] [PMID: 29436997]
[54]
Singh, A.K.; Rajendran, V.; Pant, A.; Ghosh, P.C.; Singh, N.; Latha, N.; Garg, S.; Pandey, K.C.; Singh, B.K.; Rathi, B. Design, synthesis and biological evaluation of functionalized phthalimides: a new class of antimalarials and inhibitors of falcipain-2, a major hemoglobinase of malaria parasite. Bioorg. Med. Chem., 2015, 23(8), 1817-1827.
[http://dx.doi.org/10.1016/j.bmc.2015.02.029] [PMID: 25766631]
[55]
Kumar, G.; Tanwar, O.; Kumar, J.; Akhter, M.; Sharma, S.; Pillai, C.R.; Alam, M.M.; Zama, M.S. Pyrazole-pyrazoline as promising novel antimalarial agents: a mechanistic study. Eur. J. Med. Chem., 2018, 149, 139-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.082] [PMID: 29499486]
[56]
Sherman, I.W. Malaria: Parasite Biology, Pathogenesis and Protection; ASM Press: Washington, DC, 1998.
[57]
Marella, A.; Shaquiquzzaman, M.; Akhter, M.; Verma, G.; Alam, M.M. Novel pyrazole-pyrazoline hybrids endowed with thioamide as antimalarial agents: their synthesis and 3D-QSAR studies. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 597-606.
[http://dx.doi.org/10.3109/14756366.2014.958081] [PMID: 25333767]
[58]
David Hong, W.; Leung, S.C.; Amporndanai, K.; Davies, J.; Priestley, R.S.; Nixon, G.L.; Berry, N.G.; Samar Hasnain, S.; Antonyuk, S.; Ward, S.A.; Biagini, G.A.; O’Neill, P.M. Potent antimalarial 2-pyrazolyl quinolone bc1 (Qi) inhibitors with improved drug-like properties. ACS Med. Chem. Lett., 2018, 9(12), 1205-1210.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00371] [PMID: 30613327]
[59]
Le Manach, C.; Paquet, T.; Brunschwig, C.; Njoroge, M.; Han, Z.; Cabrera, D.G.; Bashyam, S.; Dhinakaran, R.; Taylor, D.; Reader, J.; Botha, M.; Churchyard, A.; Lauterbach, S.; Coetzer, T.L.; Birkholtz, L.M.; Meister, S.; Winzeler, E.A.; Waterson, D.; Witty, M.J.; Wittlin, S.; Díaz, M.B.J.; Martínez, M.S.; Ferrer, S.; Barturen, I.A.; Street, L.J.; Chibale, K. A novel pyrazolopyridine with in vivo activity in Plasmodium berghei and Plasmodium falciparum-infected mouse models from structure-activity relationship studies around the core of recently identified antimalarial imidazopyridazines. J. Med. Chem., 2015, 58(21), 8713-8722.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01605] [PMID: 26502160]
[60]
Silva, T.B.; Bernardino, A.M.R.; Ferreira, M.L.G.; Rogerio, K.R.; Carvalho, L.J.M.; Boechat, N.; Pinheiro, L.C.S. Design, synthesis and anti-P. falciparum activity of pyrazolopyridine-sulfonamide derivatives. Bioorg. Med. Chem., 2016, 24(18), 4492-4498.
[http://dx.doi.org/10.1016/j.bmc.2016.07.049] [PMID: 27485600]
[61]
Villanueva, M.T. Infectious diseases: decrypting Cryptosporidium. Nat. Rev. Drug Discov., 2017, 16(8), 527.
[http://dx.doi.org/10.1038/nrd.2017.147] [PMID: 28757629]
[62]
Wu, Y.; Tang, C.; Rui, R.; Yang, L.; Ding, W.; Wang, J.; Li, Y.; Lai, C.C.; Wang, Y.; Luo, R.; Xiao, W.; Zhang, H.; Zheng, Y.; He, Y. Synthesis and biological evaluation of a series of 2-(((5-akly/aryl-1H-pyrazol-3-yl)methyl)thio)-5-alkyl-6-(cyclohexylmethyl)-pyrimidin-4(3H)-ones as potential HIV-1 inhibitors. Acta Pharm. Sin. B, 2020, 10(3), 512-528.
[http://dx.doi.org/10.1016/j.apsb.2019.08.009] [PMID: 32140396]
[63]
Kumar, S.; Gupta, S.; Abadi, L.F.; Gaikwad, S.; Desai, D.; Bhutani, K.K.; Kulkarni, S.; Singh, I.P. Synthesis and in-vitro anti-HIV-1 evaluation of novel pyrazolo[4,3-c]pyridin-4-one derivatives. Eur. J. Med. Chem., 2019, 183, 111714.
[http://dx.doi.org/10.1016/j.ejmech.2019.111714] [PMID: 31557609]
[64]
Desideri, N.; Fioravanti, R.; Proietti Monaco, L.; Atzori, E.M.; Carta, A.; Delogu, I.; Collu, G.; Loddo, R. Design, synthesis, antiviral evaluation, and SAR studies of new 1-(phenylsulfonyl)-1H-pyrazol-4-yl-methylaniline derivatives. Front Chem., 2019, 7, 214.
[http://dx.doi.org/10.3389/fchem.2019.00214] [PMID: 31024899]
[65]
Yang, Z.; Li, P.; Gan, X. Novel pyrazole-hydrazone derivatives containing an isoxazole moiety: design, synthesis, and antiviral activity. Molecules, 2018, 23(7), 1798.
[http://dx.doi.org/10.3390/molecules23071798] [PMID: 30037021]
[66]
Corona, A.; Onnis, V.; Deplano, A.; Bianco, G.; Demurtas, M.; Distinto, S.; Cheng, Y.C.; Alcaro, S.; Esposito, F.; Tramontano, E. Design, synthesis and antiviral evaluation of novel heteroarylcarbothioamide derivatives as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and RDDP functions. Pathog. Dis., 2017, 75(6), 78.
[http://dx.doi.org/10.1093/femspd/ftx078] [PMID: 28859311]
[67]
Liu, G.N.; Luo, R.H.; Zhou, Y.; Zhang, X.J.; Li, J.; Yang, L.M.; Zheng, Y.T.; Liu, H. Synthesis and anti-HIV-1 activity evaluation for novel 3a,6a-dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione derivatives. Molecules, 2016, 21(9), 1198.
[http://dx.doi.org/10.3390/molecules21091198] [PMID: 27617994]
[68]
Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.A.; Yousef, M.H. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur. J. Med. Chem., 2015, 102, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.005] [PMID: 26291036]
[69]
Fioravanti, R.; Desideri, N.; Biava, M.; Droghini, P.; Atzori, E.M.; Ibba, C.; Collu, G.; Sanna, G.; Delogu, I.; Loddo, R.N. -((1,3-Diphenyl-1H-pyrazol-4-yl)methyl)anilines: a novel class of anti-RSV agents. Bioorg. Med. Chem. Lett., 2015, 25(11), 2401-2404.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.006] [PMID: 25913116]
[70]
Han, C.; Guo, Y.C.; Wang, D.D.; Dai, X.J.; Wu, F.J.; Liu, H.F.; Dai, G.F.; Tao, J.C. Novel pyrazole fused heterocyclic ligands: synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity. Chin. Chem. Lett., 2015, 26, 534-538.
[http://dx.doi.org/10.1016/j.cclet.2015.01.006]
[71]
Manvar, D.; Pelliccia, S.; La Regina, G.; Famiglini, V.; Coluccia, A.; Ruggieri, A.; Anticoli, S.; Lee, J.C.; Basu, A.; Cevik, O.; Nencioni, L.; Palamara, A.T.; Zamperini, C.; Botta, M.; Neyts, J.; Leyssen, P.; Basu, N.K.; Silvestri, R. New 1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides inhibit hepatitis C virus replication via suppression of cyclooxygenase-2. Eur. J. Med. Chem., 2015, 90, 497-506.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.042] [PMID: 25483263]
[72]
Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature, 2012, 484(7393), 186-194.
[http://dx.doi.org/10.1038/nature10947] [PMID: 22498624]
[73]
Klevens, R.M.; Morrison, M.A.; Nadle, J.; Petit, S.; Gershman, K.; Ray, S.; Harrison, L.H.; Lynfield, R.; Dumyati, G.; Townes, J.M.; Craig, A.S.; Zell, E.R.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Fridkin, S.K. Active Bacterial Core surveillance (ABCs) MRSA investigators. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA, 2007, 298(15), 1763-1771.
[http://dx.doi.org/10.1001/jama.298.15.1763] [PMID: 17940231]
[74]
Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses, 2008, 51(Suppl. 4), 2-15.
[http://dx.doi.org/10.1111/j.1439-0507.2008.01606.x] [PMID: 18783559]
[75]
Thomas, J.; Jacobson, G.A.; Narkowicz, C.K.; Peterson, G.M.; Burnet, H.; Sharpe, C. Toenail onychomycosis: an important global disease burden. J. Clin. Pharm. Ther., 2010, 35(5), 497-519.
[http://dx.doi.org/10.1111/j.1365-2710.2009.01107.x] [PMID: 20831675]
[76]
Sobel, J.D. Vulvovaginal candidosis. Lancet, 2007, 369(9577), 1961-1971.
[http://dx.doi.org/10.1016/S0140-6736(07)60917-9] [PMID: 17560449]
[77]
Walker, B.; Barrett, S.; Polasky, S.; Galaz, V.; Folke, C.; Engström, G.; Ackerman, F.; Arrow, K.; Carpenter, S.; Chopra, K.; Daily, G.; Ehrlich, P.; Hughes, T.; Kautsky, N.; Levin, S.; Mäler, K.G.; Shogren, J.; Vincent, J.; Xepapadeas, T.; de Zeeuw, A. Environment. Looming global-scale failures and missing institutions. Science, 2009, 325(5946), 1345-1346.
[http://dx.doi.org/10.1126/science.1175325] [PMID: 19745137]
[78]
Docquier, J-D.; Mangani, S. An update on β-lactamase inhibitor discovery and development. Drug Resist. Updat., 2018, 36, 13-29.
[http://dx.doi.org/10.1016/j.drup.2017.11.002]
[79]
Long, K.S.; Vester, B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother., 2012, 56(2), 603-612.
[http://dx.doi.org/10.1128/AAC.05702-11] [PMID: 22143525]
[80]
Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Cotinat, M.C.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; Ouakrim, D.A.; Oliveira, T.C.; Struelens, M.J.; Suetens, C.; Monnet, D.L. Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis., 2019, 19(1), 56-66.
[http://dx.doi.org/10.1016/S1473-3099(18)30605-4] [PMID: 30409683]
[81]
Ledingham, K.; Hinchliffe, S.; Jackson, M.; Thomas, F.; Tomson, G. Antibiotic Resistance: Using a Cultural Contexts of Health Approach to Address a Global Health Challenge; World Health Organization, 2019.
[82]
Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: human fungal infections. Sci. Transl. Med., 2012, 4(165), 165rv13.
[http://dx.doi.org/10.1126/scitranslmed.3004404] [PMID: 23253612]
[83]
Mugnaini, C.; Sannio, F.; Brizzi, A.; Del Prete, R.; Simone, T.; Ferraro, T.; De Luca, F.; Corelli, F.; Docquier, J.D. Screen of unfocused libraries identified compounds with direct or synergistic antibacterial activity. ACS Med. Chem. Lett., 2020, 11(5), 899-905.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00674] [PMID: 32435403]
[84]
Fonseca, D.; Pinto, S.M.L.; Cordero, M.V.R.; Vargas, J.D.; Moreno, E.M.M.; Macías, M.A.; Suescun, L.; Castro, Á.M.; Hurtado, J.J. Inhibition of C. albicans dimorphic switch by cobalt(II) complexes with ligands derived from pyrazoles and dinitrobenzoate: synthesis, characterization and biological activity. Int. J. Mol. Sci., 2019, 20(13), 3237.
[http://dx.doi.org/10.3390/ijms20133237] [PMID: 31266213]
[85]
Fouda, A.M.; Abbas, H.S.; Ahmed, E.H.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I. synthesis, in vitro antimicrobial and cytotoxic activities of some new pyrazolo[1,5-a]pyrimidine derivatives. Molecules, 2019, 24(6), 1080.
[http://dx.doi.org/10.3390/molecules24061080] [PMID: 30893820]
[86]
Khan, I.; Kanugala, S.; Shareef, M.A.; Ganapathi, T.; Shaik, A.B.; Shekar, K.C.; Kamal, A.; Kumar, C.G. Synthesis of new bis-pyrazole linked hydrazides and their in vitro evaluation as antimicrobial and anti-biofilm agents: a mechanistic role on ergosterol biosynthesis inhibition in Candida albicans. Chem. Biol. Drug Des., 2019, 94(1), 1339-1351.
[http://dx.doi.org/10.1111/cbdd.13509] [PMID: 30803151]
[87]
Nalawade, J.; Shinde, A.; Chavan, A.; Patil, S.; Suryavanshi, M.; Modak, M.; Choudhari, P.; Bobade, V.D.; Mhaske, P.C. Synthesis of new thiazolyl-pyrazolyl-1,2,3-triazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2019, 179, 649-659.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.074] [PMID: 31279297]
[88]
Shareef, M.A.; Sirisha, K.; Khan, I.; Sayeed, I.B.; Jadav, S.S.; Ramu, G.; Kumar, C.G.; Kamal, A.; Babu, B.N. Design, synthesis, and antimicrobial evaluation of 1,4-dihydroindeno[1,2-c]pyrazole tethered carbohydrazide hybrids: exploring their in silico ADMET, ergosterol inhibition and ROS inducing potential. MedChemComm, 2019, 10(5), 806-813.
[http://dx.doi.org/10.1039/C9MD00155G] [PMID: 31191871]
[89]
Ahmed, W.; Yan, X.; Hu, D.; Adnan, M.; Tang, R.Y.; Cui, Z.N. Synthesis and fungicidal activity of novel pyrazole derivatives containing 5-Phenyl-2-Furan. Bioorg. Med. Chem., 2019, 27(19), 115048.
[http://dx.doi.org/10.1016/j.bmc.2019.115048] [PMID: 31439387]
[90]
Hammad, A.; Abutaleb, N.S.; Elsebaei, M.M.; Norvil, A.B.; Alswah, M.; Ali, A.O.; Abdel-Aleem, J.A.; Alattar, A.; Bayoumi, S.A.; Gowher, H.; Seleem, M.N.; Mayhoub, A.S. From phenylthiazoles to phenylpyrazoles: broadening the antibacterial spectrum toward carbapenem-resistant bacteria. J. Med. Chem., 2019, 62(17), 7998-8010.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00720] [PMID: 31369262]
[91]
Zhong, W.; Koay, A.; Ngo, A.; Li, Y.; Nah, Q.; Wong, Y.H.; Chionh, Y.H.; Ng, H.Q.; Koh-Stenta, X.; Poulsen, A.; Foo, K.; McBee, M.; Choong, M.L.; El Sahili, A.; Kang, C.; Matter, A.; Lescar, J.; Hill, J.; Dedon, P. Targeting the bacterial epitranscriptome for antibiotic development: discovery of novel tRNA-(N1G37) methyltransferase (TrmD) inhibitors. ACS Infect. Dis., 2019, 5(3), 326-335.
[http://dx.doi.org/10.1021/acsinfecdis.8b00275] [PMID: 30682246]
[92]
Zhang, T.Y.; Zheng, C.J.; Wu, J.; Sun, L.P.; Piao, H.R. Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2019, 29(9), 1079-1084.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.033] [PMID: 30842033]
[93]
Abrigach, F.; Rokni, Y.; Takfaoui, A.; Khoutoul, M.; Doucet, H.; Asehraou, A.; Touzani, R. In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives. Biomed. Pharmacother., 2018, 103, 653-661.
[http://dx.doi.org/10.1016/j.biopha.2018.04.061] [PMID: 29679907]
[94]
Zhang, A.; Zhou, J.; Tao, K.; Hou, T.; Jin, H. Design, synthesis and antifungal evaluation of novel pyrazole carboxamides with diarylamines scaffold as potent succinate dehydrogenase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(18), 3042-3045.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.001] [PMID: 30097371]
[95]
El-Attar, M.A.Z.; Elbayaa, R.Y.; Shaaban, O.G.; Habib, N.S.; Abdel Wahab, A.E.; Abdelwahab, I.A.; M., El-Hawash S.A. Synthesis of pyrazolo-1,2,4-triazolo[4,3-a]quinoxalines as antimicrobial agents with potential inhibition of DHPS enzyme. Future Med. Chem., 2018, 10(18), 2155-2175.
[http://dx.doi.org/10.4155/fmc-2018-0082] [PMID: 30088415]
[96]
Yan, Z.; Liu, A.; Huang, M.; Liu, M.; Pei, H.; Huang, L.; Yi, H.; Liu, W.; Hu, A. Design, synthesis, DFT study and antifungal activity of the derivatives of pyrazolecarboxamide containing thiazole or oxazole ring. Eur. J. Med. Chem., 2018, 149, 170-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.036] [PMID: 29501939]
[97]
Ren, Z.L.; Liu, H.; Jiao, D.; Hu, H.T.; Wang, W.; Gong, J.X.; Wang, A.L.; Cao, H.Q.; Lv, X.H. Design, synthesis, and antifungal activity of novel cinnamon-pyrazole carboxamide derivatives. Drug Dev. Res., 2018, 79(6), 307-312.
[http://dx.doi.org/10.1002/ddr.21469] [PMID: 30256430]
[98]
Sowmya, D.V.; Teja, G.L.; Padmaja, A.; Prasad, V.K.; Padmavathi, V. Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1,3-dipolar cycloaddition methodology and their antimicrobial activity. Eur. J. Med. Chem., 2018, 143, 891-898.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.093] [PMID: 29227929]
[99]
Barakat, A.; Al-Majid, A.M.; Al-Qahtany, B.M.; Ali, M.; Teleb, M.; Al-Agamy, M.H.; Naz, S.; Haq, Z. Synthesis, antimicrobial activity, pharmacophore modeling and molecular docking studies of new pyrazole-dimedone hybrid architectures. Chem. Cent. J., 2018, 12(1), 29.
[http://dx.doi.org/10.1186/s13065-018-0399-0] [PMID: 29541952]
[100]
Radini, I.A.M. Design, synthesis, and antimicrobial evaluation of novel pyrazoles and pyrazolyl 1,3,4-thiadiazine derivatives. Molecules, 2018, 23(9), 2092.
[http://dx.doi.org/10.3390/molecules23092092] [PMID: 30134530]
[101]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[102]
Abrigach, F.; Bouchal, B.; Riant, O.; Macé, Y.; Takfaoui, A.; Radi, S.; Oussaid, A.; Bellaoui, M.; Touzani, R.; New, N.; New, N. N,N′,N′-tetradentate pyrazoly agents: synthesis and evaluation of their antifungal and antibacterial activities. Med. Chem., 2016, 12(1), 83-89.
[http://dx.doi.org/10.2174/1573406411666150519111800] [PMID: 25985861]
[103]
Elshaier, Y.A.; Barakat, A.; Al-Qahtany, B.M.; Al-Majid, A.M.; Al-Agamy, M.H. Synthesis of pyrazole-thiobarbituric acid derivatives: antimicrobial activity and docking studies. Molecules, 2016, 21(10), 1337.
[http://dx.doi.org/10.3390/molecules21101337] [PMID: 27735850]
[104]
Hafez, H.N.; El-Gazzar, A.R. Synthesis and biological evaluation of N- pyrazolyl derivatives and pyrazolopyrimidine bearing a biologically active sulfonamide moiety as potential antimicrobial agent. Molecules, 2016, 21(9), 1156.
[http://dx.doi.org/10.3390/molecules21091156] [PMID: 27589717]
[105]
Kumar, R.S.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci., 2016, 23(5), 614-620.
[http://dx.doi.org/10.1016/j.sjbs.2015.07.005] [PMID: 27579011]
[106]
Du, S.; Tian, Z.; Yang, D.; Li, X.; Li, H.; Jia, C.; Che, C.; Wang, M.; Qin, Z. Synthesis, antifungal activity and structure-activity relationships of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides. Molecules, 2015, 20(5), 8395-8408.
[http://dx.doi.org/10.3390/molecules20058395] [PMID: 26007171]
[107]
Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol., 2016, 7(1), 54-86.
[http://dx.doi.org/10.5306/wjco.v7.i1.54] [PMID: 26862491]
[108]
The global challenge of cancer. Nat. Can., 2020, 1, 1-2.
[http://dx.doi.org/10.1038/s43018-019-0023-9]
[109]
Chabner, B.A.; Roberts, T.G. Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[110]
Schirrmacher, V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. (review). Int. J. Oncol., 2019, 54(2), 407-419.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[111]
U.S. Food and Drug Administration. FDA approves first targeted therapy for metastatic bladder cancer., https://www.fda.gov/news-events/press-announcements/fda-approves-first-targeted-therapy-metastatic-bladder-cancer (Accessed April 12, 2019).
[112]
Uchihara, Y.; Ueda, F.; Tago, K.; Nakazawa, Y.; Ohe, T.; Mashino, T.; Yokota, S.; Kasahara, T.; Tamura, H.; Tago, M.F. Alpha-tocopherol attenuates the anti-tumor activity of crizotinib against cells transformed by NPM-ALK. PLoS One, 2017, 12(8), e0183003.
[http://dx.doi.org/10.1371/journal.pone.0183003] [PMID: 28806414]
[113]
Zhao, B.; Liang, Q.; Ren, H.; Zhang, X.; Wu, Y.; Zhang, K.; Ma, L.Y.; Zheng, Y.C.; Liu, H.M. Discovery of pyrazole derivatives as cellular active inhibitors of histone lysine specific demethylase 5B (KDM5B/JARID1B). Eur. J. Med. Chem., 2020., 192112161.
[http://dx.doi.org/10.1016/j.ejmech.2020.112161] [PMID: 32155529]
[114]
Baguley, B.C.; McKeage, M.J. Anticancer potential of tumor vascular disrupting agents: review of the latest clinical evidence. Clin. Invest., 2012, 2(10), 985-993.
[http://dx.doi.org/10.4155/cli.12.98]
[115]
Monk, B.J.; Sill, M.W.; Walker, J.L.; Darus, C.J.; Sutton, G.; Tewari, K.S.; Martin, L.P.; Schilder, J.M.; Coleman, R.L.; Balkissoon, J.; Aghajanian, C. Randomized phase II evaluation of Bevacizumab versus Bevacizumab plus Fosbretabulin in recurrent ovarian, tubal, or peritoneal carcinoma: an NRG oncology/gynecologic oncology group study. J. Clin. Oncol., 2016, 34, 2279-2286.
[http://dx.doi.org/10.1200/JCO.2015.65.8153]
[116]
Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A.K.; Lin, C.M.; Hamel, E. Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. J. Med. Chem., 1991, 34, 2579-2588.
[http://dx.doi.org/10.1021/jm00112a036]
[117]
Romagnoli, R.; Oliva, P.; Salvador, M.K.; Camacho, M.E.; Padroni, C.; Brancale, A.; Ferla, S.; Hamel, E.; Ronca, R.; Grillo, E.; Bortolozzi, R.; Rruga, F.; Mariotto, E.; Viola, G. Design, synthesis and biological evaluation of novel vicinal diaryl-substituted 1H-Pyrazole analogues of combretastatin A-4 as highly potent tubulin polymerization inhibitors. Eur. J. Med. Chem., 2019., 181111577.
[http://dx.doi.org/10.1016/j.ejmech.2019.111577] [PMID: 31400707]
[118]
Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer, 2015, 15(1), 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[119]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[120]
Zhan, W.; Che, J.; Xu, L.; Wu, Y.; Hu, X.; Zhou, Y.; Cheng, G.; Hu, Y.; Dong, X.; Li, J. Discovery of pyrazole-thiophene derivatives as highly Potent, orally active Akt inhibitors. Eur. J. Med. Chem., 2019, 180, 72-85.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.017] [PMID: 31301565]
[121]
Yang, W.; Li, Y.; Ai, Y.; Obianom, O.N.; Guo, D.; Yang, H.; Sakamuru, S.; Xia, M.; Shu, Y.; Xue, F. Pyrazole-4-carboxamide (YW2065): a therapeutic candidate for colorectal cancer via dual activities of Wnt/β-catenin signaling inhibition and AMP-Activated Protein Kinase (AMPK) activation. J. Med. Chem., 2019, 62(24), 11151-11164.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01252] [PMID: 31769984]
[122]
Schatoff, E.M.; Leach, B.I.; Dow, L.E. Wnt signaling and colorectal cancer. Curr. Colorectal Cancer Rep., 2017, 13(2), 101-110.
[http://dx.doi.org/10.1007/s11888-017-0354-9] [PMID: 28413363]
[123]
Jung, Y.S.; Park, J.I. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp. Mol. Med., 2020, 52(2), 183-191.
[http://dx.doi.org/10.1038/s12276-020-0380-6] [PMID: 32037398]
[124]
Yu, H.; Kortylewski, M.; Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol., 2007, 7(1), 41-51.
[http://dx.doi.org/10.1038/nri1995] [PMID: 17186030]
[125]
Iwamaru, A.; Szymanski, S.; Iwado, E.; Aoki, H.; Yokoyama, T.; Fokt, I.; Hess, K.; Conrad, C.; Madden, T.; Sawaya, R.; Kondo, S.; Priebe, W.; Kondo, Y. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene, 2007, 26(17), 2435-2444.
[http://dx.doi.org/10.1038/sj.onc.1210031] [PMID: 17043651]
[126]
Yu, H.; Jove, R. The STATs of cancer--new molecular targets come of age. Nat. Rev. Cancer, 2004, 4(2), 97-105.
[http://dx.doi.org/10.1038/nrc1275] [PMID: 14964307]
[127]
Zhang, L.; Peterson, T.E.; Lu, V.M.; Parney, I.F.; Daniels, D.J. Antitumor activity of novel pyrazole-based small molecular inhibitors of the STAT3 pathway in patient derived high grade glioma cells. PLoS One, 2019, 14(7), e0220569.
[http://dx.doi.org/10.1371/journal.pone.0220569] [PMID: 31361777]
[128]
Dai, H.; Ge, S.; Guo, J.; Chen, S.; Huang, M.; Yang, J.; Sun, S.; Ling, Y.; Shi, Y. Development of novel bis-pyrazole derivatives as antitumor agents with potent apoptosis induction effects and DNA damage. Eur. J. Med. Chem., 2018, 143, 1066-1076.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.098] [PMID: 29232583]
[129]
El-Gamal, M.I.; Park, B.J.; Oh, C.H. Synthesis, in vitro antiproliferative activity, and kinase inhibitory effects of pyrazole-containing diarylureas and diarylamides. Eur. J. Med. Chem., 2018, 156, 230-239.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.008] [PMID: 30006168]
[130]
Fleeman, N.; Houten, R.; Bagust, A.; Richardson, M.; Beale, S.; Boland, A.; Dundar, Y.; Greenhalgh, J.; Hounsome, J.; Duarte, R.; Shenoy, A. Lenvatinib and sorafenib for differentiated thyroid cancer after radioactive iodine: a systematic review and economic evaluation. Health Technol. Assess., 2020, 24(2), 1-180.
[http://dx.doi.org/10.3310/hta24020] [PMID: 31931920]
[131]
Brown, A.W.; Fisher, M.; Tozer, G.M.; Kanthou, C.; Harrity, J.P. Sydnone cycloaddition route to pyrazole-based analogs of combretastatin A4. J. Med. Chem., 2016, 59, 9473-9488.
[132]
Kamal, A.; Shaik, A.B.; Jain, N.; Kishor, C.; Nagabhushana, A.; Supriya, B.; Bharath Kumar, G.; Chourasiya, S.S.; Suresh, Y.; Mishra, R.K.; Addlagatta, A. Design and synthesis of pyrazole-oxindole conjugates targeting tubulin polymerization as new anticancer agents. Eur. J. Med. Chem., 2015, 92, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.077] [PMID: 25599948]
[133]
Wang, S.F.; Yin, Y.; Zhang, Y.L.; Mi, S.W.; Zhao, M.Y.; Lv, P.C.; Wang, B.Z.; Zhu, H.L. Synthesis, biological evaluation and 3D-QSAR studies of novel 5-phenyl-1H-pyrazol cinnamamide derivatives as novel antitubulin agents. Eur. J. Med. Chem., 2015, 93, 291-299.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.018] [PMID: 25703297]
[134]
Zhang, W.M.; Xing, M.; Zhao, T.T.; Ren, Y.J.; Yang, X.H.; Yang, Y.S.; Lv, P.C.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of cinnamic acid derivatives with pyrazole moieties as novel anticancer agents. RSC Advances, 2014, 4, 37197.
[http://dx.doi.org/10.1039/C4RA05257A]
[135]
Wells, A. Tumor invasion: role of growth factor-induced cell motility. Adv. Cancer Res., 2000, 78, 31-101.
[http://dx.doi.org/10.1016/S0065-230X(08)61023-4] [PMID: 10547668]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy