Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Cola Nitida (Kola Nuts) Attenuates Hepatic Injury in Type 2 Diabetes by Improving Antioxidant and Cholinergic Dysfunctions and Dysregulated Lipid Metabolism

Author(s): Ochuko L. Erukainure, Olakunle Sanni, Veronica F. Salau, Neil A. Koorbanally and Md. Shahidul Islam*

Volume 21, Issue 4, 2021

Published on: 27 June, 2020

Page: [688 - 699] Pages: 12

DOI: 10.2174/1871530320666200628030138

Price: $65

Abstract

Background: The therapeutic effect of Cola nitida hot infusion against diabetes hepatic injury was investigated in livers of diabetic rats. Cola nitida was infused in boiling water and concentrated.

Methods: The concentrated infusion was administered to T2D rats at low and high doses (150 and 300 mg/kg body weight (bw), respectively). The normal group (positive control) and another diabetic group (negative control) were administered distilled water, while metformin served as the standard drug. A toxic group that consists of normal rats administered a high dose of C. nitida. After 6 weeks, the rats were sacrificed, and their livers were collected. They were assayed for oxidative stress markers, myeloperoxidase, acetylcholinesterase and ATPase activities. Hepatic lipid metabolites were profiled with GC-MS and their metabolic pathways were analyzed using the MetaboAnalyst 4.0 online server.

Results: Treatment with C. nitida caused a significant elevation of glutathione level and SOD activity, while concomitantly inhibiting lipid peroxidation, myeloperoxidase, acetylcholinesterase and ATPase activities in hepatic tissues of the rats. Treatment with C. nitida also caused significant depletion of diabetes-generated lipid metabolites, with concomitant generation of fatty esters and steroids as well as inactivation of diabetes-activated pathways.

Conclusion: These data demonstrate the therapeutic effect of C. nitida against diabetic hepatotoxicity in diabetic rats.

Keywords: Cola nitida, diabetes mellitus, hepatotoxicity, metabolomics, liver, lipid dysmetabolism.

Graphical Abstract
Animated Abstract
[1]
Hickman, I.J.; Macdonald, G.A. Impact of diabetes on the severity of liver disease. Am. J. Med., 2007, 120(10), 829-834.
[http://dx.doi.org/10.1016/j.amjmed.2007.03.025] [PMID: 17904449]
[2]
Erukainure, O.L.; Oyebode, O.A.; Ijomone, O.M.; Chukwuma, C.I.; Koorbanally, N.A.; Islam, M.S. Raffia palm (Raphia hookeri G. Mann & H. Wendl) wine modulates glucose homeostasis by enhancing insulin secretion and inhibiting redox imbalance in a rat model of diabetes induced by high fructose diet and streptozotocin. J. Ethnopharmacol., 2019, 237, 159-170.
[http://dx.doi.org/10.1016/j.jep.2019.03.039] [PMID: 30902747]
[3]
Erukainure, O.L.; Mopuri, R.; Oyebode, O.A.; Koorbanally, N.A.; Islam, M.S. Dacryodes edulis enhances antioxidant activities, suppresses DNA fragmentation in oxidative pancreatic and hepatic injuries; and inhibits carbohydrate digestive enzymes linked to type 2 diabetes. Biomed. Pharmacother., 2017, 96, 37-47.
[http://dx.doi.org/10.1016/j.biopha.2017.09.106] [PMID: 28963949]
[4]
Erukainure, O.L.; Reddy, R.; Islam, M.S. Raffia palm (Raphia hookeri) wine extenuates redox imbalance and modulates activities of glycolytic and cholinergic enzymes in hyperglycemia-induced testicular injury in type 2 diabetic rats. J. Food Biochem., 2019, 43(3)e12764
[http://dx.doi.org/10.1111/jfbc.12764] [PMID: 31353550]
[5]
Hazlehurst, J.M.; Woods, C.; Marjot, T.; Cobbold, J.F.; Tomlinson, J.W. Non-alcoholic fatty liver disease and diabetes. Metabolism, 2016, 65(8), 1096-1108.
[http://dx.doi.org/10.1016/j.metabol.2016.01.001] [PMID: 26856933]
[6]
Schwarz, J-M.; Linfoot, P.; Dare, D.; Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr., 2003, 77(1), 43-50.
[http://dx.doi.org/10.1093/ajcn/77.1.43] [PMID: 12499321]
[7]
Mohammed, A.; Ibrahim, M.A.; Islam, M.S. African medicinal plants with antidiabetic potentials: a review. Planta Med., 2014, 80(5), 354-377.
[http://dx.doi.org/10.1055/s-0033-1360335] [PMID: 24535720]
[8]
Chukwuma, C.I.; Matsabisa, M.G.; Ibrahim, M.A.; Erukainure, O.L.; Chabalala, M.H.; Islam, M.S. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: a review. J. Ethnopharmacol., 2019, 235, 329-360.
[http://dx.doi.org/10.1016/j.jep.2019.02.024] [PMID: 30769039]
[9]
Erukainure, O.L.; Sanni, O.; Ijomone, O.M.; Ibeji, C.U.; Chukwuma, C.I.; Islam, M.S. The antidiabetic properties of the hot water extract of kola nut (Cola nitida (Vent.) Schott & Endl.) in type 2 diabetic rats. J. Ethnopharmacol., 2019, 242112033
[http://dx.doi.org/10.1016/j.jep.2019.112033] [PMID: 31220600]
[10]
Burdock, G.A.; Carabin, I.G.; Crincoli, C.M. Safety assessment of kola nut extract as a food ingredient. Food Chem. Toxicol., 2009, 47(8), 1725-1732.
[http://dx.doi.org/10.1016/j.fct.2009.04.019] [PMID: 19394393]
[11]
Asogwa, E.; Otuonye, A.; Mokwunye, F.; Oluyole, K.; Ndubuaku, T.; Uwagboe, E. Kolanut production, processing and marketing in the South-eastern states of Nigeria. Afr. J. Plant Sci., 2011, 5(10), 547-551.
[12]
Erukainure, O.L.; Ijomone, O.M.; Oyebode, O.A.; Chukwuma, C.I.; Aschner, M.; Islam, M.S. Hyperglycemia-induced oxidative brain injury: therapeutic effects of Cola nitida infusion against redox imbalance, cerebellar neuronal insults, and upregulated Nrf2 expression in type 2 diabetic rats. Food Chem. Toxicol., 2019, 127, 206-217.
[http://dx.doi.org/10.1016/j.fct.2019.03.044] [PMID: 30914353]
[13]
Ezuruike, U.F.; Prieto, J.M. The use of plants in the traditional management of diabetes in Nigeria: pharmacological and toxicological considerations. J. Ethnopharmacol., 2014, 155(2), 857-924.
[http://dx.doi.org/10.1016/j.jep.2014.05.055] [PMID: 24929108]
[14]
Erukainure, O.L.; Oyebode, O.A.; Sokhela, M.K.; Koorbanally, N.A.; Islam, M.S. Caffeine - rich infusion from Cola nitida (kola nut) inhibits major carbohydrate catabolic enzymes; abates redox imbalance; and modulates oxidative dysregulated metabolic pathways and metabolites in Fe2+-induced hepatic toxicity. Biomed. Pharmacother., 2017, 96, 1065-1074.
[http://dx.doi.org/10.1016/j.biopha.2017.11.120] [PMID: 29223552]
[15]
Lowor, S.; Aculey, P.; Assuah, M. Analysis of some quality indicators in cured Cola nitida (Vent). Agric. Biol. J. N. Am., 2010, 1(6), 1206-1214.
[http://dx.doi.org/10.5251/abjna.2010.1.6.1206.1214]
[16]
Wilson, R.D.; Islam, M.S. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacol. Rep., 2012, 64(1), 129-139.
[http://dx.doi.org/10.1016/S1734-1140(12)70739-9] [PMID: 22580529]
[17]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[18]
Gee, P.; Davison, A.J. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions. Free Radic. Biol. Med., 1989, 6(3), 271-284.
[http://dx.doi.org/10.1016/0891-5849(89)90054-3] [PMID: 2545550]
[19]
Aebi, H. Catalase in vitro.In: Methods of Enzymology; Academic Press, 1984, Vol. 105, pp. 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3]] [PMID: 6727660]
[20]
Chowdhury, P.; Soulsby, M. Lipid peroxidation in rat brain is increased by simulated weightlessness and decreased by a soy-protein diet. Ann. Clin. Lab. Sci., 2002, 32(2), 188-192.
[PMID: 12017202]
[21]
Granell, S.; Gironella, M.; Bulbena, O.; Panés, J.; Mauri, M.; Sabater, L.; Aparisi, L.; Gelpí, E.; Closa, D. Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis. Crit. Care Med., 2003, 31(2), 525-530.
[http://dx.doi.org/10.1097/01.CCM.0000049948.64660.06] [PMID: 12576961]
[22]
Ajayi, B.O.; Adedara, I.A.; Farombi, E.O. Pharmacological activity of 6-gingerol in dextran sulphate sodium-induced ulcerative colitis in BALB/c mice. Phytother. Res., 2015, 29(4), 566-572.
[http://dx.doi.org/10.1002/ptr.5286] [PMID: 25631463]
[23]
Ellman, G.L.; Courtney, K.D.; Andres Jr, V.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[24]
Adewoye, O.E.; Bolarinwa, A.F.; Olorunsogo, O.O. Ca++, Mg++-ATPase activity in insulin-dependent and non-insulin dependent diabetic Nigerians. Afr. J. Med. Med. Sci., 2000, 29(3-4), 195-199.
[PMID: 11713988]
[25]
Chan, C.X.; Khan, A.A.; Choi, J.H.; Ng, C.D.; Cadeiras, M.; Deng, M.; Ping, P. Technology platform development for targeted plasma metabolites in human heart failure. Clin. Proteomics, 2013, 10(1), 7.
[http://dx.doi.org/10.1186/1559-0275-10-7] [PMID: 23826926]
[26]
Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res., 2018, 46(W1), W486-W494.
[http://dx.doi.org/10.1093/nar/gky310] [PMID: 29762782]
[27]
Seif, H.S.A. Physiological changes due to hepatotoxicity and the protective role of some medicinal plants. Beni-Suef. Univ. J. Basic. Appl. Sci., 2016, 5(2), 134-146.
[28]
Lucchesi, A.N.; Freitas, N.T.D.; Cassettari, L.L.; Marques, S.F.G.; Spadella, C.T. Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a mechanism for diabetic chronic liver disease. Acta Cir. Bras., 2013, 28(7), 502-508.
[http://dx.doi.org/10.1590/S0102-86502013000700005] [PMID: 23842931]
[29]
Mohamed, J.; Nazratun Nafizah, A.H.; Zariyantey, A.H.; Budin, S.B. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ. Med. J., 2016, 16(2), e132-e141.
[http://dx.doi.org/10.18295/squmj.2016.16.02.002] [PMID: 27226903]
[30]
Maritim, A.C.; Sanders, R.A.; Watkins 3rd, J.B. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol., 2003, 17(1), 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[31]
Sheweita, S.A.; Mashaly, S.; Newairy, A.A.; Abdou, H.M.; Eweda, S.M. Changes in oxidative stress and antioxidant enzyme activities in streptozotocin-induced diabetes mellitus in rats: role of Alhagi maurorum extracts. Oxid. Med. Cell. Longev., 2016, 20165264064
[http://dx.doi.org/10.1155/2016/5264064] [PMID: 26885249]
[32]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[33]
Patel, M. Targeting oxidative stress in central nervous system disorders. Trends Pharmacol. Sci., 2016, 37(9), 768-778.
[http://dx.doi.org/10.1016/j.tips.2016.06.007] [PMID: 27491897]
[34]
Lestarisa, T.; Alexandra, F.D.; Jelita, H.; Suhartono, E. Myeloperoxidase as an indicator of liver cells inflammation induced by mercury. Int. J. Pharm. Clini. Res., 2016, 8(11), 1516-1521.
[35]
Ndrepepa, G. Myeloperoxidase - A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin. Chim. Acta, 2019, 493, 36-51.
[http://dx.doi.org/10.1016/j.cca.2019.02.022] [PMID: 30797769]
[36]
Heinecke, J.W.; Goldberg, I.J. Myeloperoxidase: a therapeutic target for preventing insulin resistance and the metabolic sequelae of obesity? Diabetes, 2014, 63(12), 4001-4003.
[http://dx.doi.org/10.2337/db14-1273] [PMID: 25414015]
[37]
Piek, A.; Koonen, D.P.Y.; Schouten, E-M.; Lindtstedt, E.L.; Michaëlsson, E.; de Boer, R.A.; Silljé, H.H.W. Pharmacological myeloperoxidase (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling. Sci. Rep., 2019, 9(1), 18765.
[http://dx.doi.org/10.1038/s41598-019-55263-y] [PMID: 31822739]
[38]
Hussein, S.A.; Ragab, O.A.; Senosi, Y.A.; Abdel-Muttalib, S.A. Antioxidant potential, anti-inflammatory and hepatoprotective effect of curcumin in a rat model of hepatotoxicity. Benha. Vet. Med. J., 2018, 34(3), 108-119.
[http://dx.doi.org/10.21608/bvmj.2018.44205]
[39]
Wu, T.; Li, J.; Li, Y.; Song, H. Antioxidant and hepatoprotective effect of swertiamarin on carbon tetrachloride-induced hepatotoxicity via the Nrf2/HO-1 pathway. Cell. Physiol. Biochem., 2017, 41(6), 2242-2254.
[http://dx.doi.org/10.1159/000475639] [PMID: 28448964]
[40]
Uchida, N.S.; Silva-Filho, S.E.; Cardia, G.F.E.; Cremer, E.; Silva-Comar, F.M.S.; Silva, E.L.; Bersani-Amado, C.A.; Cuman, R.K.N. Hepatoprotective effect of citral on acetaminophen-induced liver toxicity in mice. Evid. Based Complement. Alternat. Med., 2017, 20171796209
[http://dx.doi.org/10.1155/2017/1796209] [PMID: 28717379]
[41]
García-Ayllón, M-S.; Millán, C.; Serra-Basante, C.; Bataller, R.; Sáez-Valero, J. Readthrough acetylcholinesterase is increased in human liver cirrhosis. PLoS One, 2012, 7(9),e44598
[http://dx.doi.org/10.1371/journal.pone.0044598] [PMID: 23028565]
[42]
Tracey, K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest., 2007, 117(2), 289-296.
[http://dx.doi.org/10.1172/JCI30555] [PMID: 17273548]
[43]
Bondok, R.S.; Ahmed, M.A.; Soliman, N.B.E.; El-Shokry, M.H.; Ali, R.M.; Fahmy, H.F.; Eldin, M.S. The effect of cholinesterase inhibition on liver dysfunction in experimental acute liver failure. Egypt. J. Crit. Care Med., 2013, 1(2), 51-59.
[http://dx.doi.org/10.1016/j.ejccm.2013.05.002]]
[44]
Parmar, D.V.; Ahmed, G.; Khandkar, M.A.; Katyare, S.S. Mitochondrial ATPase: a target for paracetamol-induced hepatotoxicity. Eur. J. Pharmacol., 1995, 293(3), 225-229.
[http://dx.doi.org/10.1016/0926-6917(95)00021-6] [PMID: 8666039]
[45]
Grattagliano, I.; Bonfrate, L.; Diogo, C.V.; Wang, H.H.; Wang, D.Q.; Portincasa, P. Biochemical mechanisms in drug-induced liver injury: certainties and doubts. World J. Gastroenterol., 2009, 15(39), 4865-4876.
[http://dx.doi.org/10.3748/wjg.15.4865] [PMID: 19842215]
[46]
Ibrahim, M.A.; Habila, J.D.; Koorbanally, N.A.; Islam, M.S. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J. Ethnopharmacol., 2016, 183, 103-111.
[http://dx.doi.org/10.1016/j.jep.2016.02.018] [PMID: 26911526]
[47]
Geisler, C.E.; Renquist, B.J. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J. Endocrinol., 2017, 234(1), R1-R21.
[http://dx.doi.org/10.1530/JOE-16-0513] [PMID: 28428362]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy