Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Microbiological Detoxification of Mycotoxins: Focus on Mechanisms and Advances

Author(s): Milad Abdi, Arezoo Asadi, Farajolah Maleki, Ebrahim Kouhsari*, Azam Fattahi, Elnaz Ohadi, Ensieh Lotfali, Alireza Ahmadi and Zahra Ghafouri

Volume 21, Issue 3, 2021

Published on: 16 June, 2020

Page: [339 - 357] Pages: 19

DOI: 10.2174/1871526520666200616145150

Price: $65

Abstract

Some fungal species of the genera Aspergillus, Penicillium, and Fusarium secretes toxic metabolites known as mycotoxins, have become a global concern that is toxic to different species of animals and humans. Biological mycotoxins detoxification has been studied by researchers around the world as a new strategy for mycotoxin removal. Bacteria, fungi, yeast, molds, and protozoa are the main living organisms appropriate for the mycotoxin detoxification. Enzymatic and degradation sorptions are the main mechanisms involved in microbiological detoxification of mycotoxins. Regardless of the method used, proper management tools that consist of before-harvest prevention and after-harvest detoxification are required. Here, in this review, we focus on the microbiological detoxification and mechanisms involved in the decontamination of mycotoxins.

Keywords: Biological detoxification, microbiological decontamination, mycotoxins, Aspergillus, Penicillium, Fusarium.

Graphical Abstract
[1]
Didwania, N.; Trivedi, P. Mycotoxins: A review of toxicity, metabolism and biological approaches to counteract the production in food. MR International Journal of Engineering & Technology, 2018, 6(2), 38-42.
[2]
Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc., 2011, 15(2), 129-144.
[http://dx.doi.org/10.1016/j.jscs.2010.06.006]
[3]
Becker-Algeri, T.A.; Castagnaro, D.; de Bortoli, K.; de Souza, C.; Drunkler, D.A.; Badiale-Furlong, E. Mycotoxins in bovine milk and dairy products: a review. J. Food Sci., 2016, 81(3), R544-R552.
[http://dx.doi.org/10.1111/1750-3841.13204] [PMID: 26799355]
[4]
Jarvis, B.B. Chemistry and toxicology of molds isolated from water-damaged buildings.Mycotoxins and Food Safety. Springer; , 2002, pp. 43-52.
[http://dx.doi.org/10.1007/978-1-4615-0629-4_5]
[5]
Khatun, S.; Chakraborty, M.; Islam, A.; Cakilcioglu, U.; Chatterjee, N.C. Mycotoxins as health hazard. Biological Diversity and Conservation, 2012, 5(3), 123-133.
[6]
Trucksess, M.W.; Scott, P.M. Mycotoxins in botanicals and dried fruits: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(2), 181-192.
[http://dx.doi.org/10.1080/02652030701567459] [PMID: 18286408]
[7]
Trias, R.; Bañeras, L.; Montesinos, E.; Badosa, E. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol., 2008, 11(4), 231-236.
[PMID: 19204894]
[8]
Dalié, D.; Deschamps, A.; Richard-Forget, F. Lactic acid bacteria–Potential for control of mould growth and mycotoxins: A review. Food Control, 2010, 21(4), 370-380.
[http://dx.doi.org/10.1016/j.foodcont.2009.07.011]
[9]
Vogelmann, S.A.; Seitter, M.; Singer, U.; Brandt, M.J.; Hertel, C. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int. J. Food Microbiol., 2009, 130(3), 205-212.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.01.020] [PMID: 19239979]
[10]
Oelschlaeger, T.A. Mechanisms of probiotic actions - A review. Int. J. Med. Microbiol., 2010, 300(1), 57-62.
[http://dx.doi.org/10.1016/j.ijmm.2009.08.005] [PMID: 19783474]
[11]
Kesarcodi-Watson, A.; Kaspar, H.; Lategan, M.J.; Gibson, L. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture, 2008, 274(1), 1-14.
[http://dx.doi.org/10.1016/j.aquaculture.2007.11.019]
[12]
Prakash, B.; Shukla, R.; Singh, P.; Kumar, A.; Mishra, P.K.; Dubey, N.K. Efficacy of chemically characterized Piper betle L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity. Int. J. Food Microbiol., 2010, 142(1-2), 114-119.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.06.011] [PMID: 20621374]
[13]
Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Liquid chromatography/tandem mass spectrometric confirmatory method for determining aflatoxin M1 in cow milk: comparison between electrospray and atmospheric pressure photoionization sources. J. Chromatogr. A, 2006, 1101(1-2), 69-78.
[http://dx.doi.org/10.1016/j.chroma.2005.09.060] [PMID: 16221477]
[14]
Cavaliere, C.; Foglia, P.; Guarino, C.; Marzioni, F.; Nazzari, M.; Samperi, R.; Laganà, A. Aflatoxin M1 determination in cheese by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2006, 1135(2), 135-141.
[http://dx.doi.org/10.1016/j.chroma.2006.07.048] [PMID: 17056052]
[15]
Zinedine, A.; Brera, C.; Elakhdari, S.; Catano, C.; Debegnach, F.; Angelini, S. Natural occurrence of mycotoxins in cereals and spices commercialized in Morocco. Food Control, 2006, 17(11), 868-874.
[http://dx.doi.org/10.1016/j.foodcont.2005.06.001]
[16]
Santini, A.; Ritieni, A. Aflatoxins: risk, exposure and remediation. In: Aflatoxins-Recent Advances and Future Prospects InTech; , 2013.
[http://dx.doi.org/10.5772/52866]
[17]
Shahin, A. Removal of aflatoxin B1 from contaminated liquid media by dairy lactic acid bacteria. Int. J. Agric. Biol., 2007, 9(1), 71-75.
[18]
Shetty, P.H.; Hald, B.; Jespersen, L. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int. J. Food Microbiol., 2007, 113(1), 41-46.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.07.013] [PMID: 16996157]
[19]
Shetty, P.H.; Jespersen, L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol., 2006, 17(2), 48-55.
[http://dx.doi.org/10.1016/j.tifs.2005.10.004]
[20]
Bovo, F.; Corassin, C.H.; Rosim, R.E.; de Oliveira, C.A. Efficiency of lactic acid bacteria strains for decontamination of aflatoxin M 1 in phosphate buffer saline solution and in skimmed milk. Food Bioprocess Technol., 2013, 6(8), 2230-2234.
[http://dx.doi.org/10.1007/s11947-011-0770-9]
[21]
El-Nezami, H.; Kankaanpaa, P.; Salminen, S.; Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol., 1998, 36(4), 321-326.
[http://dx.doi.org/10.1016/S0278-6915(97)00160-9] [PMID: 9651049]
[22]
Khanafari, A.; Soudi, H.; Miraboulfathi, M. Biocontrol of Aspergillus flavus and aflatoxin B1 production in corn. J. Environ. Health Sci. Eng., 2007, 4(3), 163-168.
[23]
Hernandez-Mendoza, A.; Garcia, H.S.; Steele, J.L. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem. Toxicol., 2009, 47(6), 1064-1068.
[http://dx.doi.org/10.1016/j.fct.2009.01.042] [PMID: 19425181]
[24]
Shah, N.; Wu, X. Aflatoxin B1 binding abilities of probiotic bacteria. Biosci. Microflora, 1999, 18(1), 43-48.
[http://dx.doi.org/10.12938/bifidus1996.18.43]
[25]
Peltonen, K.; el-Nezami, H.; Haskard, C.; Ahokas, J.; Salminen, S. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J. Dairy Sci., 2001, 84(10), 2152-2156.
[http://dx.doi.org/10.3168/jds.S0022-0302(01)74660-7] [PMID: 11699445]
[26]
Sarimehmetoğlu, B.; Küplülü, Ö. Binding ability of aflatoxin M1 to yoghurt bacteria. Ankara Univ. Vet. Fak. Derg., 2004, 51(3), 195-198.
[27]
Peltonen, K.D.; El-Nezami, H.S.; Salminen, S.J.; Ahokas, J.T. Binding of aflatoxin B1 by probiotic bacteria. J. Sci. Food Agric., 2000, 80(13), 1942-1945.
[http://dx.doi.org/10.1002/1097-0010(200010)80:13<1942::AID-JSFA741>3.0.CO;2-7]
[28]
Ghazvini, R.D.; Kouhsari, E.; Zibafar, E.; Hashemi, S.J.; Amini, A.; Niknejad, F. Antifungal activity and aflatoxin degradation of bifidobacterium bifidum and lactobacillus fermentum against toxigenic aspergillus parasiticus. Open Microbiol. J., 2016, 10, 197-201.
[http://dx.doi.org/10.2174/1874285801610010197] [PMID: 28077976]
[29]
Schnürer, J.; Magnusson, J. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol., 2005, 16(1-3), 70-78.
[http://dx.doi.org/10.1016/j.tifs.2004.02.014]
[30]
Urry, W.; Wehrmeister, H.; Hodge, E.; Hidy, P. The structure of zearalenone. Tetrahedron Lett., 1966, 7(27), 3109-3114.
[http://dx.doi.org/10.1016/S0040-4039(01)99923-X]
[31]
Malekinejad, H.; Maas-Bakker, R.F.; Fink-Gremmels, J. Bioactivation of zearalenone by porcine hepatic biotransformation. Vet. Res., 2005, 36(5-6), 799-810.
[http://dx.doi.org/10.1051/vetres:2005034] [PMID: 16120254]
[32]
Shier, W.T.; Shier, A.C.; Xie, W.; Mirocha, C.J. Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon, 2001, 39(9), 1435-1438.
[http://dx.doi.org/10.1016/S0041-0101(00)00259-2] [PMID: 11384734]
[33]
Cho, K.J.; Kang, J.S.; Cho, W.T.; Lee, C.H.; Ha, J.K.; Song, K.B. in vitro degradation of zearalenone by Bacillus subtilis. Biotechnol. Lett., 2010, 32(12), 1921-1924.
[http://dx.doi.org/10.1007/s10529-010-0373-y] [PMID: 20697929]
[34]
Lioi, M.B.; Santoro, A.; Barbieri, R.; Salzano, S.; Ursini, M.V. Ochratoxin A and zearalenone: a comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Mutat. Res., 2004, 557(1), 19-27.
[http://dx.doi.org/10.1016/j.mrgentox.2003.09.009] [PMID: 14706515]
[35]
Abid-Essefi, S.; Ouanes, Z.; Hassen, W.; Baudrimont, I.; Creppy, E.; Bacha, H. Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol. in vitro, 2004, 18(4), 467-474.
[http://dx.doi.org/10.1016/j.tiv.2003.12.011] [PMID: 15130604]
[36]
Niderkorn, V.; Morgavi, D.P.; Pujos, E.; Tissandier, A.; Boudra, H. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Addit. Contam., 2007, 24(4), 406-415.
[http://dx.doi.org/10.1080/02652030601101110] [PMID: 17454114]
[37]
Čvek, D; Markov, K; Frece, J; Friganović, M; Duraković, L; Delaš, F Adhesion of zearalenone to the surface of lactic acid bacteria cells. Hrvatski časopis za prehrambenu tehnologiju, biotehnologiju i nutricionizam , 2012, 7(SPECIAL ISSUE-7th), 49-52.
[38]
Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Walczak, J.; Buszewski, B. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. Anal. Bioanal. Chem., 2018, 410(3), 943-952.
[http://dx.doi.org/10.1007/s00216-017-0555-8] [PMID: 28852794]
[39]
Niderkorn, V.; Boudra, H.; Morgavi, D.P. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J. Appl. Microbiol., 2006, 101(4), 849-856.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02958.x] [PMID: 16968296]
[40]
Corsetti, A.; Gobbetti, M.; Rossi, J.; Damiani, P. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl. Microbiol. Biotechnol., 1998, 50(2), 253-256.
[http://dx.doi.org/10.1007/s002530051285] [PMID: 9763693]
[41]
Glaser, N.; Stopper, H. Patulin: Mechanism of genotoxicity. Food Chem. Toxicol., 2012, 50(5), 1796-1801.
[http://dx.doi.org/10.1016/j.fct.2012.02.096] [PMID: 22425938]
[42]
Speijers, G.J.; Franken, M.A.; van Leeuwen, F.X. Subacute toxicity study of patulin in the rat: effects on the kidney and the gastro-intestinal tract. Food Chem. Toxicol., 1988, 26(1), 23-30.
[http://dx.doi.org/10.1016/0278-6915(88)90037-3] [PMID: 3345966]
[43]
Karaca, H.; Nas, S. Aflatoxins, patulin and ergosterol contents of dried figs in Turkey. Food Addit. Contam., 2006, 23(5), 502-508.
[http://dx.doi.org/10.1080/02652030600550739] [PMID: 16644598]
[44]
Speijers, G; Magan, N; Olsen, M. Patulin. Mycotoxins in food: detection and control , 2004, 339-352.
[45]
Fuchs, S.; Sontag, G.; Stidl, R.; Ehrlich, V.; Kundi, M.; Knasmüller, S. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem. Toxicol., 2008, 46(4), 1398-1407.
[http://dx.doi.org/10.1016/j.fct.2007.10.008] [PMID: 18061329]
[46]
Ferrer, E.; Juan-García, A.; Font, G.; Ruiz, M.J. Reactive oxygen species induced by beauvericin, patulin and zearalenone in CHO-K1 cells. Toxicol. in vitro, 2009, 23(8), 1504-1509.
[http://dx.doi.org/10.1016/j.tiv.2009.07.009] [PMID: 19596061]
[47]
Hatab, S.; Yue, T.; Mohamad, O. Removal of patulin from apple juice using inactivated lactic acid bacteria. J. Appl. Microbiol., 2012, 112(5), 892-899.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05279.x] [PMID: 22394257]
[48]
Wang, L.; Yue, T.; Yuan, Y.; Wang, Z.; Ye, M.; Cai, R. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control, 2015, 50, 104-110.
[http://dx.doi.org/10.1016/j.foodcont.2014.08.041]
[49]
Hawar, S.; Vevers, W.; Karieb, S.; Ali, B.K.; Billington, R.; Beal, J. Biotransformation of patulin to hydroascladiol by Lactobacillus plantarum. Food Control, 2013, 34(2), 502-508.
[http://dx.doi.org/10.1016/j.foodcont.2013.05.023]
[50]
Hateb, S.; Yue, T.; Mohaned, O. Reduction of patulin in aqueous solution using inactivated lactic acid bacteria. J. Appl. Microbiol., 2012, 112(5), 892-899.
[PMID: 22394257]
[51]
Hathout, A.S.; Aly, S.E. Biological detoxification of mycotoxins: a review. Ann. Microbiol., 2014, 64(3), 905-919.
[http://dx.doi.org/10.1007/s13213-014-0899-7]
[52]
Battilani, P.; Giorni, P.; Bertuzzi, T.; Formenti, S.; Pietri, A. Black aspergilli and ochratoxin A in grapes in Italy. Int. J. Food Microbiol., 2006, 111(Suppl. 1), S53-S60.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.03.006] [PMID: 16713645]
[53]
Piotrowska, M.; Zakowska, Z. The elimination of ochratoxin A by lactic acid bacteria strains. Pol. J. Microbiol., 2005, 54(4), 279-286.
[PMID: 16599298]
[54]
Amézqueta, S.; González-Peñas, E.; Murillo-Arbizu, M.; de Cerain, A.L. Ochratoxin A decontamination: A review. Food Control, 2009, 20(4), 326-333.
[http://dx.doi.org/10.1016/j.foodcont.2008.05.017]
[55]
Heidler, D.; Schatzmayr, G. A new approach to managing mycotoxins. Feed Mix, 2003, 11(1), 31-34.
[56]
Varga, J.; Tóth, B. Novel strategies to control mycotoxins in feeds: a review. Acta Vet. Hung., 2005, 53(2), 189-203.
[http://dx.doi.org/10.1556/AVet.53.2005.2.4] [PMID: 15959977]
[57]
Del Prete, V.; Rodriguez, H.; Carrascosa, A.V.; de las Rivas, B.; Garcia-Moruno, E.; Muñoz, R. In vitro removal of ochratoxin A by wine lactic acid bacteria. J. Food Prot., 2007, 70(9), 2155-2160.
[http://dx.doi.org/10.4315/0362-028X-70.9.2155] [PMID: 17900096]
[58]
Lević, J.; Stanković, S.; Bočarov-Stančić, A.; Škrinjar, M.; Mašić, Z. The overview on toxigenic fungi and mycotoxins in Serbia and Montenegro.An overview on toxigenic fungi and mycotoxins in Europe. Springer; , 2004, pp. 201-218.
[http://dx.doi.org/10.1007/978-1-4020-2646-1_15]
[59]
McMullen, M.; Jones, R.; Gallenberg, D. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis., 1997, 81(12), 1340-1348.
[http://dx.doi.org/10.1094/PDIS.1997.81.12.1340] [PMID: 30861784]
[60]
McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: from simple to complex mycotoxins. Toxins (Basel), 2011, 3(7), 802-814.
[http://dx.doi.org/10.3390/toxins3070802] [PMID: 22069741]
[61]
Pestka, J.J. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(9), 1128-1140.
[http://dx.doi.org/10.1080/02652030802056626] [PMID: 19238623]
[62]
McLean, M. The phytotoxicity ofFusarium metabolites: An update since 1989. Mycopathologia, 1996, 133(3), 163-179.
[http://dx.doi.org/10.1007/BF02373024] [PMID: 20882471]
[63]
Kimura, M.; Tokai, T.; Takahashi-Ando, N.; Ohsato, S.; Fujimura, M. Molecular and genetic studies of fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci. Biotechnol. Biochem., 2007, 71(9), 2105-2123.
[http://dx.doi.org/10.1271/bbb.70183] [PMID: 17827683]
[64]
Nathanail, A.V.; Syvähuoko, J.; Malachová, A.; Jestoi, M.; Varga, E.; Michlmayr, H.; Adam, G.; Sieviläinen, E.; Berthiller, F.; Peltonen, K. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Anal. Bioanal. Chem., 2015, 407(16), 4745-4755.
[http://dx.doi.org/10.1007/s00216-015-8676-4] [PMID: 25935671]
[65]
Gottschalk, C.; Barthel, J.; Engelhardt, G.; Bauer, J.; Meyer, K. Simultaneous determination of type A, B and D trichothecenes and their occurrence in cereals and cereal products. Food Addit. Contam., 2009, 26(9), 1273-1289.
[http://dx.doi.org/10.1080/02652030903013260]
[66]
Pestka, J.J.; Smolinski, A.T. Deoxynivalenol: toxicology and potential effects on humans. Journal of Toxicology and Environmental Health. Part B, 2005, 8(1), 39-69.
[67]
Flannery, B.M.; Wu, W.; Pestka, J.J. Characterization of deoxynivalenol-induced anorexia using mouse bioassay. Food Chem. Toxicol., 2011, 49(8), 1863-1869.
[http://dx.doi.org/10.1016/j.fct.2011.05.004] [PMID: 21575669]
[68]
El-Nezami, H.S.; Chrevatidis, A.; Auriola, S.; Salminen, S.; Mykkänen, H. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Addit. Contam., 2002, 19(7), 680-686.
[http://dx.doi.org/10.1080/02652030210134236] [PMID: 12113664]
[69]
Haskard, C.; Binnion, C.; Ahokas, J. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chem. Biol. Interact., 2000, 128(1), 39-49.
[http://dx.doi.org/10.1016/S0009-2797(00)00186-1] [PMID: 10996299]
[70]
Richard, J.L. Some major mycotoxins and their mycotoxicoses--an overview. Int. J. Food Microbiol., 2007, 119(1-2), 3-10.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.07.019] [PMID: 17719115]
[71]
Michlmayr, H.; Varga, E.; Malachova, A.; Nguyen, N.T.; Lorenz, C.; Haltrich, D.; Berthiller, F.; Adam, G. A versatile family 3 Glycoside Hydrolase from Bifidobacterium adolescentis hydrolyzes β-glucosides of the Fusarium mycotoxins deoxynivalenol, nivalenol, and HT-2 toxin in cereal matrices. Appl. Environ. Microbiol., 2015, 81(15), 4885-4893.
[http://dx.doi.org/10.1128/AEM.01061-15] [PMID: 25979885]
[72]
Sobrova, P.; Adam, V.; Vasatkova, A.; Beklova, M.; Zeman, L.; Kizek, R. Deoxynivalenol and its toxicity. Interdiscip. Toxicol., 2010, 3(3), 94-99.
[http://dx.doi.org/10.2478/v10102-010-0019-x] [PMID: 21217881]
[73]
Sangare, L.; Zhao, Y.; Folly, Y.M.E.; Chang, J.; Li, J.; Selvaraj, J.N.; Xing, F.; Zhou, L.; Wang, Y.; Liu, Y. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins (Basel), 2014, 6(10), 3028-3040.
[http://dx.doi.org/10.3390/toxins6103028] [PMID: 25341538]
[74]
Farzaneh, M.; Shi, Z-Q.; Ghassempour, A.; Sedaghat, N.; Ahmadzadeh, M.; Mirabolfathy, M. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control, 2012, 23(1), 100-106.
[http://dx.doi.org/10.1016/j.foodcont.2011.06.018]
[75]
Petchkongkaew, A.; Taillandier, P.; Gasaluck, P.; Lebrihi, A. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B1 and ochratoxin A detoxification. J. Appl. Microbiol., 2008, 104(5), 1495-1502.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03700.x] [PMID: 18194245]
[76]
Gao, X.; Ma, Q.; Zhao, L.; Lei, Y.; Shan, Y.; Ji, C. Isolation of Bacillus subtilis: screening for aflatoxins B1, M1, and G1 detoxification. Eur. Food Res. Technol., 2011, 232(6), 957.
[http://dx.doi.org/10.1007/s00217-011-1463-3]
[77]
Guan, S.; Ji, C.; Zhou, T.; Li, J.; Ma, Q.; Niu, T. Aflatoxin B(1) degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium. Int. J. Mol. Sci., 2008, 9(8), 1489-1503.
[http://dx.doi.org/10.3390/ijms9081489] [PMID: 19325817]
[78]
Alberts, J.F.; Engelbrecht, Y.; Steyn, P.S.; Holzapfel, W.H.; van Zyl, W.H. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int. J. Food Microbiol., 2006, 109(1-2), 121-126.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.01.019] [PMID: 16504326]
[79]
Teniola, O.D.; Addo, P.A.; Brost, I.M.; Färber, P.; Jany, K-D.; Alberts, J.F.; van Zyl, W.H.; Steyn, P.S.; Holzapfel, W.H. Degradation of aflatoxin B(1) by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556(T). Int. J. Food Microbiol., 2005, 105(2), 111-117.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2005.05.004] [PMID: 16061299]
[80]
Eshelli, M.; Harvey, L.; Edrada-Ebel, R.; McNeil, B. Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0. Toxins (Basel), 2015, 7(2), 439-456.
[http://dx.doi.org/10.3390/toxins7020439] [PMID: 25658510]
[81]
Smiley, R.D.; Draughon, F.A. Preliminary evidence that degradation of aflatoxin B1 by Flavobacterium aurantiacum is enzymatic. J. Food Prot., 2000, 63(3), 415-418.
[http://dx.doi.org/10.4315/0362-028X-63.3.415] [PMID: 10716576]
[82]
Kollarczik, B.; Gareis, M.; Hanelt, M. In vitro transformation of the Fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs. Nat. Toxins, 1994, 2(3), 105-110.
[http://dx.doi.org/10.1002/nt.2620020303] [PMID: 8087428]
[83]
Megharaj, M.; Garthwaite, I.; Thiele, J.H. Total biodegradation of the oestrogenic mycotoxin zearalenone by a bacterial culture. Lett. Appl. Microbiol., 1997, 24(5), 329-333.
[http://dx.doi.org/10.1046/j.1472-765X.1997.00053.x] [PMID: 9172437]
[84]
Yu, Y.; Qiu, L.; Wu, H.; Tang, Y.; Yu, Y.; Li, X.; Liu, D. Degradation of zearalenone by the extracellular extracts of Acinetobacter sp. SM04 liquid cultures. Biodegradation, 2011, 22(3), 613-622.
[http://dx.doi.org/10.1007/s10532-010-9435-z] [PMID: 21082331]
[85]
Cserháti, M.; Kriszt, B.; Krifaton, C.; Szoboszlay, S.; Háhn, J.; Tóth, S.; Nagy, I.; Kukolya, J. Mycotoxin-degradation profile of Rhodococcus strains. Int. J. Food Microbiol., 2013, 166(1), 176-185.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.06.002] [PMID: 23891865]
[86]
Dixit, SM; Johura, FT; Manandhar, S Cholera outbreaks (2012) in three districts of Nepal reveal clonal transmission of multi-drug resistant Vibrio cholerae O1 2014, 14, 392.
[87]
Altalhi, A.D. Plasmid-inediated detoxification of mycotoxin zearalenone in Pseudomonas sp. ZEA-1. Am. J. Biochem. Biotechnol., 2007, 3, 150-158.
[http://dx.doi.org/10.3844/ajbbsp.2007.150.158]
[88]
Altalhi, A.D.; El-Deeb, B. Localization of zearalenone detoxification gene(s) in pZEA-1 plasmid of Pseudomonas putida ZEA-1 and expressed in Escherichia coli. J. Hazard. Mater., 2009, 161(2-3), 1166-1172.
[http://dx.doi.org/10.1016/j.jhazmat.2008.04.068] [PMID: 18513857]
[89]
Yi, P-J.; Pai, C-K.; Liu, J-R. Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone. World J. Microbiol. Biotechnol., 2011, 27(5), 1035-1043.
[http://dx.doi.org/10.1007/s11274-010-0548-7]
[90]
Ji, C.; Fan, Y.; Zhao, L. Review on biological degradation of mycotoxins. Anim Nutr, 2016, 2(3), 127-133.
[http://dx.doi.org/10.1016/j.aninu.2016.07.003] [PMID: 29767078]
[91]
Miazzo, R.; Rosa, C.A.; De Queiroz Carvalho, E.C.; Magnoli, C.; Chiacchiera, S.M.; Palacio, G.; Saenz, M.; Kikot, A.; Basaldella, E.; Dalcero, A. Efficacy of synthetic zeolite to reduce the toxicity of aflatoxin in broiler chicks. Poult. Sci., 2000, 79(1), 1-6.
[http://dx.doi.org/10.1093/ps/79.1.1] [PMID: 10685881]
[92]
Boudergue, C; Burel, C; Dragacci, S Review of mycotoxin-detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety EFSA Supporting Publications, 2009, 6(9 ), 22E.
[93]
Usall, J.; Teixido, N.; Torres, R.; de Eribe, X.O.; Viñas, I. Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit. Postharvest Biol. Technol., 2001, 21(2), 147-156.
[http://dx.doi.org/10.1016/S0925-5214(00)00131-9]
[94]
Jijakli, M.; Grevesse, C.; Lepoivre, P. Modes of action of biocontrol agents of postharvest diseases: challenges and difficulties. Bulletin OILB/SROP= IOBC. Bull. SROP, 2001, 24(3), 317-318.
[95]
Kogan, G.; Kocher, A. Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livest. Sci., 2007, 109(1-3), 161-165.
[http://dx.doi.org/10.1016/j.livsci.2007.01.134]
[96]
Franklin, S.T.; Newman, M.C.; Newman, K.E.; Meek, K.I. Immune parameters of dry cows fed mannan oligosaccharide and subsequent transfer of immunity to calves. J. Dairy Sci., 2005, 88(2), 766-775.
[http://dx.doi.org/10.3168/jds.S0022-0302(05)72740-5] [PMID: 15653543]
[97]
Nochta, I.; Tuboly, T.; Halas, V.; Babinszky, L. Effect of different levels of mannan-oligosaccharide supplementation on some immunological variables in weaned piglets. J. Anim. Physiol. Anim. Nutr. (Berl.), 2009, 93(4), 496-504.
[http://dx.doi.org/10.1111/j.1439-0396.2008.00835.x] [PMID: 18700854]
[98]
Swamy, H.V.; Smith, T.K.; Cotter, P.F.; Boermans, H.J.; Sefton, A.E. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on production and metabolism in broilers. Poult. Sci., 2002, 81(7), 966-975.
[http://dx.doi.org/10.1093/ps/81.7.966] [PMID: 12162357]
[99]
Tsitsigiannis, D.I.; Dimakopoulou, M.; Antoniou, P.P.; Tjamos, E.C. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol. Mediterr., 2012, 51(1), 158-174.
[100]
Khan, N.I.; Schisler, D.A.; Boehm, M.J.; Slininger, P.J.; Bothast, R.J. Selection and evaluation of microorganisms for biocontrol of Fusarium head blight of wheat incited by Gibberella zeae. Plant Dis., 2001, 85(12), 1253-1258.
[http://dx.doi.org/10.1094/PDIS.2001.85.12.1253] [PMID: 30831786]
[101]
Adebo, O.A.; Njobeh, P.B.; Gbashi, S.; Nwinyi, O.C.; Mavumengwana, V. Review on microbial degradation of aflatoxins. Crit. Rev. Food Sci. Nutr., 2017, 57(15), 3208-3217.
[http://dx.doi.org/10.1080/10408398.2015.1106440] [PMID: 26517507]
[102]
De Jong, E.; Field, J.A.; de Bont, J.A. Aryl alcohols in the physiology of ligninolytic fungi. FEMS Microbiol. Rev., 1994, 13(2-3), 153-187.
[http://dx.doi.org/10.1111/j.1574-6976.1994.tb00041.x]
[103]
Alberts, J.F.; Gelderblom, W.C.; Botha, A.; van Zyl, W.H. Degradation of aflatoxin B(1) by fungal laccase enzymes. Int. J. Food Microbiol., 2009, 135(1), 47-52.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.022] [PMID: 19683355]
[104]
Stanley, V.G.; Ojo, R.; Woldesenbet, S.; Hutchinson, D.H.; Kubena, L.F. The use of Saccharomyces cerevisiae to suppress the effects of aflatoxicosis in broiler chicks. Poult. Sci., 1993, 72(10), 1867-1872.
[http://dx.doi.org/10.3382/ps.0721867] [PMID: 8415359]
[105]
Huynh, V.L.; Lloyd, A.B. Synthesis and degradation of aflatoxins by Aspergillus parasiticus. I. Synthesis of aflatoxin B1 by young mycelium and its subsequent degradation in aging mycelium. Aust. J. Biol. Sci., 1984, 37(1-2), 37-43.
[http://dx.doi.org/10.1071/BI9840037] [PMID: 6439179]
[106]
Kusumaningtyas, E.; Widiastuti, R.; Maryam, R. Reduction of aflatoxin B1 in chicken feed by using Saccharomyces cerevisiae, Rhizopus oligosporus and their combination. Mycopathologia, 2006, 162(4), 307-311.
[http://dx.doi.org/10.1007/s11046-006-0047-4] [PMID: 17039279]
[107]
Zhang, W.; Xue, B.; Li, M.; Mu, Y.; Chen, Z.; Li, J.; Shan, A. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B₁. Toxins (Basel), 2014, 6(11), 3157-3172.
[http://dx.doi.org/10.3390/toxins6113157] [PMID: 25401962]
[108]
el-Sharkawy, S.; Abul-Hajj, Y. Microbial transformation of zearalenone, I. Formation of zearalenone-4-O-β-glucoside. J. Nat. Prod., 1987, 50(3), 520-521.
[http://dx.doi.org/10.1021/np50051a038]
[109]
El-Sharkawy, S.H.; Abul-Hajj, Y.J. Microbial transformation of zearalenone. 2. Reduction, hydroxylation, and methylation products. J. Org. Chem., 1988, 53(3), 515-519.
[http://dx.doi.org/10.1021/jo00238a008]
[110]
el-Sharkawy, S.; Abul-Hajj, Y.J. Microbial cleavage of zearalenone. Xenobiotica, 1988, 18(4), 365-371.
[http://dx.doi.org/10.3109/00498258809041672] [PMID: 2969647]
[111]
Molnar, O.; Schatzmayr, G.; Fuchs, E.; Prillinger, H. Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst. Appl. Microbiol., 2004, 27(6), 661-671.
[http://dx.doi.org/10.1078/0723202042369947] [PMID: 15612623]
[112]
Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarc’h, A.; André, F.; Delaforge, M. Transformation of zearalenone to zearalenone-sulfate by Aspergillus spp. World Mycotoxin J., 2010, 3(2), 183-191.
[http://dx.doi.org/10.3920/WMJ2009.1184]
[113]
Vekiru, E.; Hametner, C.; Mitterbauer, R.; Rechthaler, J.; Adam, G.; Schatzmayr, G.; Krska, R.; Schuhmacher, R. Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Appl. Environ. Microbiol., 2010, 76(7), 2353-2359.
[http://dx.doi.org/10.1128/AEM.01438-09] [PMID: 20118365]
[114]
el-Sharkaway, S.H.; Selim, M.I.; Afifi, M.S.; Halaweish, F.T. Microbial transformation of zearalenone to a zearalenone sulfate. Appl. Environ. Microbiol., 1991, 57(2), 549-552.
[http://dx.doi.org/10.1128/AEM.57.2.549-552.1991] [PMID: 1826596]
[115]
Utermark, J.; Karlovsky, P. Role of zearalenone lactonase in protection of Gliocladium roseum from fungitoxic effects of the mycotoxin zearalenone. Appl. Environ. Microbiol., 2007, 73(2), 637-642.
[http://dx.doi.org/10.1128/AEM.01440-06] [PMID: 17114328]
[116]
Repedkiene, J.; Levinskaitė, L.; Paškevičius, A.; Raudonienė, V. Toxin-producing fungi on feed grains and application of yeasts for their detoxification. Pol. J. Vet. Sci., 2013, 16(2), 391-393.
[http://dx.doi.org/10.2478/pjvs-2013-0054] [PMID: 23971211]
[117]
Angioni, A.; Caboni, P.; Garau, A.; Farris, A.; Orro, D.; Budroni, M.; Cabras, P. In vitro interaction between ochratoxin A and different strains of Saccharomyces cerevisiae and Kloeckera apiculata. J. Agric. Food Chem., 2007, 55(5), 2043-2048.
[http://dx.doi.org/10.1021/jf062768u] [PMID: 17279767]
[118]
Schatzmayr, G.; Heidler, D.; Fuchs, E.; Nitsch, S.; Mohnl, M.; Täubel, M.; Loibner, A.P.; Braun, R.; Binder, E.M. Investigation of different yeast strains for the detoxification of ochratoxin A. Mycotoxin Res., 2003, 19(2), 124-128.
[http://dx.doi.org/10.1007/BF02942950] [PMID: 23604763]
[119]
Velmourougane, K.; Bhat, R.; Gopinandhan, T.; Panneerselvam, P. Management of Aspergillus ochraceus and Ochratoxin-A contamination in coffee during on-farm processing through commercial yeast inoculation. Biol. Control, 2011, 57(3), 215-221.
[http://dx.doi.org/10.1016/j.biocontrol.2011.03.003]
[120]
Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. J. Appl. Microbiol., 2004, 97(5), 1038-1044.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02385.x] [PMID: 15479420]
[121]
Ponsone, M.L.; Chiotta, M.L.; Combina, M.; Dalcero, A.; Chulze, S. Biocontrol as a strategy to reduce the impact of ochratoxin A and Aspergillus section Nigri in grapes. Int. J. Food Microbiol., 2011, 151(1), 70-77.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.08.005] [PMID: 21893359]
[122]
Virgili, R.; Simoncini, N.; Toscani, T.; Camardo Leggieri, M.; Formenti, S.; Battilani, P. Biocontrol of Penicillium nordicum growth and ochratoxin A production by native yeasts of dry cured ham. Toxins (Basel), 2012, 4(2), 68-82.
[http://dx.doi.org/10.3390/toxins4020068] [PMID: 22474567]
[123]
Caridi, A.; Galvano, F.; Tafuri, A.; Ritieni, A. In-vitro screening ofSaccharomyces strains for ochratoxin A removal from liquid medium. Ann. Microbiol., 2006, 56(2), 135.
[http://dx.doi.org/10.1007/BF03174994]
[124]
Štyriak, I.; Conková, E.; Kmec, V.; Böhm, J.; Razzazi, E. The use of yeast for microbial degradation of some selected mycotoxins. Mycotoxin Res., 2001, 17(1)(Suppl. 1), 24-27.
[http://dx.doi.org/10.1007/BF03036705] [PMID: 23605753]
[125]
Paškevičius, A.; Bakutis, B.; Baliukonienė, V.; Šakalytė, J. The search for ecologically safe means of mycotoxin detoxification in fodder. Ekologija (Liet. Moksl. Akad.), 2006, (3), 128-131.
[126]
Karlovsky, P. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat. Toxins, 1999, 7(1), 1-23.
[http://dx.doi.org/10.1002/(SICI)1522-7189(199902)7:1<1::AID-NT37>3.0.CO;2-9] [PMID: 10441033]
[127]
He, C.; Fan, Y.; Liu, G.; Zhang, H. Isolation and identification of a strain of Aspergillus tubingensis with deoxynivalenol biotransformation capability. Int. J. Mol. Sci., 2008, 9(12), 2366-2375.
[http://dx.doi.org/10.3390/ijms9122366] [PMID: 19330081]
[128]
Stinson, E.; Osman, S.; Bills, D. Water-soluble products from patulin during alcoholic fermentation of apple juice. J. Food Sci., 1979, 44(3), 788-789.
[http://dx.doi.org/10.1111/j.1365-2621.1979.tb08502.x]
[129]
Moss, M.O.; Long, M.T. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit. Contam., 2002, 19(4), 387-399.
[http://dx.doi.org/10.1080/02652030110091163] [PMID: 11962697]
[130]
Ricelli, A.; Baruzzi, F.; Solfrizzo, M.; Morea, M.; Fanizzi, F.P. Biotransformation of patulin by Gluconobacter oxydans. Appl. Environ. Microbiol., 2007, 73(3), 785-792.
[http://dx.doi.org/10.1128/AEM.02032-06] [PMID: 17114325]
[131]
Stinson, E.E.; Osman, S.F.; Huhtanen, C.N.; Bills, D.D. Disappearance of patulin during alcoholic fermentation of apple juice. Appl. Environ. Microbiol., 1978, 36(4), 620-622.
[http://dx.doi.org/10.1128/AEM.36.4.620-622.1978] [PMID: 360989]
[132]
Coelho, A.R.; Celli, M.G.; Ono, E.Y.S.; Wosiacki, G.; Hoffmann, F.L.; Pagnocca, F.C. Penicillium expansum versus antagonist yeasts and patulin degradation in vitro. Braz. Arch. Biol. Technol., 2007, 50(4), 725-733.
[http://dx.doi.org/10.1590/S1516-89132007000400019]
[133]
Ianiri, G.; Idnurm, A.; Wright, S.A.; Durán-Patrón, R.; Mannina, L.; Ferracane, R.; Ritieni, A.; Castoria, R. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl. Environ. Microbiol., 2013, 79(9), 3101-3115.
[http://dx.doi.org/10.1128/AEM.03851-12] [PMID: 23455346]
[134]
Castoria, R.; Mannina, L.; Durán-Patrón, R.; Maffei, F.; Sobolev, A.P.; De Felice, D.V.; Pinedo-Rivilla, C.; Ritieni, A.; Ferracane, R.; Wright, S.A. Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. J. Agric. Food Chem., 2011, 59(21), 11571-11578.
[http://dx.doi.org/10.1021/jf203098v] [PMID: 21928828]
[135]
Reddy, K.R.; Spadaro, D.; Gullino, M.L.; Garibaldi, A. Potential of two Metschnikowia pulcherrima (yeast) strains for in vitro biodegradation of patulin. J. Food Prot., 2011, 74(1), 154-156.
[http://dx.doi.org/10.4315/0362-028X.JFP-10-331] [PMID: 21219780]
[136]
Aliabadi, M.A.; Alikhani, F.E.; Mohammadi, M.; Darsanaki, R.K. Biological control of aflatoxins. Eur. J. Exp. Biol., 2013, 3(2), 162-166.
[137]
Heinl, S.; Hartinger, D.; Thamhesl, M.; Schatzmayr, G.; Moll, W-D.; Grabherr, R. An aminotransferase from bacterium ATCC 55552 deaminates hydrolyzed fumonisin B₁. Biodegradation, 2011, 22(1), 25-30.
[http://dx.doi.org/10.1007/s10532-010-9371-y] [PMID: 20567881]
[138]
Duvick, J.; Maddox, J.; Gilliam, J. Compositions and methods for fumonisin detoxification. In: Google Patents, 2003.
[139]
Heinl, S.; Hartinger, D.; Moll, W.; Schatzmayr, G.; Grabherr, R. Identification of a fumonisin B1 degrading gene cluster in Sphingomonas spp. MTA144. N. Biotechnol., 2009, 25, S61-S62.
[http://dx.doi.org/10.1016/j.nbt.2009.06.290]
[140]
Benedetti, R.; Nazzi, F.; Locci, R.; Firrao, G. Degradation of fumonisin B1 by a bacterial strain isolated from soil. Biodegradation, 2006, 17(1), 31-38.
[http://dx.doi.org/10.1007/s10532-005-2797-y] [PMID: 16453169]
[141]
Vanhoutte, I.; Audenaert, K.; De Gelder, L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol., 2016, 7, 561.
[http://dx.doi.org/10.3389/fmicb.2016.00561] [PMID: 27199907]
[142]
Matthies, I.; Woerfel, G.; Karlovsky, P. Induction of a zearalenone degrading enzyme caused by the substrate and its derivatives. Mycotoxin Res., 2001, 17(Suppl. 1), 28-31.
[http://dx.doi.org/10.1007/BF03036706] [PMID: 23605754]
[143]
Kakeya, H.; Takahashi-Ando, N.; Kimura, M.; Onose, R.; Yamaguchi, I.; Osada, H. Biotransformation of the mycotoxin, zearalenone, to a non-estrogenic compound by a fungal strain of Clonostachys sp. Biosci. Biotechnol. Biochem., 2002, 66(12), 2723-2726.
[http://dx.doi.org/10.1271/bbb.66.2723] [PMID: 12596876]
[144]
Popiel, D.; Koczyk, G.; Dawidziuk, A.; Gromadzka, K.; Blaszczyk, L.; Chelkowski, J. Zearalenone lactonohydrolase activity in Hypocreales and its evolutionary relationships within the epoxide hydrolase subset of a/b-hydrolases. BMC Microbiol., 2014, 14(1), 82.
[http://dx.doi.org/10.1186/1471-2180-14-82] [PMID: 24708405]
[145]
Tinyiro, S.E.; Wokadala, C.; Xu, D.; Yao, W. Adsorption and degradation of zearalenone by bacillus strains. Folia Microbiol. (Praha), 2011, 56(4), 321-327.
[http://dx.doi.org/10.1007/s12223-011-0047-8] [PMID: 21647705]
[146]
Sun, X.; He, X.; Xue, Ks.; Li, Y.; Xu, D.; Qian, H. Biological detoxification of zearalenone by Aspergillus niger strain FS10. Food Chem. Toxicol., 2014, 72, 76-82.
[http://dx.doi.org/10.1016/j.fct.2014.06.021] [PMID: 25007785]
[147]
Yu, Y.; Qiu, L.; Wu, H.; Tang, Y.; Lai, F.; Yu, Y. Oxidation of zearalenone by extracellular enzymes from Acinetobacter sp. SM04 into smaller estrogenic products. World J. Microbiol. Biotechnol., 2011, 27(11), 2675-2681.
[http://dx.doi.org/10.1007/s11274-011-0741-3]
[148]
Kriszt, R; Krifaton, C; Szoboszlay, S A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain. PLoS One, 2012, 7(9), e43608.
[http://dx.doi.org/10.1371/journal.pone.0043608] [PMID: 23049739]
[149]
Ueno, Y.; Nakayama, K.; Ishii, K.; Tashiro, F.; Minoda, Y.; Omori, T.; Komagata, K. Metabolism of T-2 toxin in Curtobacterium sp. strain 114-2. Appl. Environ. Microbiol., 1983, 46(1), 120-127.
[http://dx.doi.org/10.1128/AEM.46.1.120-127.1983] [PMID: 6614901]
[150]
Fuchs, E.; Binder, E.; Heidler, D.; Krska, R. Characterisation of metabolites after the microbial degradation of A- and B-trichothecenes by BBSH 797. Mycotoxin Res., 2000, 16(1)(Suppl. 1), 66-69.
[http://dx.doi.org/10.1007/BF02942984] [PMID: 23605418]
[151]
Fuchs, E.; Binder, E.M.; Heidler, D.; Krska, R. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit. Contam., 2002, 19(4), 379-386.
[http://dx.doi.org/10.1080/02652030110091154] [PMID: 11962696]
[152]
He, J.; Zhou, T.; Young, J.C.; Boland, G.J.; Scott, P.M. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends Food Sci. Technol., 2010, 21(2), 67-76.
[http://dx.doi.org/10.1016/j.tifs.2009.08.002]
[153]
Guan, S.; He, J.; Young, J.C.; Zhu, H.; Li, X-Z.; Ji, C. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture, 2009, 290(3), 290-295.
[http://dx.doi.org/10.1016/j.aquaculture.2009.02.037]
[154]
Rafiqul, I. Isolation, characterization and genome sequencing of a soil-borne Citrobacter freundii strain capable of detoxifying trichothecene mycotoxins: SpringerLink, 2012.
[155]
Shima, J.; Takase, S.; Takahashi, Y.; Iwai, Y.; Fujimoto, H.; Yamazaki, M.; Ochi, K. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Appl. Environ. Microbiol., 1997, 63(10), 3825-3830.
[http://dx.doi.org/10.1128/AEM.63.10.3825-3830.1997] [PMID: 9327545]
[156]
Völkl, A.; Vogler, B.; Schollenberger, M.; Karlovsky, P. Microbial detoxification of mycotoxin deoxynivalenol. J. Basic Microbiol., 2004, 44(2), 147-156.
[http://dx.doi.org/10.1002/jobm.200310353] [PMID: 15069674]
[157]
Ikunaga, Y.; Sato, I.; Grond, S.; Numaziri, N.; Yoshida, S.; Yamaya, H.; Hiradate, S.; Hasegawa, M.; Toshima, H.; Koitabashi, M.; Ito, M.; Karlovsky, P.; Tsushima, S. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Appl. Microbiol. Biotechnol., 2011, 89(2), 419-427.
[http://dx.doi.org/10.1007/s00253-010-2857-z] [PMID: 20857291]
[158]
Sato, I.; Ito, M.; Ishizaka, M.; Ikunaga, Y.; Sato, Y.; Yoshida, S.; Koitabashi, M.; Tsushima, S. Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera with distinct degradation mechanisms. FEMS Microbiol. Lett., 2012, 327(2), 110-117.
[http://dx.doi.org/10.1111/j.1574-6968.2011.02461.x] [PMID: 22098388]
[159]
Ciegler, A.; Lillehoj, E.B.; Peterson, R.E.; Hall, H.H. Microbial detoxification of aflatoxin. Appl. Microbiol., 1966, 14(6), 934-939.
[http://dx.doi.org/10.1128/AEM.14.6.934-939.1966] [PMID: 16349699]
[160]
Wang, J.; Ogata, M.; Hirai, H.; Kawagishi, H. Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol. Lett., 2011, 314(2), 164-169.
[http://dx.doi.org/10.1111/j.1574-6968.2010.02158.x] [PMID: 21118293]
[161]
Liu, D-L.; Yao, D-S.; Liang, R.; Ma, L.; Cheng, W-Q.; Gu, L-Q. Detoxification of aflatoxin B1 by enzymes isolated from Armillariella tabescens. Food Chem. Toxicol., 1998, 36(7), 563-574.
[http://dx.doi.org/10.1016/S0278-6915(98)00017-9] [PMID: 9687963]
[162]
Das, A.; Bhattacharya, S.; Palaniswamy, M.; Angayarkanni, J. Biodegradation of aflatoxin B1 in contaminated rice straw by Pleurotus ostreatus MTCC 142 and Pleurotus ostreatus GHBBF10 in the presence of metal salts and surfactants. World J. Microbiol. Biotechnol., 2014, 30(8), 2315-2324.
[http://dx.doi.org/10.1007/s11274-014-1657-5] [PMID: 24770873]
[163]
Méndez-Albores, A.; Arámbula-Villa, G.; Loarca-Piña, M.G.; Castaño-Tostado, E.; Moreno-Martínez, E. Safety and efficacy evaluation of aqueous citric acid to degrade B-aflatoxins in maize. Food Chem. Toxicol., 2005, 43(2), 233-238.
[http://dx.doi.org/10.1016/j.fct.2004.09.009] [PMID: 15621335]
[164]
Samuel, M.S.; Sivaramakrishna, A.; Mehta, A. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. Int. Biodeterior. Biodegradation, 2014, 86, 202-209.
[http://dx.doi.org/10.1016/j.ibiod.2013.08.026]
[165]
Dridi, F.; Marrakchi, M.; Gargouri, M.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Comparison of carboxypeptidase Y and thermolysin for ochratoxin A electrochemical biosensing. Anal. Methods, 2015, 7(20), 8954-8960.
[http://dx.doi.org/10.1039/C5AY01905B]
[166]
Abrunhosa, L.; Santos, L.; Venâncio, A. Degradation of ochratoxin A by proteases and by a crude enzyme of Aspergillus niger. Food Biotechnol., 2006, 20(3), 231-242.
[http://dx.doi.org/10.1080/08905430600904369]
[167]
Hatab, S.; Yue, T.; Mohamad, O. Reduction of patulin in aqueous solution by lactic acid bacteria. J. Food Sci., 2012, 77(4), M238-M241.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02615.x] [PMID: 22394296]
[168]
Kabak, B.; Var, I. Factors affecting the removal of aflatoxin M1 from food model by Lactobacillus and Bifidobacterium strains. J. Environ. Sci. Health B, 2008, 43(7), 617-624.
[http://dx.doi.org/10.1080/03601230802234740] [PMID: 18803117]
[169]
KABAK, B.; VAR, I. Binding of aflatoxin M1 by Lactobacillus and Bifidobacterium strains. Milchwissenschaft, 2004, 59(5-6), 301-303.
[170]
El-Nezami, H. Biologic control of food carcinogen using Lactobacillus GG. Nutr. Today, 1996, 31, 41S-43S.
[http://dx.doi.org/10.1097/00017285-199611001-00013]
[171]
Hernandez-Mendoza, A.; Guzman-De-Peña, D.; González-Córdova, A.F.; Vallejo-Córdoba, B.; Garcia, H.S. In vivo assessment of the potential protective effect of Lactobacillus casei Shirota against aflatoxin B1. Dairy Sci. Technol., 2010, 90(6), 729-740.
[http://dx.doi.org/10.1051/dst/2010030]
[172]
Halttunen, T.; Collado, M.C.; El-Nezami, H.; Meriluoto, J.; Salminen, S. Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Lett. Appl. Microbiol., 2008, 46(2), 160-165.
[http://dx.doi.org/10.1111/j.1472-765X.2007.02276.x] [PMID: 18028332]
[173]
Pierides, M.; El-Nezami, H.; Peltonen, K.; Salminen, S.; Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind aflatoxin M1 in a food model. J. Food Prot., 2000, 63(5), 645-650.
[http://dx.doi.org/10.4315/0362-028X-63.5.645] [PMID: 10826723]
[174]
Škrinjar, M.; Rasić, J.L.; Stojicić, V. Lowering of ochratoxin A level in milk by yoghurt bacteria and bifidobacteria. Folia Microbiol. (Praha), 1996, 41(1), 26-28.
[http://dx.doi.org/10.1007/BF02816335] [PMID: 9090820]
[175]
Niderkorn, V.; Morgavi, D.P.; Aboab, B.; Lemaire, M.; Boudra, H. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. J. Appl. Microbiol., 2009, 106(3), 977-985.
[http://dx.doi.org/10.1111/j.1365-2672.2008.04065.x] [PMID: 19187153]
[176]
El-Nezami, H.; Polychronaki, N.; Salminen, S.; Mykkänen, H. Binding rather than metabolism may explain the interaction of two food-Grade Lactobacillus strains with zearalenone and its derivative (')alpha-earalenol. Appl. Environ. Microbiol., 2002, 68(7), 3545-3549.
[http://dx.doi.org/10.1128/AEM.68.7.3545-3549.2002] [PMID: 12089040]
[177]
G.A., G.; A.A.M. Y, Abol-ElaM.F. inhibition of aspergillus flavus and aspergillus parasiticus fungal growth and its aflatoxins (B1, B2, G1AND G2) production by lactobacillus acidophilus. J. Egypt. Soc. Toxicol., 2007, 37, 53-60.
[178]
Elsanhoty, RM; Azeke, MA Assessment of the ability of some probiotic bacteria to bind and remove aflatoxin from contaminated wheat during baladi bread making. Nigerian Ann Nat Sci, 2009, 9(1), 49-59.
[179]
Kabak, B.; Ozbey, F. Assessment of the bioaccessibility of aflatoxins from various food matrices using an in vitro digestion model, and the efficacy of probiotic bacteria in reducing bioaccessibility. J. Food Compos. Anal., 2012, 27(1), 21-31.
[http://dx.doi.org/10.1016/j.jfca.2012.04.006]
[180]
Niknejad, F.; Zaini, F.; Faramarzi, M.; Amini, M.; Kordbacheh, P.; Mahmoudi, M.; Safara, M. Candida parapsilosis as a potent biocontrol agent against growth and aflatoxin production by Aspergillus species. Iran. J. Public Health, 2012, 41(10), 72-80.
[PMID: 23308351]
[181]
Chen, Y.; Kong, Q.; Chi, C.; Shan, S.; Guan, B. Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Int. J. Food Microbiol., 2015, 211, 1-5.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.06.021] [PMID: 26143229]
[182]
Huang, W.; Chang, J.; Wang, P.; Liu, C.; Yin, Q.; Zhu, Q.; Lu, F.; Gao, T. Effect of the combined compound probiotics with mycotoxin-degradation enzyme on detoxifying aflatoxin B1 and zearalenone. J. Toxicol. Sci., 2018, 43(6), 377-385.
[http://dx.doi.org/10.2131/jts.43.377] [PMID: 29877214]
[183]
Das, K.M.; Lee, E.Y.; Al Jawder, S.E.; Enani, M.A.; Singh, R.; Skakni, L.; Al-Nakshabandi, N.; AlDossari, K.; Larsson, S.G. Acute Middle East respiratory syndrome coronavirus: temporal lung changes observed on the chest radiographs of 55 patients. AJR Am. J. Roentgenol., 2015, 205(3), W267-74.
[http://dx.doi.org/10.2214/AJR.15.14445] [PMID: 26102309]
[184]
Gao, X.; Ma, Q.; Zhao, L.; Lei, Y.; Shan, Y.; Ji, C. Isolation of Bacillus subtilis: screening for aflatoxins B 1, M 1, and G 1 detoxification. Eur. Food Res. Technol., 2011, 232(6), 957.
[http://dx.doi.org/10.1007/s00217-011-1463-3]
[185]
El-Deeb, B.; Altalhi, A.; Khiralla, G.; Hassan, S.; Gherbawy, Y. Isolation and characterization of endophytic Bacilli bacterium from maize grains able to detoxify aflatoxin B1. Food Biotechnol., 2013, 27(3), 199-212.
[http://dx.doi.org/10.1080/08905436.2013.811083]
[186]
Rao, K.R.; Vipin, A.; Hariprasad, P.; Appaiah, K.A.; Venkateswaran, G. Biological detoxification of Aflatoxin B1 by Bacillus licheniformis CFR1. Food Control, 2017, 71, 234-241.
[http://dx.doi.org/10.1016/j.foodcont.2016.06.040]
[187]
Krifaton, C.; Kriszt, B.; Szoboszlay, S.; Cserháti, M.; Szűcs, A.; Kukolya, J. Analysis of aflatoxin-B1-degrading microbes by use of a combined toxicity-profiling method. Mutat. Res., 2011, 726(1), 1-7.
[http://dx.doi.org/10.1016/j.mrgentox.2011.07.011] [PMID: 21871580]
[188]
Adebo, O.A.; Njobeh, P.B.; Mavumengwana, V. Degradation and detoxification of AFB1 by Staphylocococcus warneri, Sporosarcina sp. and Lysinibacillus fusiformis. Food Control, 2016, 68, 92-96.
[http://dx.doi.org/10.1016/j.foodcont.2016.03.021]
[189]
Adebo, O.A.; Njobeh, P.B.; Sidu, S.; Tlou, M.G.; Mavumengwana, V. Aflatoxin B1 degradation by liquid cultures and lysates of three bacterial strains. Int. J. Food Microbiol., 2016, 233, 11-19.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.06.007] [PMID: 27294556]
[190]
Abbès, S.; Ben Salah-Abbès, J.; Jebali, R.; Younes, R.B.; Oueslati, R. Interaction of aflatoxin B1 and fumonisin B1 in mice causes immunotoxicity and oxidative stress: Possible protective role using lactic acid bacteria. J. Immunotoxicol., 2016, 13(1), 46-54.
[http://dx.doi.org/10.3109/1547691X.2014.997905] [PMID: 25585958]
[191]
Aiko, V.; Edamana, P.; Mehta, A. Decomposition and detoxification of aflatoxin B1 by lactic acid. J. Sci. Food Agric., 2016, 96(6), 1959-1966.
[http://dx.doi.org/10.1002/jsfa.7304] [PMID: 26095453]
[192]
PB, P; Selvam, P Determination of Antiaflatoxigenic Effect of probiotic strains in Sorghum bicolour. Biosci. Biotechnol. Res. Asia, 2016, 13(2), 1095-1100.
[http://dx.doi.org/10.13005/bbra/2138]
[193]
Haskard, C.A.; El-Nezami, H.S.; Kankaanpää, P.E.; Salminen, S.; Ahokas, J.T. Surface binding of aflatoxin B(1) by lactic acid bacteria. Appl. Environ. Microbiol., 2001, 67(7), 3086-3091.
[http://dx.doi.org/10.1128/AEM.67.7.3086-3091.2001] [PMID: 11425726]
[194]
Kurhan, Ş; Çakir, I. DNA-bioprotective effects of lactic acid bacteria against aflatoxin B1. Curr Res Nutr Food Sci J, 2016, 4(Special Issue Nutrition in Conference October), 87-91.
[195]
Hamidi, A.; Mirnejad, R.; Majd, N.S.; Yahaghi, E.; Behnod, V.; Darian, E.K. The survey of potential of Aflatoxin B1 isolation by lactic acid bacteria. Asian Pac. J. Trop. Biomed., 2012, 1-4.
[196]
Harkai, P.; Szabó, I.; Cserháti, M.; Krifaton, C.; Risa, A.; Radó, J. Biodegradation of aflatoxin-B1 and zearalenone by Streptomyces sp. collection. Int. Biodeterior. Biodegradation, 2016, 108, 48-56.
[http://dx.doi.org/10.1016/j.ibiod.2015.12.007]
[197]
Shantha, T. Fungal degradation of aflatoxin B1. Nat. Toxins, 1999, 7(5), 175-178.
[http://dx.doi.org/10.1002/1522-7189(200009/10)7:5<175::AID-NT63>3.0.CO;2-M] [PMID: 10945479]
[198]
Hackbart, H.C.; Machado, A.R.; Christ-Ribeiro, A.; Prietto, L.; Badiale-Furlong, E. Reduction of aflatoxins by Rhizopus oryzae and Trichoderma reesei. Mycotoxin Res., 2014, 30(3), 141-149.
[http://dx.doi.org/10.1007/s12550-014-0202-6] [PMID: 24925827]
[199]
Detroy, R.W.; Hesseltine, C.W. Transformation of aflatoxin B1 by steroid-hydroxylating fungi. Can. J. Microbiol., 1969, 15(6), 495-500.
[http://dx.doi.org/10.1139/m69-086] [PMID: 5816335]
[200]
Cole, R.J.; Kirksey, J.W.; Blankenship, B.R. Conversion of aflatoxin B 1 to isomeric hydroxy compounds by Rhizopus spp. J. Agric. Food Chem., 1972, 20(6), 1100-1102.
[http://dx.doi.org/10.1021/jf60184a040] [PMID: 5083520]
[201]
Gonçalves, B.L.; Rosim, R.E.; de Oliveira, C.A.F.; Corassin, C.H. The in vitro ability of different Saccharomyces cerevisiae–based products to bind aflatoxin B1. Food Control, 2015, 47, 298-300.
[http://dx.doi.org/10.1016/j.foodcont.2014.07.024]
[202]
Shcherbakova, L.; Statsyuk, N.; Mikityuk, O.; Nazarova, T.; Dzhavakhiya, V. Aflatoxin B1 degradation by metabolites of Phoma glomerata PG41 isolated from natural substrate colonized by aflatoxigenic Aspergillus flavus. Jundishapur J. Microbiol., 2015, 8(1), e24324.
[http://dx.doi.org/10.5812/jjm.24324] [PMID: 25789135]
[203]
Sarlak, Z.; Rouhi, M.; Mohammadi, R.; Khaksar, R.; Mortazavian, A.M.; Sohrabvandi, S. Probiotic biological strategies to decontaminate aflatoxin M1 in a traditional Iranian fermented milk drink (Doogh). Food Control, 2017, 71, 152-159.
[http://dx.doi.org/10.1016/j.foodcont.2016.06.037]
[204]
El Khoury, A.; Atoui, A.; Yaghi, J. Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in Lebanese industry. Food Control, 2011, 22(10), 1695-1699.
[http://dx.doi.org/10.1016/j.foodcont.2011.04.001]
[205]
Sangsila, A.; Faucet-Marquis, V.; Pfohl-Leszkowicz, A.; Itsaranuwat, P. Detoxification of zearalenone by Lactobacillus pentosus strains. Food Control, 2016, 62, 187-192.
[http://dx.doi.org/10.1016/j.foodcont.2015.10.031]
[206]
Sellamani, M.; Kalagatur, N.K.; Siddaiah, C.; Mudili, V.; Krishna, K.; Natarajan, G.; Rao Putcha, V.L. Antifungal and zearalenone inhibitory activity of Pediococcus pentosaceus isolated from dairy products on Fusarium graminearum. Front. Microbiol., 2016, 7, 890.
[http://dx.doi.org/10.3389/fmicb.2016.00890] [PMID: 27379035]
[207]
Zhao, L.; Jin, H.; Lan, J.; Zhang, R.; Ren, H.; Zhang, X. Detoxification of zearalenone by three strains of Lactobacillus plantarum from fermented food in vitro. Food Control, 2015, 54, 158-164.
[http://dx.doi.org/10.1016/j.foodcont.2015.02.003]
[208]
Tian, Y.; Tan, Y.; Yan, Z.; Liao, Y.; Chen, J.; De Boevre, M.; De Saeger, S.; Wu, A. Antagonistic and detoxification potentials of Trichoderma isolates for control of Zearalenone (ZEN) producing Fusarium graminearum. Front. Microbiol., 2018, 8, 2710.
[http://dx.doi.org/10.3389/fmicb.2017.02710] [PMID: 29403455]
[209]
Haidukowski, M.; Cozzi, G.; Dipierro, N.; Bavaro, S.L.; Logrieco, A.F.; Paciolla, C. Decontamination of Fumonisin B 1 in maize grain by Pleurotus eryngii and antioxidant enzymes. Phytopathol. Mediterr., 2017, 56(1)
[210]
Martinez Tuppia, C.; Atanasova-Penichon, V.; Chéreau, S.; Ferrer, N.; Marchegay, G.; Savoie, J.M.; Richard-Forget, F. Yeast and bacteria from ensiled high moisture maize grains as potential mitigation agents of fumonisin B1. J. Sci. Food Agric., 2017, 97(8), 2443-2452.
[http://dx.doi.org/10.1002/jsfa.8058] [PMID: 27696424]
[211]
Yuan, Y.; Wang, X.; Hatab, S.; Wang, Z.; Wang, Y.; Luo, Y.; Yue, T. Patulin reduction in apple juice by inactivated Alicyclobacillus spp. Lett. Appl. Microbiol., 2014, 59(6), 604-609.
[http://dx.doi.org/10.1111/lam.12315] [PMID: 25130934]
[212]
Halasz, A.; Lasztity, R.; Abonyi, T.; Bata, A. Decontamination of mycotoxin-containing food and feed by biodegradation. Food Rev. Int., 2009, 25(4), 284-298.
[http://dx.doi.org/10.1080/87559120903155750]
[213]
Tanasupawat, S.; Thawai, C.; Yukphan, P.; Moonmangmee, D.; Itoh, T.; Adachi, O.; Yamada, Y. Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria. J. Gen. Appl. Microbiol., 2004, 50(3), 159-167.
[http://dx.doi.org/10.2323/jgam.50.159] [PMID: 15486825]
[214]
Franco, T.S.; Garcia, S.; Hirooka, E.Y.; Ono, Y.S.; dos Santos, J.S. Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification. J. Appl. Microbiol., 2011, 111(3), 739-748.
[http://dx.doi.org/10.1111/j.1365-2672.2011.05074.x] [PMID: 21672097]
[215]
Meca, G.; Ritieni, A.; Mañes, J. Reduction in vitro of the minor Fusarium mycotoxin beauvericin employing different strains of probiotic bacteria. Food Control, 2012, 28(2), 435-440.
[http://dx.doi.org/10.1016/j.foodcont.2012.04.002]
[216]
Var, I.; Erginkaya, Z.; Kabak, B. Inhibition of ochratoxin A production of Aspergillus carbonarius by yeast species. Czech J. Food Sci., 2011, 29(3), 291-297.
[http://dx.doi.org/10.17221/179/2009-CJFS]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy