Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Structure-Activity Relationships of Natural and Synthetic Indole-Derived Scaffolds as α-Glucosidase Inhibitors: A Mini-Review

Author(s): Jiangming Wang, Silei Lu, Ruilong Sheng, Junting Fan, Wenhui Wu and Ruihua Guo*

Volume 20, Issue 17, 2020

Page: [1791 - 1818] Pages: 28

DOI: 10.2174/1389557520666200619121003

Price: $65

Abstract

α-Glucosidase plays an important role in carbohydrate metabolism and is an attractive drug target for the treatment of diabetes, obesity and other related complications. Currently, acarbose, miglitol and voglibose have been approved by the FDA for the treatment of diabetes by oral α-glucosidase inhibitors. With the development of anti-diabetic drugs, the emergence of novel drugs with various chemotypes has overshadowed α-glucosidase inhibitors. Since the 1990s, the FDA has not approved new chemical entities against α-glucosidase, which has resulted in restricted clinical medication. Nevertheless, this type of inhibitors possess several unparalleled advantages over other drugs, especially mild side effects (non-systemic gastrointestinal side effects and occasional allergic reactions). Additionally, α-glucosidase inhibitors for monotherapy or in combination with other drugs have been proved to be a feasible approach for the treatment of diabetes. In the last decade, the discovery of natural or synthetic indole derivatives possessing the inhibitory activity of α-glucosidase has received great attention. Herein, we have summarized indoles as inhibitors of α-glucosidase activity, their mechanism of action, synthetic methodologies and structure-activity relationships. Moreover, we have compared the inhibitory potencies of all compounds under their corresponding positive control as well as oral absorption in silico evaluated by tPSA. This review will provide a medium on which future drug design and development for the treatment of diabetes may be modeled as many drug candidates with present great potential as effective anti-diabetic chemotherapy.

Keywords: Indole, α-Glucosidase, Anti-diabetic agents, Structure-activity relationship, Enzyme inhibitors, Synthetic route.

« Previous
Graphical Abstract
[1]
Gaster, B.; Hirsch, I.B. The effects of improved glycemic control on complications in type 2 diabetes. Arch. Intern. Med., 1998, 158(2), 134-140.
[http://dx.doi.org/10.1001/archinte.158.2.134] [PMID: 9448551]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Maccari, R.; Del Corso, A.; Paoli, P.; Adornato, I.; Lori, G.; Balestri, F.; Cappiello, M.; Naß, A.; Wolber, G.; Ottanà, R. An investigation on 4-thiazolidinone derivatives as dual inhibitors of aldose reductase and protein tyrosine phosphatase 1B, in the search for potential agents for the treatment of type 2 diabetes mellitus and its complications. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3712-3720.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.024] [PMID: 30342956]
[4]
He, J.; Gao, H.X.; Yang, N.; Zhu, X.D.; Sun, R.B.; Xie, Y.; Zeng, C.H.; Zhang, J.W.; Wang, J.K.; Ding, F.; Aa, J.Y.; Wang, G.J. The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta Pharmacol. Sin., 2019, 40(1), 86-97.
[http://dx.doi.org/10.1038/s41401-018-0043-5] [PMID: 29930278]
[5]
Joubert, M. Cardiomyopathie du diabète: nouvelles données physiopathologiques. Médecine des Maladies Métaboliques, 2018, 12, 657-662.
[6]
Tuttle, L.J.; Bittel, D.C.; Bittel, A.J.; Sinacore, D.R. Early-onset physical frailty in adults with diabesity and peripheral neuropathy. Can. J. Diabetes, 2018, 42(5), 478-483.
[http://dx.doi.org/10.1016/j.jcjd.2017.12.001] [PMID: 29567079]
[7]
The global diabetes community. How does diabetes affect the body Effects of diabetes. www.diabetes.co.uk (Accessed August 15,2019)
[8]
Baumeister, S.E.; Schomerus, G.; Andersen, R.M.; Tost, F.; Markus, M.R.P.; Völzke, H.; Jürgens, C. Trends of barriers to eye care among adults with diagnosed diabetes in Germany, 1997-2012. Nutr. Metab. Cardiovasc. Dis., 2015, 25(10), 906-915.
[http://dx.doi.org/10.1016/j.numecd.2015.07.003] [PMID: 26298427]
[9]
Han, B.; Zhai, H.; Yu, J.; Xia, F.; Lu, Y. Diabetes mellitus associated with pancreatic somatostatin tumor: A case report. J. Clin. Transl. Endocrinol. Case Rep., 2016, 2, 20-22.
[http://dx.doi.org/10.1016/j.jecr.2016.05.004]
[10]
Seino, Y.; Nanjo, K.; Tajima, N.; Kadowaki, T.; Kashiwagi, A.; Araki, E.; Ito, C.; Inagaki, N.; Iwamoto, Y.; Kasuga, M.; Hanafusa, T.; Haneda, M.; Ueki, K. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J. Diabetes Investig., 2010, 1(5), 212-228.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00074.x] [PMID: 24843435]
[11]
Bach, J-F.; Chatenoud, L. A historical view from thirty eventful years of immunotherapy in autoimmune diabetes. Semin. Immunol., 2011, 23(3), 174-181.
[http://dx.doi.org/10.1016/j.smim.2011.07.009] [PMID: 21846589]
[12]
Diabetes Prevention Trial-Type 1 Diabetes Study Group, Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med., 2002, 346, 1685-1691.
[http://dx.doi.org/10.1056/NEJMoa012350]
[13]
Wang, J.; Lv, X.; Xu, J.; Liu, X.; Du, T.; Sun, G.; Chen, J.; Shen, X.; Wang, J.; Hu, L. Design, synthesis and biological evaluation of vincamine derivatives as potential pancreatic β-cells protective agents for the treatment of type 2 diabetes mellitus. Eur. J. Med. Chem., 2020, •••188111976
[http://dx.doi.org/10.1016/j.ejmech.2019.111976] [PMID: 31918073]
[14]
Dhameja, M.; Gupta, P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur. J. Med. Chem., 2019, 176, 343-377.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.025] [PMID: 31112894]
[15]
Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 2008, 57(5), 712-717.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[16]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: a review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[17]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[18]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[19]
Ximenes, V.F.; Campa, A.; Catalani, L.H. The oxidation of indole derivatives catalyzed by horseradish peroxidase is highly chemiluminescent. Arch. Biochem. Biophys., 2001, 387(2), 173-179.
[http://dx.doi.org/10.1006/abbi.2000.2228] [PMID: 11370838]
[20]
Lynch, S.M.; Bur, S.K.; Padwa, A. Intramolecular amidofuran cycloadditions across an indole π-bond: an efficient approach to the aspidosperma and strychnos ABCE core. Org. Lett., 2002, 4(26), 4643-4645.
[http://dx.doi.org/10.1021/ol027024q] [PMID: 12489950]
[21]
Rudrangi, S.R.S.; Bontha, V.K.; Manda, V.R.; Bethi, S. Oxindoles and their pharmaceutical significance-an overview. Asian J. Res. Chem, 2011, 4, 335-338.
[22]
Matsui, T.; Ueda, T.; Oki, T.; Sugita, K.; Terahara, N.; Matsumoto, K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J. Agric. Food Chem., 2001, 49(4), 1948-1951.
[http://dx.doi.org/10.1021/jf001251u] [PMID: 11308351]
[23]
Lee, D-S.; Lee, S-H. Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor. FEBS Lett., 2001, 501(1), 84-86.
[http://dx.doi.org/10.1016/S0014-5793(01)02631-X ] [PMID: 11457461]
[24]
Bharatham, K.; Bharatham, N.; Park, K.H.; Lee, K.W. Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of α-glucosidase inhibitors. J. Mol. Graph. Model., 2008, 26(8), 1202-1212.
[http://dx.doi.org/10.1016/j.jmgm.2007.11.002] [PMID: 18096420]
[25]
Zhao, H.; Zhang, Y.; Guo, Y.; Shi, S. Identification of major α-glucosidase inhibitors in Radix Astragali and its human microsomal metabolites using ultrafiltration HPLC-DAD-MS(n.). J. Pharm. Biomed. Anal., 2015, 104, 31-37.
[http://dx.doi.org/10.1016/j.jpba.2014.09.029] [PMID: 25474715]
[26]
Santos, C.M.M.; Freitas, M.; Fernandes, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2018, 157, 1460-1479.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.073] [PMID: 30282319]
[27]
Truscheit, E.; Hillebrand, I.; Junge, B.; Meller, L.; Puls, W.; Schmidt, D. Microbial α-glucosidase inhibitors: Chemistry, biochemistry and therapeutic potential.Drug concentration monitoring microbial α-glucosidase Inhibitors plasminogen activators; Springer, 1988, Vol. 7, pp. 17-99.
[http://dx.doi.org/10.1007/978-3-642-73461-8_2]
[28]
Shen, Q.; Shao, J.; Peng, Q.; Zhang, W.; Ma, L.; Chan, A.S.; Gu, L. Hydroxycoumarin derivatives: novel and potent α-glucosidase inhibitors. J. Med. Chem., 2010, 53(23), 8252-8259.
[http://dx.doi.org/10.1021/jm100757r] [PMID: 21053896]
[29]
Xu, X-T.; Deng, X-Y.; Chen, J.; Liang, Q-M.; Zhang, K.; Li, D-L.; Wu, P-P.; Zheng, X.; Zhou, R-P.; Jiang, Z-Y.; Ma, A-J.; Chen, W-H.; Wang, S-H. Synthesis and biological evaluation of coumarin derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2020, •••189112013
[http://dx.doi.org/10.1016/j.ejmech.2019.112013] [PMID: 31972390]
[30]
Scott, L.J.; Spencer, C.M. Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus. Drugs, 2000, 59(3), 521-549.
[http://dx.doi.org/10.2165/00003495-200059030-00012 ] [PMID: 10776834]
[31]
Kaku, K. Efficacy of voglibose in type 2 diabetes. Expert Opin. Pharmacother., 2014, 15(8), 1181-1190.
[http://dx.doi.org/10.1517/14656566.2014.918956] [PMID: 24798092]
[32]
Liu, Z.; Ma, S. Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem, 2017, 12(11), 819-829.
[http://dx.doi.org/10.1002/cmdc.201700216] [PMID: 28498640]
[33]
Çavdar, H.; Talaz, O.; Ekinci, D. Synthesis of novel mono and bis-indole conduritol derivatives and their α/β-glycosidase inhibitory effects. Bioorg. Med. Chem. Lett., 2012, 22(24), 7499-7503.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.038] [PMID: 23137433]
[34]
Rubab, K.; Abbasi, M.A. Aziz-ur-Rehman; Siddiqui, S.Z.; Ashraf, M.; Shaukat, A.; Ahmad, I.; Lodhi, M.A.; Khan, F.A.; Shahid, M.; Akhtar, M.N. Convergent synthesis of new N-substituted 2-[5-(1H-indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl]sulfanylacetamides as suitable therapeutic agents. Braz. J. Pharm. Sci., 2015, 51, 931-947.
[http://dx.doi.org/10.1590/S1984-82502015000400019]
[35]
Taha, M.; Ismail, N.H.; Javaid, K.; Imran, S.; Anouar, H.; Wadood, A. Atia-Tul-Wahab; Ali, M.; Khan, K.M.; Saad, S.M.; Rahim, F.; Choudhary, M.I. Evaluation of 2-indolcarbohydrazones as potent α-glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorg. Chem., 2015, 63, 24-35.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.001] [PMID: 26398141]
[36]
Naureen, S.; Noreen, S.; Nazeer, A.; Ashraf, M.; Alam, U.; Munawar, M.A.; Khan, M.A. Triarylimidazoles-synthesis of 3-(4,5-diaryl-1H-imidazol-2-yl)-2-phenyl-1H-indole derivatives as potent α-glucosidase inhibitors. Med. Chem. Res., 2015, 24, 1586-1595.
[http://dx.doi.org/10.1007/s00044-014-1239-y]
[37]
Naureen, S.; Chaudhry, F.; Munawar, M.A.; Ashraf, M.; Hamid, S.; Khan, M.A. Biological evaluation of new imidazole derivatives tethered with indole moiety as potent α-glucosidase inhibitors. Bioorg. Chem., 2018, 76, 365-369.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.014] [PMID: 29232634]
[38]
Khusnutdinova, E.F.; Smirnova, I.E.; Kazakova, O.B.; Petrova, A.V.; Ha, N.T.T.; Viet, D.Q. Synthesis and evaluation of 2,3-indolotriterpenoids as new α-glucosidase inhibitors. Med. Chem. Res., 2017, 26, 2737-2742.
[http://dx.doi.org/10.1007/s00044-017-1972-0]
[39]
Taha, M.; Rahim, F.; Imran, S.; Ismail, N.H.; Ullah, H.; Selvaraj, M.; Javid, M.T.; Salar, U.; Ali, M.; Khan, K.M. Synthesis, α-glucosidase inhibitory activity and in silico study of tris-indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorg. Chem., 2017, 74, 30-40.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.009] [PMID: 28750203]
[40]
Islam, M.S.; Barakat, A.; Al-Majid, A.M.; Ali, M.; Yousuf, S.; Iqbal Choudhary, M.; Khalil, R.; Ul-Haq, Z. Catalytic asymmetric synthesis of indole derivatives as novel α-glucosidase inhibitors in vitro. Bioorg. Chem., 2018, 79, 350-354.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.004] [PMID: 29807208]
[41]
Nazir, M.; Abbasi, M.A. Aziz-Ur-Rehman; Siddiqui, S.Z.; Khan, K.M.; Kanwal; Salar, U.; Shahid, M.; Ashraf, M.; Arif Lodhi, M.; Ali Khan, F. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. Bioorg. Chem., 2018, 81, 253-263.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.010] [PMID: 30153590]
[42]
Kaur, J.; Singh, A.; Singh, G.; Verma, R.K.; Mall, R. Novel indolyl linked para-substituted benzylidene-based phenyl containing thiazolidienediones and their analogs as α-glucosidase inhibitors: Synthesis, in vitro, and molecular docking studies. Med. Chem. Res., 2018, 27, 903-914.
[http://dx.doi.org/10.1007/s00044-017-2112-6]
[43]
Gollapalli, M.; Taha, M.; Ullah, H.; Nawaz, M.; AlMuqarrabun, L.M.R.; Rahim, F.; Qureshi, F.; Mosaddik, A.; Ahmat, N.; Khan, K.M. Synthesis of Bis-indolylmethane sulfonohydrazides derivatives as potent α-Glucosidase inhibitors. Bioorg. Chem., 2018, 80, 112-120.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.001] [PMID: 29894890]
[44]
Nourisefat, M.; Salehi, N.; Yousefinejad, S.; Panahi, F.; Bagherzadeh, K.; Amanlou, M.; Khalafi-Nezhad, A.; Karimi-Jafari, M.H.; Sheibani, N.; Moosavi-Movahedi, A.A. Biological evaluation of 9-(1H-Indol-3-yl) xanthen-4-(9H)-ones derivatives as noncompetitive α-glucosidase inhibitors: Kinetics and molecular mechanisms. Struct. Chem., 2019, 30, 703-714.
[http://dx.doi.org/10.1007/s11224-018-1218-x]
[45]
Khusnutdinova, E.F.; Petrova, A.V.; Thu, H.N.T.; Tu, A.L.T.; Thanh, T.N.; Thi, C.B.; Babkov, D.A.; Kazakova, O.B. Structural modifications of 2,3-indolobetulinic acid: Design and synthesis of highly potent α-glucosidase inhibitors. Bioorg. Chem., 2019.88102957
[http://dx.doi.org/10.1016/j.bioorg.2019.102957] [PMID: 31077913]
[46]
Zhang, J.; Zhao, J.; Wang, L.; Liu, J.; Ren, D.; Ma, Y. Design, synthesis and docking studies of some spiro-oxindole dihydroquinazolinones as antibacterial agents. Tetrahedron, 2016, 72, 936-943.
[http://dx.doi.org/10.1016/j.tet.2015.12.055]
[47]
Jiang, T.; Kuhen, K.L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Wu, T.Y-H.; He, Y. Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part I. Bioorg. Med. Chem. Lett., 2006, 16(8), 2105-2108.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.073] [PMID: 16480865]
[48]
Mohamed Abdelmoniem, A.; Abdelshafy Abdelhamid, I.; Ahmed Soliman Ghozlan, S.; Ali Ramadan, M. Synthesis and antimicrobial evaluations of novel spiro cyclic 2-oxindole derivatives of N-(1H-pyrazol-5-yl)-hexahydroquinoline derivatives. Heterocycles, 2016, 92, 1075.
[http://dx.doi.org/10.3987/COM-16-13451]
[49]
Varma, R.S.; Nobles, W.L. Antiviral, antibacterial, and antifungal activities of isatin N-Mannich bases. J. Pharm. Sci., 1975, 64(5), 881-882.
[http://dx.doi.org/10.1002/jps.2600640539] [PMID: 1151666]
[50]
Xu, Z.; Zhao, S-J.; Lv, Z-S.; Gao, F.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J-L. Fluoroquinolone-isatin hybrids and their biological activities. Eur. J. Med. Chem., 2019, 162, 396-406.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.032] [PMID: 30453247]
[51]
Gao, F.; Chen, Z.; Ma, L.; Fan, Y.; Chen, L.; Lu, G. Synthesis and biological evaluation of moxifloxacin-acetyl-1,2,3-1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. Eur. J. Med. Chem., 2019, 180, 648-655.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.057] [PMID: 31352245]
[52]
Suthar, S.K.; Bansal, S.; Alam, M.M.; Jaiswal, V.; Tiwari, A.; Chaudhary, A.; Alex, A.T.; Joseph, A. Design, synthesis, and biological evaluation of oxindole derivatives as antidepressive agents. Bioorg. Med. Chem. Lett., 2015, 25(22), 5281-5285.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.048] [PMID: 26428872]
[53]
Natarajan, A.; Guo, Y.; Harbinski, F.; Fan, Y-H.; Chen, H.; Luus, L.; Diercks, J.; Aktas, H.; Chorev, M.; Halperin, J.A. Novel arylsulfoanilide-oxindole hybrid as an anticancer agent that inhibits translation initiation. J. Med. Chem., 2004, 47(21), 4979-4982.
[http://dx.doi.org/10.1021/jm0496234] [PMID: 15456240]
[54]
Silva, B.V.; Ribeiro, N.M.; Pinto, A.C.; Vargas, M.D.; Dias, L.C. Synthesis of ferrocenyl oxindole compounds with potential anticancer activity. J. Braz. Chem. Soc., 2008, 19, 1244-1247.
[http://dx.doi.org/10.1590/S0103-50532008000700003]
[55]
Kleeblatt, D.; Cordes, C.A.; Lebrenz, P.; Hein, M.; Feist, H.; Matin, A.; Raza, R.; Iqbal, J.; Munshi, O.; Rahman, Q.; Villinger, A.; Langer, P. Synthesis and antiproliferative activity of N-glycosyl-3,3-diaryloxindoles. RSC Advances, 2014, 4, 22828.
[http://dx.doi.org/10.1039/c4ra02627f]
[56]
Bernard, K.S. 3-Substituted 2-oxindole-1-carboxamides as analgesic and anti-inflammatory agents. US4569942 A, 1985.
[57]
Gallagher, G., Jr; Lavanchy, P.G.; Webster, C.A.; Wilson, J.W.; Hieble, J.P.; DeMarinis, R.M. 4-[2-(Di-n-propylamino)ethyl]-2(3H)-indolone: a prejunctional dopamine receptor agonist. J. Med. Chem., 1985, 28(10), 1533-1536.
[http://dx.doi.org/10.1021/jm00148a028] [PMID: 4045928]
[58]
Xie, C.; Tang, L-M.; Li, F-N.; Guan, L-P.; Pan, C-Y.; Wang, S-H. Structure-based design, synthesis, and anticonvulsant activity of isatin-1-N-phenylacetamide derivatives. Med. Chem. Res., 2014, 23, 2161-2168.
[http://dx.doi.org/10.1007/s00044-013-0811-1]
[59]
Khan, M.; Yousaf, M.; Wadood, A.; Junaid, M.; Ashraf, M.; Alam, U.; Ali, M.; Arshad, M.; Hussain, Z.; Khan, K.M. Discovery of novel oxindole derivatives as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2014, 22(13), 3441-3448.
[http://dx.doi.org/10.1016/j.bmc.2014.04.033] [PMID: 24825482]
[60]
Chowdhury, S.; Chafeev, M.; Liu, S.; Sun, J.; Raina, V.; Chui, R.; Young, W.; Kwan, R.; Fu, J.; Cadieux, J.A. Discovery of XEN907, a spirooxindole blocker of NaV1.7 for the treatment of pain. Bioorg. Med. Chem. Lett., 2011, 21(12), 3676-3681.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.088] [PMID: 21570288]
[61]
Hardtmann, G. E. Oxindoles as sleep-inducers. US19794160032, 1974.
[62]
Yousuf, M.; Mukherjee, D.; Dey, S.; Chatterjee, S.; Pal, A.; Sarkar, B.; Pal, C.; Adhikari, S. Synthesis and biological evaluation of polyhydroxylated oxindole derivatives as potential antileishmanial agent. Bioorg. Med. Chem. Lett., 2018, 28(6), 1056-1062.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.023] [PMID: 29478704]
[63]
Yasuda, D.; Takahashi, K.; Ohe, T.; Nakamura, S.; Mashino, T. Antioxidant activities of 5-hydroxyoxindole and its 3-hydroxy-3-phenacyl derivatives: the suppression of lipid peroxidation and intracellular oxidative stress. Bioorg. Med. Chem., 2013, 21(24), 7709-7714.
[http://dx.doi.org/10.1016/j.bmc.2013.10.021] [PMID: 24216095]
[64]
Ali, M.A.; Ismail, R.; Choon, T.S.; Yoon, Y.K.; Wei, A.C.
Pandian, S.; Kumar, R.S.; Osman, H.; Manogaran, E. Substituted spiro [2.3′] oxindolespiro [3.2″]-5,6-dimethoxy-indane-1″-one-pyrrolidine analogue as inhibitors of acetylcholinesterase. Bioorg. Med. Chem. Lett., 2010, 20(23), 7064-7066.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.108] [PMID: 20951037]
[65]
Kia, Y.; Osman, H.; Kumar, R.S.; Murugaiyah, V.; Basiri, A.; Perumal, S.; Wahab, H.A.; Bing, C.S. Synthesis and discovery of novel piperidone-grafted mono- and bis-spirooxindole-hexahydropyrrolizines as potent cholinesterase inhibitors. Bioorg. Med. Chem., 2013, 21(7), 1696-1707.
[http://dx.doi.org/10.1016/j.bmc.2013.01.066] [PMID: 23454132]
[66]
Watanabe, H.; Ono, M.; Kimura, H.; Matsumura, K.; Yoshimura, M.; Okamoto, Y.; Ihara, M.; Takahashi, R.; Saji, H. Synthesis and biological evaluation of novel oxindole derivatives for imaging neurofibrillary tangles in Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2012, 22(17), 5700-5703.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.086] [PMID: 22832319]
[67]
Zaveri, N.T.; Jiang, F.; Olsen, C.M.; Deschamps, J.R.; Parrish, D.; Polgar, W.; Toll, L. A novel series of piperidin-4-yl-1,3-dihydroindol-2-ones as agonist and antagonist ligands at the nociceptin receptor. J. Med. Chem., 2004, 47(12), 2973-2976.
[http://dx.doi.org/10.1021/jm034249d] [PMID: 15163178]
[68]
Han, K.; Li, Y.; Zhang, Y.; Teng, Y.; Ma, Y.; Wang, M.; Wang, R.; Xu, W.; Yao, Q.; Zhang, Y.; Qin, H.; Sun, H.; Yu, P. Design, synthesis and docking study of novel tetracyclic oxindole derivatives as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(7), 1471-1475.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.031] [PMID: 25759031]
[69]
Rahim, F.; Malik, F.; Ullah, H.; Wadood, A.; Khan, F.; Javid, M.T.; Taha, M.; Rehman, W.; Ur Rehman, A.; Khan, K.M. Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies. Bioorg. Chem., 2015, 60, 42-48.
[http://dx.doi.org/10.1016/j.bioorg.2015.03.005] [PMID: 25955493]
[70]
Sun, H.; Zhang, Y.; Ding, W.; Zhao, X.; Song, X.; Wang, D.; Li, Y.; Han, K.; Yang, Y.; Ma, Y.; Wang, R.; Wang, D.; Yu, P. Inhibitory activity evaluation and mechanistic studies of tetracyclic oxindole derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2016, 123, 365-378.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.044] [PMID: 27487567]
[71]
Xie, Z.; Wang, G.; Wang, J.; Chen, M.; Peng, Y.; Li, L.; Deng, B.; Chen, S.; Li, W. Synthesis, biological evaluation, and molecular docking studies of novel isatin-thiazole derivatives as α-glucosidase inhibitors. Molecules, 2017, 22(4), 659.
[http://dx.doi.org/10.3390/molecules22040659] [PMID: 28425975]
[72]
Wang, G.; Wang, J.; Xie, Z.; Chen, M.; Li, L.; Peng, Y.; Chen, S.; Li, W.; Deng, B. Discovery of 3,3-di(indolyl)indolin-2-one as a novel scaffold for α-glucosidase inhibitors: In silico studies and SAR predictions. Bioorg. Chem., 2017, 72, 228-233.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.006] [PMID: 28482263]
[73]
Wang, G.; Wang, J.; He, D.; Li, X.; Li, J.; Peng, Z. Synthesis, in vitro evaluation and molecular docking studies of novel coumarin-isatin derivatives as α-glucosidase inhibitors. Chem. Biol. Drug Des., 2017, 89(3), 456-463.
[http://dx.doi.org/10.1111/cbdd.12867] [PMID: 27616456]
[74]
Luthra, T.; Naga Lalitha, K.; Agarwal, R.; Uma, A.; Sen, S. Design, synthesis and in vitro study of densely functionalized oxindoles as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2018, 26(18), 4996-5005.
[http://dx.doi.org/10.1016/j.bmc.2018.08.022] [PMID: 30153956]
[75]
Hussain, J.; Khan, H.; Ali, L.; Latif Khan, A.; Ur Rehman, N.; Jahangir, S.; Al-Harrasi, A. A new indole alkaloid from Cleome droserifolia. Helv. Chim. Acta, 2015, 98, 719-723.
[http://dx.doi.org/10.1002/hlca.201400314]
[76]
Shan, W-G.; Wu, Z-Y.; Pang, W-W.; Ma, L-F.; Ying, Y-M.; Zhan, Z-J. α-Glucosidase inhibitors from the Fungus Aspergillus terreus 3.05358. Chem. Biodivers., 2015, 12(11), 1718-1724.
[http://dx.doi.org/10.1002/cbdv.201500027] [PMID: 26567949]
[77]
Zhao, J-Q.; Wang, Y-M.; Yang, Y-L.; Zeng, Y.; Wang, Q-L.; Shao, Y.; Mei, L-J.; Shi, Y-P.; Tao, Y.D. Isolation and identification of antioxidant and α-glucosidase inhibitory compounds from fruit juice of Nitraria tangutorum. Food Chem., 2017, 227, 93-101.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.031] [PMID: 28274464]
[78]
Wang, Z-W.; Shi, X-J.; Mu, Y.; Fang, L.; Chen, Y.; Lin, Y-L. Three novel indole alkaloids from Kopsia officinalis. Fitoterapia, 2017, 119, 8-11.
[http://dx.doi.org/10.1016/j.fitote.2017.01.017] [PMID: 28363506]
[79]
Kuroda, S.; Kobashi, Y.; Oi, T.; Amada, H.; Okumura-Kitajima, L.; Io, F.; Yamamto, K.; Kakinuma, H. Discovery of a potent, low-absorbable sodium-dependent glucose cotransporter 1 (SGLT1) inhibitor (TP0438836) for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett., 2018, 28(22), 3534-3539.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.035] [PMID: 30297284]
[80]
Tariq, Q.U.; Malik, S.; Khan, A.; Naseer, M.M.; Khan, S.U.; Ashraf, A.; Ashraf, M.; Rafiq, M.; Mahmood, K.; Tahir, M.N.; Shafiq, Z. Xanthenone-based hydrazones as potent α-glucosidase inhibitors: Synthesis, solid state self-assembly and in silico studies. Bioorg. Chem., 2019, 84, 372-383.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.053] [PMID: 30530108]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy