Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Electrical Conductivity and Wettability of Nanofluids Prepared by Nanocomposite of MWCNTs and Dialkyl Pentasulfide

Author(s): Yong Wang, Jiju Guan*, Jia Wang, Bohua Feng and Xuefeng Xu

Volume 17, Issue 1, 2021

Published on: 26 June, 2020

Page: [151 - 161] Pages: 11

DOI: 10.2174/1573413716999200626212517

Price: $65

Abstract

Background: Multi-walled carbon nanotubes (MWCNTs) were filled with dialkyl pentasulfide (DPS) to prepare MWCNTs-DPS composite (nanocomposite) additives for use in nanofluid- based machining.

Methods: The nanocomposite was prepared by employing a liquid phase wet chemistry method, and was then added in pure water with a surfactant to form the nanofluids. The present study comprehensively reveals the effects of additive concentration, acid treatment time, testing temperature and electrowetting conditions on the electrical conductivity and wettability of nanofluids.

Results: The nanocomposite was successfully produced with a maximum filling rate of 27.4%. Its additives displayed an optimal performance at a concentration of about 0.1%. Consequently, the electrical conductivity and wettability of the nanofluids were increased by over 13.7% and 6.35%, respectively in comparison with individual MWCNTs additives. Under the electro-wettability conditions, the wetting performance of the nanofluids produced by the nanocomposite increased with the increase in charging voltage. Moreover, due to higher conductivity and greater charge capacity, the nanofluids with a higher additive concentration displayed better wetting performance.

Conclusion: The modification and filling enhanced properties such as the surface activity, electrical conductivity and capacitance of the MWCNTs, thereby improving the performance.

Keywords: MWCNTs, MWCNTs-DPS composite, nanocomposite, nanofluids, electrical conductivity, wettability.

Graphical Abstract
[1]
Rabiei, F.; Rahimi, A.R.; Hadad, M.J.; Ashrafijou, M. Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization. J. Clean. Prod., 2015, 86, 447-460.
[http://dx.doi.org/10.1016/j.jclepro.2014.08.045]
[2]
Molaie, M.M.; Akbari, J.; Movahhedy, M.R. Ultrasonic assisted grinding process with minimum quantity lubrication using oil-based nanofluids. J. Clean. Prod., 2016, 129, 212-222.
[http://dx.doi.org/10.1016/j.jclepro.2016.04.080]
[3]
Barbosa, E.L.; dos Santos Delfino, A.C.; Brando, L.C. The use of alternative coolant techniques to reduce the environmental impact in the use of water in through-feed centerless grinding. Int. J. Adv. Manuf. Technol., 2017, 91, 3417-3425.
[http://dx.doi.org/10.1007/s00170-017-0030-x]
[4]
Huang, S.Q.; Wang, Z.; Yao, W.; Xu, X.F. Tribological evaluation of contact-charged electrostatic spray lubrication as a new near-dry machining technique. Tribol. Int., 2015, 91, 74-84.
[http://dx.doi.org/10.1016/j.triboint.2015.06.029]
[5]
Xu, X.F.; Feng, B.H.; Huang, S.Q.; Luan, Z.; Niu, C.; Lin, J.; Hu, X. Capillary penetration mechanism and machining characteristics of lubricant droplets in electrostatic minimum quantity lubrication (EMQL) grinding. J. Manuf. Process., 2019, 45, 571-578.
[http://dx.doi.org/10.1016/j.jmapro.2019.07.036]
[6]
Xu, X.F.; Huang, S.Q.; Wang, M.H.; Yao, W. A study on process parameters in end milling of AISI-304 stainless steel under electrostatic minimum quantity lubrication conditions. Int. J. Adv. Manuf. Technol., 2016, 90, 979-989.
[http://dx.doi.org/10.1007/s00170-016-9417-3]
[7]
Lee, P.H.; Nam, T.S.; Li, C.G. Experiment study on meso-scale milling process using nanofluid minimum quantity lubrication. Trans. Korean Soc. Mech. Eng. A, 2010, 10, 1493-1498.
[http://dx.doi.org/10.3795/KSME-A.2010.34.10.1493]
[8]
Guo, S.M.; Li, C.H.; Zhang, Y.B.; Wang, Y.; Li, B.; Yang, M.; Zhang, X.; Liu, G. Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J. Clean. Prod., 2017, 140, 1060-1076.
[http://dx.doi.org/10.1016/j.jclepro.2016.10.073]
[9]
Jia, D.; Li, C.; Zhang, D.; Zhang, Y.; Zhang, X. Experimental verification of nano-particle jet minimum quantity lubrication effectiveness in grinding. J. Nanopart. Res., 2014, 16, 1-15.
[http://dx.doi.org/10.1007/s11051-014-2758-7]
[10]
Wind, S.J.; Appenzeller, J.; Avouris, P. Lateral scaling in carbon nanotube field-effect transistors Phys. Rev. Lett., 2003, 91, 0583.
[http://dx.doi.org/10.1103/PhysRevLett.91.058301]
[11]
Glory, J.; Bonetti, M.; Helezen, M.; Mayne-L’Hermite, M.; Reynaud, C. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J. Appl. Phys., 2008, 103094309
[http://dx.doi.org/10.1063/1.2908229]
[12]
Geng, Y.C.; Khodadadi, H.; Karimipour, A.; Safaei, M.R.; Nguyen, T.K. A comprehensive presentation on nanoparticles electrical conductivity of nanofluids: Statistical study concerned effects of temperature, nanoparticles type and solid volume concentration. Physica A, 2020, 542123432
[http://dx.doi.org/10.1016/j.physa.2019.123432]
[13]
Chengara, A.; Nikolov, A.D.; Wasan, D.T.; Trokhymchuk, A.; Henderson, D. Spreading of nanofluids driven by the structural disjoining pressure gradient. J. Colloid Interface Sci., 2004, 280(1), 192-201.
[http://dx.doi.org/10.1016/j.jcis.2004.07.005] [PMID: 15476790]
[14]
Lu, G.; Hu, H.; Duan, Y.Y.; Sun, Y. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticle: A molecular dynamics study. Appl. Phys. Lett., 2013, 103253104
[http://dx.doi.org/10.1063/1.4837717]
[15]
Bahiraei, M.; Heshmatian, S. Graphene family nanofluids: A critical review and future research directions. Energy Convers. Manage., 2019, 196, 1222-1256.
[http://dx.doi.org/10.1016/j.enconman.2019.06.076]
[16]
Zhang, S.H.; Han, X.X.; Tan, Y.; Liang, K. Effects of hydrophilicity/lipophilicity of nano-TiO2 on surface tension of TiO2-water nanofluids. Chem. Phys. Lett., 2018, 691, 135-140.
[http://dx.doi.org/10.1016/j.cplett.2017.11.005]
[17]
Estellé, P.; Cabaleiro, D.; Żyła, G.; Lugo, L.; Sohel Murshed, S.M. Current trends in surface tension and wetting behavior of nanofluids. Renew. Sustain. Energy Rev., 2018, 94, 931-944.
[http://dx.doi.org/10.1016/j.rser.2018.07.006]
[18]
Marcon, A.; Melkote, S.; Kalaitzidou, K.; DeBra, D. An experimental evaluation of graphite nanoplatelet based lubricant in micro-milling. CIRP Ann., 2010, 59, 141-144.
[http://dx.doi.org/10.1016/j.cirp.2010.03.083]
[19]
Sayuti, M.; Sarhan, A.A.D.; Tanaka, T.; Hamdi, M.; Saito, Y. Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nano-lubrication system. Int. J. Adv. Des. Manuf. Technol., 2013, 65, 9-12.
[http://dx.doi.org/10.1007/s00170-012-4273-2]
[20]
Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. J. Clean. Prod., 2016, 127, 1-18.
[http://dx.doi.org/10.1016/j.jclepro.2016.03.146]
[21]
Ajayan, P.M.; Iijima, S. Capillarity induced filling of carbon nanotubes. Nature, 1993, 361, 333-335.
[http://dx.doi.org/10.1038/361333a0]
[22]
Guan, J.J.; Wang, J.; Ding, Q.; Lv, T.; Xu, X.F. Study on filling mechanism of dialkyl pentasulfide filled carbon nanotubes. Compos. Interfaces, 2019, 26, 1025-1034.
[http://dx.doi.org/10.1080/09276440.2019.1578575]
[23]
Reddy, M.G.G.; Kumar, K.G.; Shehzad, S.A.; Javed, T.; Ambreen, T. Thermal transportation analysis of nanoliquid squeezed flow past a sensor surface with MCWCNT and SWCNT. Heat Transf. Asian Res., 2019, 48, 2262-2275.
[http://dx.doi.org/10.1002/htj.21483]
[24]
Gireesha, B.J.; Kumar, K.G.; Krishanamurthy, M.R.; Rudraswamy, N.G. Enhancement of heat transfer in an unsteady rotating flow for the aqueous suspensions of single wall nanotubes under nonlinear thermal radiation: a numerical study. Colloid Polym. Sci., 2018, 296, 1501-1508.
[http://dx.doi.org/10.1007/s00396-018-4374-z]
[25]
Acharya, N.; Das, K.; Kundu, P.K. Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel: A thermal framework. J. Therm. Anal. Calorim., 2019, 138, 461-477.
[http://dx.doi.org/10.1007/s10973-019-08126-7]
[26]
Acharya, N.; Bag, R.; Kundu, P.K. Influence of Hall current on radiative nanofluid flow over a spinning disk: A hybrid approach. Physica E, 2019, 111, 103-112.
[http://dx.doi.org/10.1016/j.physe.2019.03.006]
[27]
Bahiraei, M.; Mazaheri, N. Application of a novel hybrid nanofluid containing graphene–platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: Thermal and energy efficiency considerations. Int. J. Mech. Sci., 2018, 138, 337-349.
[http://dx.doi.org/10.1016/j.ijmecsci.2018.02.030]
[28]
Khosravi, R.; Rabiei, S.; Bahiraei, M.; Teymourtash, A.R. Predicting entropy generation of a hybrid nanofluid containing graphene–platinum nanoparticles through a microchannel liquid block using neural networks. Int. Commun. Heat Mass., 2019, 109104351
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2019.104351]
[29]
Gherman, C.; Tudor, M.C.; Constantin, B.; Flaviu, T.; Stefan, R.; Maria, B.; Chira, S.; Braicu, C.; Pop, L.; Petric, R.C.; Berindan-Neagoe, I. Pharmacokinetics evaluation of carbon nanotubes using FTIR analysis and histological analysis. J. Nanosci. Nanotechnol., 2015, 15(4), 2865-2869.
[http://dx.doi.org/10.1166/jnn.2015.9845] [PMID: 26353506]
[30]
Liu, H.; Wang, J.; Wang, J.; Cui, S. Sulfonitric treatment of multiwalled carbon nanotubes and their dispersibility in water. Materials (Basel), 2018, 11(12), 2442.
[http://dx.doi.org/10.3390/ma11122442] [PMID: 30513849]
[31]
Sinha-Ray, S.; Sahu, R.P.; Yarin, A.L. Nano-encapsulated smart tunable phase change materials. Soft Matter, 2011, 7, 8823-8827.
[http://dx.doi.org/10.1039/c1sm05973d]
[32]
Poongavanam, G.K.; Murugesan, R.; Ramalingam, V. Thermal and electrical conductivity enhancement of solar glycol-water mixture containing MWCNTs. Fuller. Nanotub. Car. N., 2018, 26, 871-879.
[http://dx.doi.org/10.1080/1536383X.2018.1523148]
[33]
Cui, Z.G. Fundamentals of surfactants, colloids, and interface chemistry, 1st ed; Chemical Industry Press: Beijing, 2013.
[34]
Jarosz, P.; Schauerman, C.; Alvarenga, J.; Moses, B.; Mastrangelo, T.; Raffaelle, R.; Ridgley, R.; Landi, B. Carbon nanotube wires and cables: near-term applications and future perspectives. Nanoscale, 2011, 3(11), 4542-4553.
[http://dx.doi.org/10.1039/c1nr10814j] [PMID: 21984338]
[35]
Grujicic, M.; Cao, G.; Roy, W.N. A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials. J. Mater. Sci., 2004, 39, 4441-4449.
[http://dx.doi.org/10.1023/B:JMSC.0000034136.11779.96]
[36]
Shoghl, S.N.; Jamali, J.; Moraveji, M.K. Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Exp. Therm. Fluid Sci., 2016, 74, 339-346.
[http://dx.doi.org/10.1016/j.expthermflusci.2016.01.004]
[37]
Ganesh Kumar, P.; Sakthivadivel, D.; Meikandan, M.; Vigneswaran, V.S.; Velraj, R. Experimental study on thermal properties and electrical conductivity of stabilized H2O-solar glycol mixture based multi-walled carbon nanotube nanofluids: developing a new correlation. Heliyon, 2019, 5(8)e02385
[http://dx.doi.org/10.1016/j.heliyon.2019.e02385] [PMID: 31517103]
[38]
Hariharasubramaniana, A.; Ravichandrana, Y.D.; Rajesha, R.; Kumar, K.R.; Kanagaraj, M.; Arumugam, S. Covalent functionalization of single-walled carbon nanotubes with anthracene by green chemical approach and their temperature dependent magnetic and electrical conductivity studies. Mater. Chem. Phys., 2014, 143, 838-844.
[http://dx.doi.org/10.1016/j.matchemphys.2013.10.022]
[39]
Naddaf, A.; Heris, S.Z. Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes. Int. Commun. Heat Mass Transf., 2018, 95, 116-122.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.05.004]
[40]
Shen, Z.; Zhao, Z.G.; Kang, W.L. Colloid and Surface Chemistry, 4th; China Chemical Industry Press: Beijing, 2012.
[41]
Estellé, P.; Halelfadl, S.; Doner, N.; Mare, T. Shear history effect on the viscosity of carbon nanotubes water-based nanofluid. Curr. Nanosci., 2013, 9, 225-230.
[http://dx.doi.org/10.2174/1573413711309020010]
[42]
Acharya, N.; Das, K.; Kundu, P.K. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study. Appl. Nanosci., 2018, 8, 369-378.
[http://dx.doi.org/10.1007/s13204-018-0794-9]
[43]
Lu, G.; Duan, Y.Y.; Wang, X.D. Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level. J. Nanopart. Res., 2014, 16, 2564.
[http://dx.doi.org/10.1007/s11051-014-2564-2]
[44]
Tanvir, S.; Qiao, L. Surface tension of Nanofluid-type fuels containing suspended nanomaterials. Nanoscale Res. Lett., 2012, 7(1), 226.
[http://dx.doi.org/10.1186/1556-276X-7-226] [PMID: 22513039]
[45]
Khaleduzzaman, S.S.; Mahbubul, I.M.; Shahrul, I.M.; Saidur, R. Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. Int. Commun. Heat Mass Transf., 2013, 49, 110-114.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.10.010]
[46]
Karthikeyan, A.; Coulombe, S.; Kietzig, A.M. Wetting behavior of multi-walled carbon nanotube nanofluids. Nanotechnology, 2017, 28(10)105706
[http://dx.doi.org/10.1088/1361-6528/aa5a5f] [PMID: 28106004]
[47]
Kumar, R.; Milanova, D. Effect of surface tension on nanotube nanofluids. Appl. Phys. Lett., 2009, 94073107
[http://dx.doi.org/10.1063/1.3085766]
[48]
Berrada, N.; Hamze, S.; Desforges, A.; Ghanbaja, J.; Gleize, J.; Mare, T.; Vigolo, B.; Estellé, P. Surface tension of functionalized MWCNT-based nanofluids in water and commercial propylene-glycol mixture. J. Mol. Liq., 2019, 293111473
[http://dx.doi.org/10.1016/j.molliq.2019.111473]
[49]
Walker, S.W.; Shapiro, B. Modeling the fluid dynamics of electrowetting on dielectric (EWOD). J. Microelectromech. Syst., 2006, 15, 986-1000.
[http://dx.doi.org/10.1109/JMEMS.2006.878876]
[50]
Zhao, Y.P. Physical and mechanics of surface and interface; China Science Press: Beijing, 2012.
[51]
Roques-Carmes, T.; Aldeek, F.; Balan, L.; Corbel, S.; Schneider, R. Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting. Colloids Surf. A Physicochem. Eng. Asp., 2011, 377, 269-277.
[http://dx.doi.org/10.1016/j.colsurfa.2011.01.018]
[52]
Chakraborty, D.; Sudha, G.S.; Chakraborty, S.; DasGupta, S. Effect of submicron particles on electrowetting on dielectrics (EWOD) of sessile droplets. J. Colloid Interface Sci., 2011, 363(2), 640-645.
[http://dx.doi.org/10.1016/j.jcis.2011.07.077] [PMID: 21855084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy