Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Smart Nanocarriers for Targeted Cancer Therapy

Author(s): Chiara Martinelli*

Volume 21, Issue 5, 2021

Published on: 19 June, 2020

Page: [546 - 557] Pages: 12

DOI: 10.2174/1871520620666200619181425

Price: $65

Abstract

Cancer is considered one of the most threatening diseases worldwide. Although many therapeutic approaches have been developed and optimized for ameliorating patient’s conditions and life expectancy, however, it frequently remains an incurable pathology. Notably, conventional treatments may reveal inefficient in the presence of metastasis development, multidrug resistance and inability to achieve targeted drug delivery.

In the last decades, nanomedicine has gained a prominent role, due to many properties ascribable to nanomaterials. It is worth mentioning their small size, their ability to be loaded with small drugs and bioactive molecules and the possibility to be functionalized for tumor targeting. Natural vehicles have been exploited, such as exosomes, and designed, such as liposomes. Biomimetic nanomaterials have been engineered, by modification with biological membrane coating. Several nanoparticles have already entered clinical trials and some liposomal formulations have been approved for therapeutic applications. In this review, natural and synthetic nanocarriers functionalized for actively targeting cancer cells will be described, focusing on their advantages with respect to conventional treatments. Recent innovations related to biomimetic nanoparticles camouflaged with membranes isolated from different types of cells will be reported, together with their promising applications. Finally, a short overview on the latest advances in carrier-free nanomaterials will be provided.

Keywords: Smart nanocarriers, active targeting, targeted therapy, biomimetic nanomaterials, cancer, clinical trials.

Graphical Abstract
[1]
Stewart, B.W.; Wild, C.P. World Cancer Report 2014 World Heal. Organ,, 2014, 1-619.
[2]
Gilman, A. The initial clinical trial of nitrogen mustard. Am. J. Surg., 1963, 105(5), 574-578.
[http://dx.doi.org/10.1016/0002-9610(63)90232-0] [PMID: 13947966]
[3]
Chabner, B.A.; Roberts, T.G., Jr Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[4]
Prise, K.M. New advances in radiation biology. Occup. Med. (Lond.), 2006, 56(3), 156-161.
[http://dx.doi.org/10.1093/occmed/kql010] [PMID: 16641500]
[5]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53, 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[6]
Frank, K.M.; Hogarth, D.K.; Miller, J.L.; Mandal, S.; Mease, P.J.; Samulski, R.J.; Weisgerber, G.A.; Hart, J. Investigation of the cause of death in a gene-therapy trial. N. Engl. J. Med., 2009, 361(2), 161-169.
[http://dx.doi.org/10.1056/NEJMoa0801066] [PMID: 19587341]
[7]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[8]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[9]
Wang, Y.; Li, J.; Chen, J.J.; Gao, X.; Huang, Z.; Shen, Q. Multifunctional nanoparticles loading with docetaxel and GDC0941 for reversing multidrug resistance mediated by PI3K/Akt signal pathway. Mol. Pharm., 2017, 14(4), 1120-1132.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01045] [PMID: 28291364]
[10]
Zhao, C.Y.; Cheng, R.; Yang, Z.; Tian, Z.M. Nanotechnology for cancer therapy based on chemotherapy. Molecules, 2018, 23(4)E826
[http://dx.doi.org/10.3390/molecules23040826]] [PMID: 29617302]
[11]
Yu, X.; Trase, I.; Ren, M.; Duval, K.; Guo, X.; Chen, Z. Design of nanoparticle-based carriers for targeted drug delivery. J. Nanomater., 2016, 20161087250
[http://dx.doi.org/10.1155/2016/1087250]] [PMID: 27398083]
[12]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
[13]
Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov., 2014, 13(11), 813-827.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[14]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[15]
Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[16]
Ernsting, M.J.; Murakami, M.; Roy, A.; Li, S.D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release, 2013, 172(3), 782-794.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.013] [PMID: 24075927]
[17]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol., 2011, 6(12), 815-823.
[http://dx.doi.org/10.1038/nnano.2011.166] [PMID: 22020122]
[18]
Kolhar, P.; Anselmo, A.C.; Gupta, V.; Pant, K.; Prabhakarpandian, B.; Ruoslahti, E.; Mitragotri, S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10753-10758.
[http://dx.doi.org/10.1073/pnas.1308345110] [PMID: 23754411]
[19]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[20]
Low, P.S.; Henne, W.A.; Doorneweerd, D.D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res., 2008, 41(1), 120-129.
[http://dx.doi.org/10.1021/ar7000815] [PMID: 17655275]
[21]
Bogart, L.K.; Pourroy, G.; Murphy, C.J.; Puntes, V.; Pellegrino, T.; Rosenblum, D.; Peer, D.; Lévy, R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano, 2014, 8(4), 3107-3122.
[http://dx.doi.org/10.1021/nn500962q] [PMID: 24641589]
[22]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[23]
Théry, C. Exosomes: Secreted vesicles and intercellular communications. F1000 Biol. Rep., 2011, 3, 15.
[http://dx.doi.org/10.3410/B3-15] [PMID: 21876726]
[24]
Suetsugu, A.; Honma, K.; Saji, S.; Moriwaki, H.; Ochiya, T.; Hoffman, R.M. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv. Drug Deliv. Rev., 2013, 65(3), 383-390.
[http://dx.doi.org/10.1016/j.addr.2012.08.007] [PMID: 22921594]
[25]
Qi, H.; Liu, C.; Long, L.; Ren, Y.; Zhang, S.; Chang, X.; Qian, X.; Jia, H.; Zhao, J.; Sun, J.; Hou, X.; Yuan, X.; Kang, C. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano, 2016, 10(3), 3323-3333.
[http://dx.doi.org/10.1021/acsnano.5b06939] [PMID: 26938862]
[26]
Yang, T.; Martin, P.; Fogarty, B.; Brown, A.; Schurman, K.; Phipps, R.; Yin, V.P.; Lockman, P.; Bai, S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res., 2015, 32(6), 2003-2014.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[27]
Kim, M.S.; Haney, M.J.; Zhao, Y.; Yuan, D.; Deygen, I.; Klyachko, N.L.; Kabanov, A.V.; Batrakova, E.V. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomedicine (Lond.), 2018, 14(1), 195-204.
[http://dx.doi.org/10.1016/j.nano.2017.09.011] [PMID: 28982587]
[28]
Sung, B.H.; Weaver, A.M. Exosome secretion promotes chemotaxis of cancer cells. Cell Adhes. Migr., 2017, 11(2), 187-195.
[http://dx.doi.org/10.1080/19336918.2016.1273307] [PMID: 28129015]
[29]
Martinelli, C. Exosomes: New Biomarkers for Targeted Cancer Therapy. In: Molecular Oncology: Underlying Mechanisms and Translational Advancements; Springer International Publishing: NwYork, 2017, pp. 129-157;
[http://dx.doi.org/10.1007/978-3-319-53082-6_6]
[30]
Zhang, Z.; Dombroski, J.A.; King, M.R. Engineering of exosomes to target cancer metastasis. Cell. Mol. Bioeng., 2019, 13(1), 1-16.
[31]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[32]
Jiang, X.C.; Gao, J.Q. Exosomes as novel bio-carriers for gene and drug delivery. Int. J. Pharm., 2017, 521(1-2), 167-175.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.038] [PMID: 28216464]
[33]
Aryani, A.; Denecke, B. Exosomes as a nanodelivery system: A key to the future of neuromedicine? Mol. Neurobiol., 2016, 53(2), 818-834.
[http://dx.doi.org/10.1007/s12035-014-9054-5] [PMID: 25502465]
[34]
Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7), 2383-2390.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[35]
Saari, H.; Lázaro-Ibáñez, E.; Viitala, T.; Vuorimaa-Laukkanen, E.; Siljander, P.; Yliperttula, M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J. Control. Release, 2015, 220(Pt B), 727-737.,
[36]
Kim, S.M.; Yang, Y.; Oh, S.J.; Hong, Y.; Seo, M.; Jang, M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Release, 2017, 266, 8-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.013] [PMID: 28916446]
[37]
Bellavia, D.; Raimondo, S.; Calabrese, G.; Forte, S.; Cristaldi, M.; Patinella, A.; Memeo, L.; Manno, M.; Raccosta, S.; Diana, P.; Cirrincione, G.; Giavaresi, G.; Monteleone, F.; Fontana, S.; De Leo, G.; Alessandro, R. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics, 2017, 7(5), 1333-1345.
[http://dx.doi.org/10.7150/thno.17092] [PMID: 28435469]
[38]
Dang, C.V.; Reddy, E.P.; Shokat, K.M.; Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer, 2017, 17(8), 502-508.
[http://dx.doi.org/10.1038/nrc.2017.36] [PMID: 28643779]
[39]
Vincent-Schneider, H.; Stumptner-Cuvelette, P.; Lankar, D.; Pain, S.; Raposo, G.; Benaroch, P.; Bonnerot, C. Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int. Immunol., 2002, 14(7), 713-722.
[http://dx.doi.org/10.1093/intimm/dxf048] [PMID: 12096030]
[40]
Damo, M.; Wilson, D.S.; Simeoni, E.; Hubbell, J.A. TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci. Rep., 2015, 5, 17622.
[http://dx.doi.org/10.1038/srep17622] [PMID: 26631690]
[41]
Xie, Y.; Wu, J.; Xu, A.; Ahmeqd, S.; Sami, A.; Chibbar, R.; Freywald, A.; Zheng, C.; Xiang, J. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice. Vaccine, 2018, 36(11), 1414-1422.
[http://dx.doi.org/10.1016/j.vaccine.2018.01.078] [PMID: 29415817]
[42]
Morse, M.A.; Garst, J.; Osada, T.; Khan, S.; Hobeika, A.; Clay, T.M.; Valente, N.; Shreeniwas, R.; Sutton, M.A.; Delcayre, A.; Hsu, D.H.; Le Pecq, J.B.; Lyerly, H.K. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med., 2005, 3(1), 9.
[http://dx.doi.org/10.1186/1479-5876-3-9] [PMID: 15723705]
[43]
Escudier, B.; Dorval, T.; Chaput, N.; André, F.; Caby, M.P.; Novault, S.; Flament, C.; Leboulaire, C.; Borg, C.; Amigorena, S.; Boccaccio, C.; Bonnerot, C.; Dhellin, O.; Movassagh, M.; Piperno, S.; Robert, C.; Serra, V.; Valente, N.; Le Pecq, J.B.; Spatz, A.; Lantz, O.; Tursz, T.; Angevin, E.; Zitvogel, L. Vaccination of metastatic melanoma patients with autologous Dendritic Cell (DC) derived-exosomes: Results of thefirst phase I clinical trial. J. Transl. Med., 2005, 3(1), 10.
[http://dx.doi.org/10.1186/1479-5876-3-10] [PMID: 15740633]
[44]
Viaud, S.; Théry, C.; Ploix, S.; Tursz, T.; Lapierre, V.; Lantz, O.; Zitvogel, L.; Chaput, N. Dendritic cell-derived exosomes for cancer immunotherapy: What’s next? Cancer Res., 2010, 70(4), 1281-1285.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3276] [PMID: 20145139]
[45]
Besse, B.; Charrier, M.; Lapierre, V.; Dansin, E.; Lantz, O.; Planchard, D.; Le Chevalier, T.; Livartoski, A.; Barlesi, F.; Laplanche, A.; Ploix, S.; Vimond, N.; Peguillet, I.; Théry, C.; Lacroix, L.; Zoernig, I.; Dhodapkar, K.; Dhodapkar, M.; Viaud, S.; Soria, J.C.; Reiners, K.S.; Pogge von Strandmann, E.; Vély, F.; Rusakiewicz, S.; Eggermont, A.; Pitt, J.M.; Zitvogel, L.; Chaput, N. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology, 2015, 5(4)e1071008
[http://dx.doi.org/10.1080/2162402X.2015.1071008]] [PMID: 27141373]
[46]
Viaud, S.; Ploix, S.; Lapierre, V.; Théry, C.; Commere, P.H.; Tramalloni, D.; Gorrichon, K.; Virault-Rocroy, P.; Tursz, T.; Lantz, O.; Zitvogel, L.; Chaput, N.; Tursz, T.; Lantz, O.; Zitvogel, L.; Chaput, N. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: A critical role of interferon-γ. J. Immunother., 2011, 34(1), 65-75.
[http://dx.doi.org/10.1097/CJI.0b013e3181fe535b] [PMID: 21150714]
[47]
ClinicalTrials.gov. US National Library of Medicine., https://clinicaltrials.gov/ct2/show/NCT01294072 (Accessed on: December 8, 2019)
[48]
Dai, S.; Wei, D.; Wu, Z.; Zhou, X.; Wei, X.; Huang, H.; Li, G. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther., 2008, 16(4), 782-790.
[http://dx.doi.org/10.1038/mt.2008.1] [PMID: 18362931]
[49]
ClinicalTrials.gov. US National Library of Medicine., https://clinicaltrials.gov/ct2/show/NCT03608631 (Accessed on: December 8, 2019)
[50]
Roccaro, A.M.; Sacco, A.; Maiso, P.; Azab, A.K.; Tai, Y.T.; Reagan, M.; Azab, F.; Flores, L.M.; Campigotto, F.; Weller, E.; Anderson, K.C.; Scadden, D.T.; Ghobrial, I.M. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J. Clin. Invest., 2013, 123(4), 1542-1555.
[http://dx.doi.org/10.1172/JCI66517] [PMID: 23454749]
[51]
Yeo, R.W.Y.; Lai, R.C.; Zhang, B.; Tan, S.S.; Yin, Y.; Teh, B.J.; Lim, S.K. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev., 2013, 65(3), 336-341.
[http://dx.doi.org/10.1016/j.addr.2012.07.001] [PMID: 22780955]
[52]
Colao, I.L.; Corteling, R.; Bracewell, D.; Wall, I. Manufacturing exosomes: A promising therapeutic platform. Trends Mol. Med., 2018, 24(3), 242-256.
[http://dx.doi.org/10.1016/j.molmed.2018.01.006] [PMID: 29449149]
[53]
Ng, K.S.; Smith, J.A.; McAteer, M.P.; Mead, B.E.; Ware, J.; Jackson, F.O.; Carter, A.; Ferreira, L.; Bure, K.; Rowley, J.A.; Reeve, B.; Brindley, D.A.; Karp, J.M. Bioprocess decision support tool for scalable manufacture of extracellular vesicles. Biotechnol. Bioeng., 2019, 116(2), 307-319.
[http://dx.doi.org/10.1002/bit.26809] [PMID: 30063243]
[54]
Jeyaram, A.; Jay, S.M. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J., 2017, 20(1), 1.
[http://dx.doi.org/10.1208/s12248-017-0160-y] [PMID: 29181730]
[55]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials (Basel), 2019, 9(4)E638
[http://dx.doi.org/10.3390/nano9040638]] [PMID: 31010180]
[56]
Zangabad, P.S.; Mirkiani, S.; Shahsavari, S.; Masoudi, B.; Masroor, M.; Hamed, H.; Jafari, Z.; Taghipour, Y.D.; Hashemi, H.; Karimi, M.; Hamblin, M.R. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev., 2018, 7(1), 95-122.
[http://dx.doi.org/10.1515/ntrev-2017-0154] [PMID: 29404233]
[57]
Lee, R.J.; Low, P.S. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. BBA - Biomembr., 1995, 1233(2), 134-144.,
[http://dx.doi.org/10.1016/0005-2736(94)00235-H]
[58]
Chaudhury, A.; Das, S.; Bunte, R.M.; Chiu, G.N.C. Potent therapeutic activity of folate receptor-targeted liposomal carboplatin in the localized treatment of intraperitoneally grown human ovarian tumor xenograft. Int. J. Nanomedicine, 2012, 7, 739-751.
[PMID: 22359453]
[59]
Daniels, T.R.; Bernabeu, E.; Rodríguez, J.A.; Patel, S.; Kozman, M.; Chiappetta, D.A.; Holler, E.; Ljubimova, J.Y.; Helguera, G.; Penichet, M.L. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta, 2012, 1820(3), 291-317.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.016] [PMID: 21851850]
[60]
Li, X.; Ding, L.; Xu, Y.; Wang, Y.; Ping, Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int. J. Pharm., 2009, 373(1-2), 116-123.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.023] [PMID: 19429296]
[61]
Jiang, H.; Pei, L.; Liu, N.; Li, J.; Li, Z.; Zhang, S. Etoposide-loaded nanostructured lipid carriers for gastric cancer therapy. Drug Deliv., 2016, 23(4), 1379-1382.
[PMID: 26162024]
[62]
Chiu, G.N.C.; Edwards, L.A.; Kapanen, A.I.; Malinen, M.M.; Dragowska, W.H.; Warburton, C.; Chikh, G.G.; Fang, K.Y.Y.; Tan, S.; Sy, J.; Tucker, C.; Waterhouse, D.N.; Klasa, R.; Bally, M.B. Modulation of cancer cell survival pathways using multivalent liposomal therapeutic antibody constructs. Mol. Cancer Ther., 2007, 6(3), 844-855.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0159] [PMID: 17339368]
[63]
Demeule, M.; Currie, J.C.; Bertrand, Y.; Ché, C.; Nguyen, T.; Régina, A.; Gabathuler, R.; Castaigne, J.P.; Béliveau, R. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J. Neurochem., 2008, 106(4), 1534-1544.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05492.x] [PMID: 18489712]
[64]
Kreuter, J.; Shamenkov, D.; Petrov, V.; Ramge, P.; Cychutek, K.; Koch-Brandt, C.; Alyautdin, R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target., 2002, 10(4), 317-325.
[http://dx.doi.org/10.1080/10611860290031877] [PMID: 12164380]
[65]
Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer, 2001, 1(2), 118-129.
[http://dx.doi.org/10.1038/35101072] [PMID: 11905803]
[66]
Wicki, A.; Rochlitz, C.; Orleth, A.; Ritschard, R.; Albrecht, I.; Herrmann, R.; Christofori, G.; Mamot, C. Targeting tumor-associated endothelial cells: Anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin. Cancer Res., 2012, 18(2), 454-464.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1102] [PMID: 22065082]
[67]
Gosk, S.; Moos, T.; Gottstein, C.; Bendas, G. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim. Biophys. Acta, 2008, 1778(4), 854-863.
[http://dx.doi.org/10.1016/j.bbamem.2007.12.021] [PMID: 18211818]
[68]
Yatvin, M.B.; Weinstein, J.N.; Dennis, W.H.; Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science, 1978, 202(4374), 1290-1293.
[http://dx.doi.org/10.1126/science.364652] [PMID: 364652]
[69]
Jhaveri, A.; Deshpande, P.; Torchilin, V. Stimuli-sensitive nanopreparations for combination cancer therapy. J. Control. Release, 2014, 190, 352-370.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.002] [PMID: 24818767]
[70]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[71]
Watson, K.D.; Lai, C.Y.; Qin, S.; Kruse, D.E.; Lin, Y.C.; Seo, J.W.; Cardiff, R.D.; Mahakian, L.M.; Beegle, J.; Ingham, E.S.; Curry, F.R.; Reed, R.K.; Ferrara, K.W. Ultrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial-mesenchymal transition tumors. Cancer Res., 2012, 72(6), 1485-1493.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3232] [PMID: 22282664]
[74]
EMA website https://www.ema.europa.eu/medicines/human/EPAR/myocet (Accessed on: December 8, 2019)
[75]
EMA website https://www.ema.europa.eu/en/medicines/human/EPAR/mepact (Accessed on: December 8, 2019).
[76]
[78]
FDA website. FDA website https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209401s000lbl.pdf (Accessed on: December 8, 2019)
[79]
Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol., 1982, 99(2), 237-247.
[http://dx.doi.org/10.1016/0022-5193(82)90002-9] [PMID: 6188926]
[80]
Pedersen, R.O.; Loboa, E.G.; LaBean, T.H. Sensitization of transforming growth factor-β signaling by multiple peptides patterned on DNA nanostructures. Biomacromolecules, 2013, 14(12), 4157-4160.
[http://dx.doi.org/10.1021/bm4011722] [PMID: 24206086]
[81]
Schaffert, D.H.; Okholm, A.H.; Sørensen, R.S.; Nielsen, J.S.; Tørring, T.; Rosen, C.B.; Kodal, A.L.B.; Mortensen, M.R.; Gothelf, K.V.; Kjems, J. Intracellular delivery of a planar DNA origami structure by the transferrin-receptor internalization pathway. Small, 2016, 12(19), 2634-2640.
[http://dx.doi.org/10.1002/smll.201503934] [PMID: 27032044]
[82]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[83]
Czogalla, A.; Kauert, D.J.; Franquelim, H.G.; Uzunova, V.; Zhang, Y.; Seidel, R.; Schwille, P. Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Angew. Chem. Int. Ed. Engl., 2015, 54(22), 6501-6505.
[http://dx.doi.org/10.1002/anie.201501173] [PMID: 25882792]
[84]
Mei, Q.; Wei, X.; Su, F.; Liu, Y.; Youngbull, C.; Johnson, R.; Lindsay, S.; Yan, H.; Meldrum, D. Stability of DNA origami nanoarrays in cell lysate. Nano Lett., 2011, 11(4), 1477-1482.
[http://dx.doi.org/10.1021/nl1040836] [PMID: 21366226]
[85]
Zhang, Q.; Jiang, Q.; Li, N.; Dai, L.; Liu, Q.; Song, L.; Wang, J.; Li, Y.; Tian, J.; Ding, B.; Du, Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano, 2014, 8(7), 6633-6643.
[http://dx.doi.org/10.1021/nn502058j] [PMID: 24963790]
[86]
Yan, J.; Hu, C.; Wang, P.; Zhao, B.; Ouyang, X.; Zhou, J.; Liu, R.; He, D.; Fan, C.; Song, S. Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. Angew. Chem. Int. Ed. Engl., 2015, 54(8), 2431-2435.
[http://dx.doi.org/10.1002/anie.201408247] [PMID: 25599663]
[87]
Douglas, S.M.; Bachelet, I.; Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335(6070), 831-834.
[http://dx.doi.org/10.1126/science.1214081] [PMID: 22344439]
[88]
Kohman, R.E.; Cha, S.S.; Man, H.Y.; Han, X. Light-triggered release of bioactive molecules from DNA nanostructures. Nano Lett., 2016, 16(4), 2781-2785.
[http://dx.doi.org/10.1021/acs.nanolett.6b00530] [PMID: 26935839]
[89]
Ko, S.; Liu, H.; Chen, Y.; Mao, C. DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules, 2008, 9(11), 3039-3043.
[http://dx.doi.org/10.1021/bm800479e] [PMID: 18821795]
[90]
Zhao, Y.X.; Shaw, A.; Zeng, X.; Benson, E.; Nyström, A.M.; Högberg, B. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano, 2012, 6(10), 8684-8691.
[http://dx.doi.org/10.1021/nn3022662] [PMID: 22950811]
[91]
Oleinick, N.L.; Morris, R.L.; Belichenko, I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem. Photobiol. Sci., 2002, 1(1), 1-21.
[http://dx.doi.org/10.1039/b108586g] [PMID: 12659143]
[92]
Jiang, Q.; Shi, Y.; Zhang, Q.; Li, N.; Zhan, P.; Song, L.; Dai, L.; Tian, J.; Du, Y.; Cheng, Z.; Ding, B. A self-assembled DNA origami-gold nanorod complex for cancer theranostics. Small, 2015, 11(38), 5134-5141.
[http://dx.doi.org/10.1002/smll.201501266] [PMID: 26248642]
[93]
Du, Y.; Jiang, Q.; Beziere, N.; Song, L.; Zhang, Q.; Peng, D.; Chi, C.; Yang, X.; Guo, H.; Diot, G.; Ntziachristos, V.; Ding, B.; Tian, J. DNA-nanostructure-gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater., 2016, 28(45), 10000-10007.
[http://dx.doi.org/10.1002/adma.201601710] [PMID: 27679425]
[94]
Zhuang, X.; Ma, X.; Xue, X.; Jiang, Q.; Song, L.; Dai, L.; Zhang, C.; Jin, S.; Yang, K.; Ding, B.; Wang, P.C.; Liang, X.J. A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy. ACS Nano, 2016, 10(3), 3486-3495.
[http://dx.doi.org/10.1021/acsnano.5b07671] [PMID: 26950644]
[95]
Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G.J.; Han, J.Y.; Chang, Y.; Liu, Y.; Zhang, C.; Chen, L.; Zhou, G.; Nie, G.; Yan, H.; Ding, B.; Zhao, Y. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol., 2018, 36(3), 258-264.
[http://dx.doi.org/10.1038/nbt.4071] [PMID: 29431737]
[96]
Martinez, J.O.; Evangelopoulos, M.; Chiappini, C.; Liu, X.; Ferrari, M.; Tasciotti, E. Degradation and biocompatibility of multistage nanovectors in physiological systems. J. Biomed. Mater. Res. A, 2014, 102(10), 3540-3549.
[http://dx.doi.org/10.1002/jbm.a.35017] [PMID: 25269799]
[97]
Hu, C.M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 10980-10985.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[98]
Hu, C.M.J.; Fang, R.H.; Wang, K.C.; Luk, B.T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C.H.; Kroll, A.V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S.H.; Zhu, J.; Shi, W.; Hofman, F.M.; Chen, T.C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571), 118-121.
[http://dx.doi.org/10.1038/nature15373] [PMID: 26374997]
[99]
Parodi, A.; Quattrocchi, N.; van de Ven, A.L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J.O.; Brown, B.S.; Khaled, S.Z.; Yazdi, I.K.; Enzo, M.V.; Isenhart, L.; Ferrari, M.; Tasciotti, E. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol., 2013, 8(1), 61-68.
[http://dx.doi.org/10.1038/nnano.2012.212] [PMID: 23241654]
[100]
Zhu, J.Y.; Zheng, D.W.; Zhang, M.K.; Yu, W.Y.; Qiu, W.X.; Hu, J.J.; Feng, J.; Zhang, X.Z. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett., 2016, 16(9), 5895-5901.
[http://dx.doi.org/10.1021/acs.nanolett.6b02786] [PMID: 27513184]
[101]
Oldenborg, P.A. Role of CD47 in erythroid cells and in autoimmunity. Leuk. Lymphoma, 2004, 45(7), 1319-1327.
[http://dx.doi.org/10.1080/1042819042000201989] [PMID: 15359629]
[102]
Luk, B.T.; Fang, R.H.; Hu, C.M.J.; Copp, J.A.; Thamphiwatana, S.; Dehaini, D.; Gao, W.; Zhang, K.; Li, S.; Zhang, L. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics, 2016, 6(7), 1004-1011.
[http://dx.doi.org/10.7150/thno.14471] [PMID: 27217833]
[103]
Su, J.; Sun, H.; Meng, Q.; Yin, Q.; Tang, S.; Zhang, P.; Chen, Y.; Zhang, Z.; Yu, H.; Li, Y. Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater., 2016, 26(8), 1243-1252.
[http://dx.doi.org/10.1002/adfm.201504780]
[104]
Gao, M.; Liang, C.; Song, X.; Chen, Q.; Jin, Q.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater., 2017, 29(35)1701429
[http://dx.doi.org/10.1002/adma.201701429]] [PMID: 28722140]
[105]
Gao, W.; Hu, C.M.J.; Fang, R.H.; Luk, B.T.; Su, J.; Zhang, L. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater., 2013, 25(26), 3549-3553.
[http://dx.doi.org/10.1002/adma.201300638] [PMID: 23712782]
[106]
Wang, C.; Sun, X.; Cheng, L.; Yin, S.; Yang, G.; Li, Y.; Liu, Z. Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer. Adv. Mater., 2014, 26(28), 4794-4802.
[http://dx.doi.org/10.1002/adma.201400158] [PMID: 24838472]
[107]
Tang, W.; Zhen, Z.; Wang, M.; Wang, H.; Chuang, Y.J.; Zhang, W.; Wang, G.D.; Todd, T.; Cowger, T.; Chen, H.; Liu, L.; Li, Z.; Xie, J. Red blood cell-facilitated photodynamic therapy for cancer treatment. Adv. Funct. Mater., 2016, 26(11), 1757-1768.
[http://dx.doi.org/10.1002/adfm.201504803] [PMID: 31749670]
[108]
Wan, G.; Chen, B.; Li, L.; Wang, D.; Shi, S.; Zhang, T.; Wang, Y.; Zhang, L.; Wang, Y. Nanoscaled red blood cells facilitate breast cancer treatment by combining photothermal/photodynamic therapy and chemotherapy. Biomaterials, 2018, 155, 25-40.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.002] [PMID: 29161627]
[109]
Anselmo, A.C.; Modery-Pawlowski, C.L.; Menegatti, S.; Kumar, S.; Vogus, D.R.; Tian, L.L.; Chen, M.; Squires, T.M.; Sen Gupta, A.; Mitragotri, S. Platelet-like nanoparticles: Mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano, 2014, 8(11), 11243-11253.
[http://dx.doi.org/10.1021/nn503732m] [PMID: 25318048]
[110]
Gay, L.J.; Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer, 2011, 11(2), 123-134.
[http://dx.doi.org/10.1038/nrc3004] [PMID: 21258396]
[111]
Li, J.; Ai, Y.; Wang, L.; Bu, P.; Sharkey, C.C.; Wu, Q.; Wun, B.; Roy, S.; Shen, X.; King, M.R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 2016, 76, 52-65.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.046] [PMID: 26519648]
[112]
Hu, Q.; Sun, W.; Qian, C.; Wang, C.; Bomba, H.N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater., 2015, 27(44), 7043-7050.
[http://dx.doi.org/10.1002/adma.201503323] [PMID: 26416431]
[113]
Hu, Q.; Sun, W.; Qian, C.; Bomba, H.N.; Xin, H.; Gu, Z. Relay drug delivery for amplifying targeting signal and enhancing anticancer efficacy. Adv. Mater., 2017, 29(13)1605803
[http://dx.doi.org/10.1002/adma.201605803]] [PMID: 28160337]
[114]
Hu, Q.; Qian, C.; Sun, W.; Wang, J.; Chen, Z.; Bomba, H.N.; Xin, H.; Shen, Q.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater., 2016, 28(43), 9573-9580.
[http://dx.doi.org/10.1002/adma.201603463] [PMID: 27626769]
[115]
Corbo, C.; Parodi, A.; Evangelopoulos, M.; Engler, D.A.; Matsunami, R.K.; Engler, A.C.; Molinaro, R.; Scaria, S.; Salvatore, F.; Tasciotti, E. Proteomic profiling of a biomimetic drug delivery platform. Curr. Drug Targets, 2015, 16(13), 1540-1547.
[http://dx.doi.org/10.2174/1389450115666141109211413] [PMID: 25382209]
[116]
Martinez, J.O.; Molinaro, R.; Hartman, K.A.; Boada, C.; Sukhovershin, R.; De Rosa, E.; Kirui, D.; Zhang, S.; Evangelopoulos, M.; Carter, A.M.; Bibb, J.A.; Cooke, J.P.; Tasciotti, E. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics, 2018, 8(4), 1131-1145.
[http://dx.doi.org/10.7150/thno.22078] [PMID: 29464004]
[117]
Evangelopoulos, M.; Tasciotti, E. Bioinspired approaches for cancer nanotheranostics. Nanomedicine (Lond.), 2017, 12(1), 5-7.
[http://dx.doi.org/10.2217/nnm-2016-0374] [PMID: 27876435]
[118]
Cao, H.; Dan, Z.; He, X.; Zhang, Z.; Yu, H.; Yin, Q.; Li, Y. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano, 2016, 10(8), 7738-7748.
[http://dx.doi.org/10.1021/acsnano.6b03148] [PMID: 27454827]
[119]
Kang, T.; Zhu, Q.; Wei, D.; Feng, J.; Yao, J.; Jiang, T.; Song, Q.; Wei, X.; Chen, H.; Gao, X.; Chen, J. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano, 2017, 11(2), 1397-1411.
[http://dx.doi.org/10.1021/acsnano.6b06477] [PMID: 28075552]
[120]
Fang, R.H.; Hu, C.M.J.; Luk, B.T.; Gao, W.; Copp, J.A.; Tai, Y.; O’Connor, D.E.; Zhang, L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett., 2014, 14(4), 2181-2188.
[http://dx.doi.org/10.1021/nl500618u] [PMID: 24673373]
[121]
Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, P.; Zhang, Z.; Yu, H.; Wang, S.; Li, Y. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater., 2016, 28(43), 9581-9588.
[http://dx.doi.org/10.1002/adma.201602173] [PMID: 27628433]
[122]
Chen, Z.; Zhao, P.; Luo, Z.; Zheng, M.; Tian, H.; Gong, P.; Gao, G.; Pan, H.; Liu, L.; Ma, A.; Cui, H.; Ma, Y.; Cai, L. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano, 2016, 10(11), 10049-10057.
[http://dx.doi.org/10.1021/acsnano.6b04695] [PMID: 27934074]
[123]
Roy, A.; Li, S.D. Modifying the tumor microenvironment using nanoparticle therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(6), 891-908.
[http://dx.doi.org/10.1002/wnan.1406] [PMID: 27038329]
[124]
Sun, Q.; Radosz, M.; Shen, Y. Challenges in design of translational nanocarriers. J. Control. Release, 2012, 164(2), 156-169.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.042] [PMID: 22664472]
[125]
De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[126]
Meinel, L.; Hofmann, S.; Karageorgiou, V.; Kirker-Head, C.; McCool, J.; Gronowicz, G.; Zichner, L.; Langer, R.; Vunjak-Novakovic, G.; Kaplan, D.L. The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005, 26(2), 147-155.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.047] [PMID: 15207461]
[127]
Qin, S.Y.; Zhang, A.Q.; Cheng, S.X.; Rong, L.; Zhang, X.Z. Drug self-delivery systems for cancer therapy. Biomaterials, 2017, 112, 234-247.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.016] [PMID: 27768976]
[128]
Ma, Y.; Mou, Q.; Zhu, X.; Yan, D. Small molecule nanodrugs for cancer therapy. Materials Today Chemistry., 2017, 4, 26-39.
[http://dx.doi.org/10.1016/j.mtchem.2017.01.004]
[129]
Chen, F.; Zhao, Y.; Pan, Y.; Xue, X.; Zhang, X.; Kumar, A.; Liang, X.J. Synergistically enhanced therapeutic effect of a carrier-free HCPT/DOX nanodrug on breast cancer cells through improved cellular drug accumulation. Mol. Pharm., 2015, 12(7), 2237-2244.
[http://dx.doi.org/10.1021/mp500744m] [PMID: 25996761]
[130]
Möschwitzer, J.P. Drug nanocrystals in the commercial pharmaceutical development process. Int. J. Pharm., 2013, 453(1), 142-156.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.034] [PMID: 23000841]
[131]
Miao, X.; Yang, W.; Feng, T.; Lin, J.; Huang, P. Drug nanocrystals for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 10(3)e1499
[http://dx.doi.org/10.1002/wnan.1499]] [PMID: 29044971]
[132]
Sun, D.; Ding, J.; Xiao, C.; Chen, J.; Zhuang, X.; Chen, X. Preclinical evaluation of antitumor activity of acid-sensitive PEGylated doxorubicin. ACS Appl. Mater. Interfaces, 2014, 6(23), 21202-21214.
[http://dx.doi.org/10.1021/am506178c] [PMID: 25415351]
[133]
Koseki, Y.; Ikuta, Y.; Kamishima, T.; Onodera, T.; Oikawa, H.; Kasai, H. Drug release is determined by the chain length of fatty acid-conjugated anticancer agent as one component of nano-prodrug. Bull. Chem. Soc. Jpn., 2016, 89(5), 540-545.
[http://dx.doi.org/10.1246/bcsj.20150405]
[134]
Yao, Q.; Kou, L.; Tu, Y.; Zhu, L. MMP-responsive ‘smart’ drug delivery and tumor targeting. Trends Pharmacol. Sci., 2018, 39(8), 766-781.
[http://dx.doi.org/10.1016/j.tips.2018.06.003] [PMID: 30032745]
[135]
Tanaka, A.; Fukuoka, Y.; Morimoto, Y.; Honjo, T.; Koda, D.; Goto, M.; Maruyama, T. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J. Am. Chem. Soc., 2015, 137(2), 770-775.
[http://dx.doi.org/10.1021/ja510156v] [PMID: 25521540]
[136]
Wang, S.; Deng, H.; Huang, P.; Sun, P.; Huang, X.; Su, Y.; Zhu, X.; Shen, J.; Yan, D. Real-time self-tracking of an anticancer small molecule nanodrug based on colorful fluorescence variations. RSC Advances, 2016, 6, 12472-12478.
[http://dx.doi.org/10.1039/C5RA24273H]
[137]
Nasiri, H.; Valedkarimi, Z.; Aghebati-Maleki, L.; Majidi, J. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy. J. Cell. Physiol., 2018, 233(9), 6441-6457.
[http://dx.doi.org/10.1002/jcp.26435] [PMID: 29319167]
[138]
Tsimberidou, A.M.; Giles, F.J.; Estey, E.; O’Brien, S.; Keating, M.J.; Kantarjian, H.M. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br. J. Haematol., 2006, 132(4), 398-409.
[PMID: 16412015]
[139]
Gemtuzumab ozogamicin makes a comeback. Cancer Discov., 2017, 7(11), 1208.
[PMID: 28931515]
[140]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[141]
Kung Sutherland, M.S.; Walter, R.B.; Jeffrey, S.C.; Burke, P.J.; Yu, C.; Kostner, H.; Stone, I.; Ryan, M.C.; Sussman, D.; Lyon, R.P.; Zeng, W.; Harrington, K.H.; Klussman, K.; Westendorf, L.; Meyer, D.; Bernstein, I.D.; Senter, P.D.; Benjamin, D.R.; Drachman, J.G.; McEarchern, J.A. SGN-CD33A: A novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood, 2013, 122(8), 1455-1463.
[http://dx.doi.org/10.1182/blood-2013-03-491506] [PMID: 23770776]
[142]
Tinkle, S.; McNeil, S.E.; Mühlebach, S.; Bawa, R.; Borchard, G.; Barenholz, Y.C.; Tamarkin, L.; Desai, N. Nanomedicines: Addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci., 2014, 1313, 35-56.
[http://dx.doi.org/10.1111/nyas.12403] [PMID: 24673240 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy