Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

The Scope and Challenges of Vesicular Carrier-Mediated Delivery of Docetaxel for the Management of Cancer

Author(s): Charu Misra, Kaisar Raza and Amit Kumar Goyal*

Volume 17, Issue 10, 2020

Page: [874 - 884] Pages: 11

DOI: 10.2174/1567201817666200623121633

Price: $65

Abstract

Since the discovery of liposomes, these vesicular carriers have attracted the researchers from all the vistas of the biomedical domain to explore and harness the potential benefits. Many novel drug delivery-based products have been approved by the United States Food and Drug Administration (USFDA) and other federal agencies of the globe, out of which the major share is of the liposomes and related carriers. Taking cognizance of it, the US-FDA has recently come up with ‘Guidance for Industry on Liposome Drug Products’. In cancer management, chemotherapy is the most frequently employed approach which is still not devoid of untoward challenges and side effects. In chemotherapy, the taxanes, esp. Docetaxel shares a huge percentage in the prescription pattern. Also, the first marketed liposomal product was encasing one drug of this category. Henceforth, the present review will highlight the advances in the delivery of taxanes, in particular docetaxel, with an emphasis on the need, success and pharmacoeconomic aspects of such vesicular-carrier mediated docetaxel delivery.

Keywords: Drug delivery, anti-cancer, bioavailability, liposomes, niosomes, chemotherapy.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492 ] [PMID: 30207593]
[2]
Nobili, S.; Landini, I.; Giglioni, B.; Mini, E. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets, 2006, 7(7), 861-879.
[http://dx.doi.org/10.2174/138945006777709593 ] [PMID: 16842217]
[3]
S., Thakur R.; Agrawal, R. Application of nanotechnology in pharmaceutical formulation design and development. Curr. Drug Ther., 2015, 10, 20-34.
[http://dx.doi.org/10.2174/157488551001150825095729]
[4]
Kaur, K.; Rath, G.; Chandra, S.; Singh, R.; Goyal, A.K. Chemotherapy with si-RNA and anti-cancer drugs. Curr. Drug Deliv., 2018, 15(3), 300-311.
[http://dx.doi.org/10.2174/1567201814666170518141440 ] [PMID: 28521675]
[5]
Goyal, G.; Garg, T.; Malik, B.; Chauhan, G.; Rath, G.; Goyal, A.K. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv., 2015, 22(8), 1027-1042.
[http://dx.doi.org/10.3109/10717544.2013.855277 ] [PMID: 24251352]
[6]
Goyal, A.K.; Khatri, K.; Vyas, S.P. Patents on non-viral mediated gene delivery. Recent Pat. DNA Gene Seq., 2008, 2(1), 44-60.
[http://dx.doi.org/10.2174/187221508783406594 ] [PMID: 19075945]
[7]
Kumar, P.; Raza, K.; Kaushik, L.; Malik, R.; Arora, S.; Katare, O.P. Role of colloidal drug delivery carriers in taxane-mediated chemotherapy: a review. Curr. Pharm. Des., 2016, 22(33), 5127-5143.
[http://dx.doi.org/10.2174/1381612822666160524144926 ] [PMID: 27215440]
[8]
Manfredi, J.J.; Horwitz, S.B. Taxol: an antimitotic agent with a new mechanism of action. Pharmacol. Ther., 1984, 25(1), 83-125.
[http://dx.doi.org/10.1016/0163-7258(84)90025-1 ] [PMID: 6149569]
[9]
McGuire, W.P.; Rowinsky, E.K.; Rosenshein, N.B.; Grumbine, F.C.; Ettinger, D.S.; Armstrong, D.K.; Donehower, R.C. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann. Intern. Med., 1989, 111(4), 273-279.
[http://dx.doi.org/10.7326/0003-4819-111-4-273 ] [PMID: 2569287]
[10]
Ojima, I.; Lichtenthal, B.; Lee, S.; Wang, C.; Wang, X. Taxane anticancer agents: a patent perspective. Expert Opin. Ther. Pat., 2016, 26(1), 1-20.
[http://dx.doi.org/10.1517/13543776.2016.1111872 ] [PMID: 26651178]
[11]
Ge, H.; Spletstoser, J.T.; Yang, Y.; Kayser, M.; Georg, G.I. Synthesis of docetaxel and butitaxel analogues through kinetic resolution of racemic β-lactams with 7-O-triethylsilylbaccatin III. J. Org. Chem., 2007, 72(3), 756-759.
[http://dx.doi.org/10.1021/jo061339s ] [PMID: 17253791]
[12]
Abal, M.; Andreu, J.M.; Barasoain, I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr. Cancer Drug Targets, 2003, 3(3), 193-203.
[http://dx.doi.org/10.2174/1568009033481967 ] [PMID: 12769688]
[13]
Murugesan, S.; Mishra, P.; Jain, N. Development of folate-conjugated PEGylated poly (d,l-lactide-co-glycolide) nanoparticulate carrier for docetaxel. Curr. Nanosci., 2008, 4, 402-408.
[http://dx.doi.org/10.2174/157341308786306152]
[14]
Gan, C.W.; Chien, S.; Feng, S-S. Nanomedicine: enhancement of chemotherapeutical efficacy of docetaxel by using a biodegradable nanoparticle formulation. Curr. Pharm. Des., 2010, 16(21), 2308-2320.
[http://dx.doi.org/10.2174/138161210791920487 ] [PMID: 20618152]
[15]
Bosch, F.; Rosich, L. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his nobel prize. Pharmacology, 2008, 82(3), 171-179.
[http://dx.doi.org/10.1159/000149583 ] [PMID: 18679046]
[16]
Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.; Goyal, A.K. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv., 2016, 23(3), 727-738.
[http://dx.doi.org/10.3109/10717544.2014.935530 ] [PMID: 25013959]
[17]
Raza, K. Nanotechnology-based drug delivery products: need, design, pharmacokinetics and regulations. Curr. Pharm. Des., 2018, 24(43), 5085-5085.
[http://dx.doi.org/10.2174/138161282443190328085917 ] [PMID: 30968765]
[18]
Ventola, C.L. Progress in nanomedicine: approved and investigational nanodrugs. P T, 2017, 42(12), 742-755.
[PMID: 29234213]
[19]
Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315 ] [PMID: 29042776]
[20]
Garg, T.; Goyal, A.K. Liposomes: targeted and controlled delivery system. Drug Deliv. Lett., 2014, 4, 62-71.
[http://dx.doi.org/10.2174/22103031113036660015]
[21]
Liu, H.; Tu, L.; Zhou, Y.; Dang, Z.; Wang, L.; Du, J.; Feng, J.; Hu, K. Improved bioavailability and antitumor effect of docetaxel by TPGS modified proniosomes: in vitro and in vivo evaluations. Sci. Rep., 2017, 7, 43372.
[http://dx.doi.org/10.1038/srep43372 ] [PMID: 28266539]
[22]
Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: an overview. J. Adv. Pharm. Technol. Res., 2010, 1(3), 274-282.
[http://dx.doi.org/10.4103/0110-5558.72415 ] [PMID: 22247858]
[23]
Raza, K.; Kumar, N.; Misra, C.; Kaushik, L.; Guru, S.K.; Kumar, P.; Malik, R.; Bhushan, S.; Katare, O.P. Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile. Int. J. Biol. Macromol., 2016, 88, 206-212.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.064 ] [PMID: 27037052]
[24]
Singh, A.; Thotakura, N.; Kumar, R.; Singh, B.; Sharma, G.; Katare, O.P.; Raza, K. PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: cellular uptake, cytotoxic and pharmacokinetic evidences. Int. J. Biol. Macromol., 2017, 95, 750-756.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.111 ] [PMID: 27919818]
[25]
Madhwi, K.R.; Kumar, R.; Kumar, P.; Singh, B.; Sharma, G.; Katare, O.P.; Raza, K. In vivo pharmacokinetic studies and intracellular delivery of methotrexate by means of glycine-tethered PLGA-based polymeric micelles. Int. J. Pharm., 2017, 519(1-2), 138-144.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.021 ] [PMID: 28093326]
[26]
Raza, K.; Singh, B.; Singal, P.; Wadhwa, S.; Katare, O.P. Systematically optimized biocompatible isotretinoin-loaded Solid Lipid Nanoparticles (SLNs) for topical treatment of acne. Colloids Surf. B Biointerfaces, 2013, 105, 67-74.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.043 ] [PMID: 23357735]
[27]
Xu, Z.; Chen, L.; Gu, W.; Gao, Y.; Lin, L.; Zhang, Z.; Xi, Y.; Li, Y. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials, 2009, 30(2), 226-232.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.014 ] [PMID: 18851881]
[28]
Cho, H.J.; Park, J.W.; Yoon, I.S.; Kim, D.D. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int. J. Nanomedicine, 2014, 9, 495-504.
[PMID: 24531717]
[29]
Rafiei, P.; Haddadi, A. Pharmacokinetic consequences of PLGA nanoparticles in docetaxel drug delivery. Pharm. Nanotechnol., 2017, 5(1), 3-23.
[http://dx.doi.org/10.2174/2211738505666161230110108 ] [PMID: 28948907]
[30]
Zhang, T.; Li, M.; Yang, R.; Zhang, D.; Guan, J.; Yu, J.; Yang, B.; Zhang, H.; Zhang, S.; Liu, D.; Wang, Y. Therapeutic efficacy of lipid emulsions of docetaxel-linoleic acid conjugate in breast cancer. Int. J. Pharm., 2018, 546(1-2), 61-69.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.032 ] [PMID: 29763687]
[31]
Raza, K.; Kumar, D.; Kiran, C.; Kumar, M.; Guru, S.K.; Kumar, P.; Arora, S.; Sharma, G.; Bhushan, S.; Katare, O.P. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: implications on pharmacokinetic profile and anticancer activity. Mol. Pharm., 2016, 13(7), 2423-2432.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00183 ] [PMID: 27182646]
[32]
Misra, C.; Kumar, M.; Sharma, G.; Kumar, R.; Singh, B.; Katare, O.P.; Raza, K. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine (Lond.), 2017, 12(9), 1011-1023.
[http://dx.doi.org/10.2217/nnm-2016-0432 ] [PMID: 28440713]
[33]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102 ] [PMID: 23432972]
[34]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861 ] [PMID: 25678787]
[35]
Mishra, M.; Kumar, P.; Rajawat, J.S.; Malik, R.; Sharma, G.; Modgil, A. Nanotechnology: revolutionizing the science of drug delivery. Curr. Pharm. Des., 2018, 24(43), 5086-5107.
[http://dx.doi.org/10.2174/1381612825666190206222415 ] [PMID: 30727873]
[36]
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci., 2015, 10, 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[37]
Yang, R.; Zhang, X.; Li, F.; Ding, L.; Li, B.; Sun, H. Role of phospholipids and copolymers in enhancing stability and controlling degradation of intravenous lipid emulsions. Colloids Surf. A Physicochem. Eng. Asp., 2013, 436, 434-442.
[http://dx.doi.org/10.1016/j.colsurfa.2013.07.022]
[38]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136 ] [PMID: 27145899]
[39]
Andersen, T.; Vanić, Z.; Flaten, G.E.; Mattsson, S.; Tho, I.; Škalko-Basnet, N. Pectosomes and chitosomes as delivery systems for metronidazole: the one-pot preparation method. Pharmaceutics, 2013, 5(3), 445-456.
[http://dx.doi.org/10.3390/pharmaceutics5030445 ] [PMID: 24300517]
[40]
Cosco, D.; Paolino, D.; Muzzalupo, R.; Celia, C.; Citraro, R.; Caponio, D.; Picci, N.; Fresta, M. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed. Microdevices, 2009, 11(5), 1115-1125.
[http://dx.doi.org/10.1007/s10544-009-9328-2 ] [PMID: 19507033]
[41]
Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: a future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380.
[http://dx.doi.org/10.4103/0110-5558.76435 ] [PMID: 22247876]
[42]
Rajan, R.; Jose, S.; Mukund, V.P.; Vasudevan, D.T. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res., 2011, 2(3), 138-143.
[http://dx.doi.org/10.4103/2231-4040.85524 ] [PMID: 22171309]
[43]
Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: a novel technique for transdermal drug delivery. J. Drug Deliv. Ther., 2019, 9, 279-285.
[http://dx.doi.org/10.22270/jddt.v9i1.2198]
[44]
Ghai, I.; Chaudhary, H.; Ghai, S.; Kohli, K.; Kr, V. A review of transdermal drug delivery using nano-vesicular carriers: transfersomes. Recent Pat. Nanomed., 2012, 2, 164-171.
[http://dx.doi.org/10.2174/1877912311202020164]
[45]
Muthu, K.; Vijayakumar, B.; Alagu, T. In vitro study on the effect of nanoparticles and transfersomes as targeted drug carrier for cancer. Nanosci. Nanotechnol. Asia, 2019, 9, 512-518.
[http://dx.doi.org/10.2174/2210681208666180706125016]
[46]
Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev Exp, 2017, 8(1)1325708
[http://dx.doi.org/10.1080/20022727.2017.1325708 ] [PMID: 30410704]
[47]
Gupta, A.; Aggarwal, G.; Singla, S.; Arora, R. Transfersomes: a novel vesicular carrier for enhanced transdermal delivery of sertraline: development, characterization, and performance evaluation. Sci. Pharm., 2012, 80(4), 1061-1080.
[http://dx.doi.org/10.3797/scipharm.1208-02 ] [PMID: 23264950]
[48]
Kumar, A. Transfersomes : a recent approch to transdermal delivery. J. Drug Deliv. Ther., 2018, 8, 100-104.
[http://dx.doi.org/10.22270/jddt.v8i5-s.1981]
[49]
Sharma, G.; Goyal, H.; Thakur, K.; Raza, K.; Katare, O.P. Novel Elastic Membrane Vesicles (EMVs) and ethosomes-mediated effective topical delivery of aceclofenac: a new therapeutic approach for pain and inflammation. Drug Deliv., 2016, 23(8), 3135-3145.
[http://dx.doi.org/10.3109/10717544.2016.1155244 ] [PMID: 26960815]
[50]
Chourasia, M.K.; Kang, L.; Chan, S.Y. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results Pharma Sci., 2011, 1(1), 60-67.
[http://dx.doi.org/10.1016/j.rinphs.2011.10.002 ] [PMID: 25755983]
[51]
Hirlekar, R.; Garse, H.; Sonawane, S.; Londhe, S.; Kadam, V. Ethosomes and its applications in transdermal drug delivery. Curr. Drug Ther., 2009, 4, 92-100.
[http://dx.doi.org/10.2174/157488509788185141]
[52]
Das, S.K.; Chakraborty, S.; Roy, C.; Rajabalaya, R.; Mohaimin, A.W.; Khanam, J.; Nanda, A.; David, S.R. Ethosomes as novel vesicular carrier: an overview of the principle, preparation and its applications. Curr. Drug Deliv., 2018, 15(6), 795-817.
[http://dx.doi.org/10.2174/1567201815666180116091604 ] [PMID: 29336262]
[53]
Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: an overview. J. Adv. Pharm. Technol. Res., 2010, 1(3), 274-282.
[http://dx.doi.org/10.4103/0110-5558.72415 ] [PMID: 22247858]
[54]
Pandey, V.; Golhani, D.; Shukla, R. Ethosomes: versatile vesicular carriers for efficient transdermal delivery of therapeutic agents. Drug Deliv., 2014, 1, 123-125.
[PMID: 24580572]
[55]
Shukla, A.; Singh, B.; Katare, O.P. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br. J. Pharmacol., 2011, 164(2b), 820-827.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01452.x ] [PMID: 21506959]
[56]
Ahmad, J.; Singhal, M.; Amin, S.; Rizwanullah, M.; Akhter, S.; Kamal, M.A.; Haider, N.; Midoux, P.; Pichon, C. Bile Salt stabilized vesicles (bilosomes): a novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr. Pharm. Des., 2017, 23(11), 1575-1588.
[http://dx.doi.org/10.2174/1381612823666170124111142 ] [PMID: 28120725]
[57]
Wilkhu, J.S.; McNeil, S.E.; Anderson, D.E.; Perrie, Y. Characterization and optimization of bilosomes for oral vaccine delivery. J. Drug Target., 2013, 21(3), 291-299.
[http://dx.doi.org/10.3109/1061186X.2012.747528 ] [PMID: 30952177]
[58]
Aburahma, M.H. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv., 2016, 23(6), 1847-1867.
[PMID: 25390191]
[59]
Amit, G.; Ashawat, M.S.; Shailendra, S.; Swarnlata, S. Phytosome: a novel approach towards functional cosmetics. J. Plant Sci., 2007, 2, 644-649.
[http://dx.doi.org/10.3923/jps.2007.644.649]
[60]
Sharma, D.; Bhujbale, A.A. Phytosomes is a novel drug delivery system based herbal formulation: an review. Pharmatutor, 2018, 6, 23.
[http://dx.doi.org/10.29161/PT.v6.i3.2018.23]
[61]
Rezaei, Z.; Khabnadideh, S.; Afiatjou, E. In-vitro study of dipyridamole-propranolol interaction in protein binding in the absence and presence of nicotine. Iran. J. Pharm. Sci., 2005, 1, 171-176.
[62]
Banerjee, S.; Sen, K.K. Aquasomes: a novel nanoparticulate drug carrier. J. Drug Deliv. Sci. Technol., 2018, 43, 446-452.
[http://dx.doi.org/10.1016/j.jddst.2017.11.011]
[63]
Goyal, A.K.; Khatri, K.; Mishra, N.; Mehta, A.; Vaidya, B.; Tiwari, S.; Paliwal, R.; Paliwal, S.; Vyas, S.P. Development of self-assembled nanoceramic carrier construct(s) for vaccine delivery. J. Biomater. Appl., 2009, 24(1), 65-84.
[http://dx.doi.org/10.1177/0885328209104018 ] [PMID: 19386666]
[64]
Goyal, A.K.; Khatri, K.; Mishra, N.; Mehta, A.; Vaidya, B.; Tiwari, S.; Vyas, S.P. Aquasomes--a nanoparticulate approach for the delivery of antigen. Drug Dev. Ind. Pharm., 2008, 34(12), 1297-1305.
[http://dx.doi.org/10.1080/03639040802071661 ] [PMID: 18850363]
[65]
Kaur, K.; Kush, P.; Pandey, R.S.; Madan, J.; Jain, U.K.; Katare, O.P. Stealth lipid coated aquasomes bearing recombinant human interferon-α-2b offered prolonged release and enhanced cytotoxicity in ovarian cancer cells. Biomed. Pharmacother., 2015, 69, 267-276.
[http://dx.doi.org/10.1016/j.biopha.2014.12.007 ] [PMID: 25661369]
[66]
Kakkar, S.; Kaur, I.P. Spanlastics--a novel nanovesicular carrier system for ocular delivery. Int. J. Pharm., 2011, 413(1-2), 202-210.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.027 ] [PMID: 21540093]
[67]
Fahmy, A.M.; El-Setouhy, D.A.; Ibrahim, A.B.; Habib, B.A.; Tayel, S.A.; Bayoumi, N.A. Penetration Enhancer-Containing Spanlastics (PECSs) for transdermal delivery of haloperidol: in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv., 2018, 25(1), 12-22.
[http://dx.doi.org/10.1080/10717544.2017.1410262 ] [PMID: 29219628]
[68]
Farghaly, D.A.; Aboelwafa, A.A.; Hamza, M.Y.; Mohamed, M.I. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: optimization using experimental design and in vivo evaluation. AAPS PharmSciTech, 2017, 18(8), 2898-2909.
[http://dx.doi.org/10.1208/s12249-017-0771-8 ] [PMID: 28429293]
[69]
Bajracharya, R.; Song, J.G.; Back, S.Y.; Han, H.K. Recent advancements in non-invasive formulations for protein drug delivery. Comput. Struct. Biotechnol. J., 2019, 17, 1290-1308.
[http://dx.doi.org/10.1016/j.csbj.2019.09.004 ] [PMID: 31921395]
[70]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102 ] [PMID: 23432972]
[71]
Juliano, R.L.; Stamp, D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res. Commun., 1975, 63(3), 651-658.
[http://dx.doi.org/10.1016/S0006-291X(75)80433-5 ] [PMID: 1131256]
[72]
Wakaskar, R.R. role of nanoparticles in drug delivery encompassing cancer therapeutics. Int. J. Drug Dev. Res. Wakaskar., 2017, 93, 3-4.
[73]
Radha, G.V.; Rani, T.S.; Sarvani, B. A review on proniosomal drug delivery system for targeted drug action. J. Basic Clin. Pharm., 2013, 4(2), 42-48.
[http://dx.doi.org/10.4103/0976-0105.113609 ] [PMID: 24808669]
[74]
Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine, 2016, 11, 2279-2304.
[http://dx.doi.org/10.2147/IJN.S105016 ] [PMID: 27307730]
[75]
Zhang, L.; Zhang, N. How nanotechnology can enhance docetaxel therapy. Int. J. Nanomedicine, 2013, 8, 2927-2941.
[http://dx.doi.org/10.2147/IJN.S46921 ] [PMID: 23950643]
[76]
Ulbrich, K.; Hola, I.; Bakandritsos, A. Tuc, í.; Zbor, R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[77]
Muthu, M.S.; Kulkarni, S.A.; Xiong, J.; Feng, S.S. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int. J. Pharm., 2011, 421(2), 332-340.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.045 ] [PMID: 22001537]
[78]
Yuan, Z.; Chen, D.; Zhang, S.; Zheng, Z. Preparation, characterization and evaluation of docetaxel-loaded, folate-conjugated PEG-liposomes. Yakugaku Zasshi, 2010, 130(10), 1353-1359.
[http://dx.doi.org/10.1248/yakushi.130.1353 ] [PMID: 20930488]
[79]
Zhao, M.; Su, M.; Lin, X.; Luo, Y.; He, H.; Cai, C.; Tang, X. Evaluation of docetaxel-loaded intravenous lipid emulsion: pharmacokinetics, tissue distribution, antitumor activity, safety and toxicity. Pharm. Res., 2010, 27(8), 1687-1702.
[http://dx.doi.org/10.1007/s11095-010-0180-0 ] [PMID: 20552255]
[80]
Muthu, M.S.; Kulkarni, S.A.; Xiong, J.; Feng, S.S. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int. J. Pharm., 2011, 421(2), 332-340.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.045 ] [PMID: 22001537]
[81]
Pereira, S.; Egbu, R.; Jannati, G.; Al-Jamal, W.T. Docetaxel-loaded liposomes: the effect of lipid composition and purification on drug encapsulation and in vitro toxicity. Int. J. Pharm., 2016, 514(1), 150-159.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.057 ] [PMID: 27863659]
[82]
Liao, B.; Ying, H.; Yu, C.; Fan, Z.; Zhang, W.; Shi, J.; Ying, H.; Ravichandran, N.; Xu, Y.; Yin, J.; Jiang, Y.; Du, Q. (-)-Epigallocatechin Gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice. Int. J. Pharm., 2016, 512(1), 22-31.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.038 ] [PMID: 27544847]
[83]
Misra, C.; Thotakura, N.; Kumar, R.; Singh, B.; Sharma, G.; Katare, O.P.; Raza, K. Improved cellular uptake, enhanced efficacy and promising pharmacokinetic profile of docetaxel employing glycine-tethered C60-fullerenes. Mater. Sci. Eng. C, 2017, 76, 501-508.
[http://dx.doi.org/10.1016/j.msec.2017.03.073 ] [PMID: 28482557]
[84]
Singh, A.; Thotakura, N.; Singh, B.; Lohan, S.; Negi, P.; Chitkara, D.; Raza, K. Delivery of docetaxel to brain employing piperine-tagged PLGA-aspartic acid polymeric micelles: improved cytotoxic and pharmacokinetic profiles. AAPS PharmSciTech, 2019, 20(6), 220.
[http://dx.doi.org/10.1208/s12249-019-1426-8 ] [PMID: 31201588]
[85]
Thotakura, N.; Sharma, S.; Khurana, R.K.; Babu, P.V.; Chitkara, D.; Kumar, V.; Singh, B.; Raza, K. Aspartic acid tagged carbon nanotubols as a tool to deliver docetaxel to breast cancer cells: reduced hemotoxicity with improved cytotoxicity. Toxicol. In Vitro, 2019, 59, 126-134.
[http://dx.doi.org/10.1016/j.tiv.2019.04.012 ] [PMID: 30986424]
[86]
Elsaesser, A.; Howard, C.V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev., 2012, 64(2), 129-137.
[http://dx.doi.org/10.1016/j.addr.2011.09.001 ] [PMID: 21925220]
[87]
Sharma, H.S.; Sharma, A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog. Brain Res., 2007, 162, 245-273.
[http://dx.doi.org/10.1016/S0079-6123(06)62013-X] [PMID: 17645923]
[88]
Aggarwal, U.; Goyal, A.K.; Rath, G. Development of drug targeting and delivery in cervical cancer. Curr. Cancer Drug Targets, 2018, 18(8), 792-806.
[http://dx.doi.org/10.2174/1568009617666171009165105 ] [PMID: 29032751]
[89]
Sainz, V.; Conniot, J.; Matos, A.I.; Peres, C.; Zupančič, E.; Moura, L.; Silva, L.C.; Florindo, H.F.; Gaspar, R.S. Regulatory aspects on nanomedicines. Biochem. Biophys. Res. Commun., 2015, 468(3), 504-510.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.023 ] [PMID: 26260323]
[90]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3, 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3 ] [PMID: 29560283]
[91]
De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596 ] [PMID: 18686775]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy