Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Sustainable Synthetic Approaches Involving Thiocyanation and Sulfur- Cyanation: An Update

Author(s): Mihaela Gulea* and Morgan Donnard*

Volume 7, Issue 2, 2020

Page: [201 - 216] Pages: 16

DOI: 10.2174/2213346107999200616105745

Price: $65

Abstract

This review highlights the achievements in the synthesis of organic thiocyanates (OTCs) over the past five years (late 2015 to mid-2019) and is intended as a follow-up on our tutorial review published in Chemical Society Reviews in 2016. The discussion places a special emphasis on sustainable synthetic approaches involving thiocyanation or sulfur-cyanation. The large number of contributions within this short period of time clearly indicates that the chemistry of OTCs provides a growing interest and a rapid evolution.

Keywords: Organic thiocyanates, thiocyanation, S-cyanation, sustainable synthetic methods, domino reactions, multicomponent reactions, difunctionalization.

Graphical Abstract
[1]
Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Recent advances in the chemistry of organic thiocyanates. Chem. Soc. Rev., 2016, 45(3), 494-505.
[http://dx.doi.org/10.1039/C5CS00532A] [PMID: 26658383]
[2]
Ren, Y-L.; Wang, W.; Zhao, B.; Tian, X.; Zhao, S.; Wang, J.; Li, F. Nitrogen dioxide catalyzed oxidative thiocyanation of arenes with ambient air as the terminal oxidant. ChemCatChem, 2016, 8, 3361-3366.
[http://dx.doi.org/10.1002/cctc.201600785]
[3]
Dyga, M.; Hayrapetyan, D.; Rit, R.K.; Gooßen, L.J. Electrochemical ipso‐thiocyanation of arylboron compounds. Adv. Synth. Catal., 2019, 361, 3548-3553.
[http://dx.doi.org/10.1002/adsc.201900156]
[4]
Noikham, M.; Yotphan, S. Copper-catalyzed regioselective direct C–H thiolation and thiocyanation of Uracils. Eur. J. Org. Chem., 2019, 2759-2766.
[http://dx.doi.org/10.1002/ejoc.201900343]
[5]
Zhang, H.; Wei, Q.; Wei, S.; Qu, J.; Wang, B. Highly efficient and practical thiocyanation of imidazopyridines using an n-chlorosuccinimide/NaSCN combination. Eur. J. Org. Chem., 2016, 3373-3379.
[http://dx.doi.org/10.1002/ejoc.201600485]
[6]
Wu, D.; Qiu, J.; Karmaker, P.G.; Yin, H.; Chen, F.X. N-Thiocyanatosaccharin: A “sweet” electrophilic thiocyanation Reagent and the synthetic applications. J. Org. Chem., 2018, 83(3), 1576-1583.
[http://dx.doi.org/10.1021/acs.joc.7b02850] [PMID: 29302964]
[7]
Wang, Z.; Wang, L.; Chen, Q.; He, M-y. Rapid and efficient thiocyanation of phenols, indoles, and anilines in 1,1,1,3,3,3-hexafluoro-2- propanol under ultrasound irradiation. Synth. Commun., 2018, 48, 76-84.
[http://dx.doi.org/10.1080/00397911.2017.1390139]
[8]
Wang, C.; Wang, Z.; Wang, L.; Chen, Q.; He, M. Catalytic thiourea promoted electrophilic thiocyanation of indoles and aromatic amines with NCS/NH4SCN. Chin. J. Chem., 2016, 34, 1081-1085.
[http://dx.doi.org/10.1002/cjoc.201600344]
[9]
Jiang, H.; Yu, W.; Tang, X.; Li, J.; Wu, W. Copper-catalyzed aerobic oxidative regioselective thiocyanation of aromatics and heteroaromatics. J. Org. Chem., 2017, 82(18), 9312-9320.
[http://dx.doi.org/10.1021/acs.joc.7b01122] [PMID: 28812887]
[10]
See, J.Y.; Zhao, Y. Ag-catalyzed thiocyanofunctionalization of terminal alkynes to access alkynylthiocyanates and α-thiocyanoketones. Org. Lett., 2018, 20(23), 7433-7436.
[http://dx.doi.org/10.1021/acs.orglett.8b03162] [PMID: 30475627]
[11]
Gao, Y.; Liu, Y.; Wan, J-P. Visible light-induced thiocyanation of Enaminone C-H Bond to Access Polyfunctionalized Alkenes and thiocyano chromones. J. Org. Chem., 2019, 84(4), 2243-2251.
[http://dx.doi.org/10.1021/acs.joc.8b02981] [PMID: 30648396]
[12]
Xia, X.; Chen, B.; Zeng, X.X.; Xu, B. Synthesis of a-trifluoromethylthiolated and a-thiocyanated ketones using umpoled enolates. Adv. Synth. Catal., 2018, 360, 4429-4434.
[http://dx.doi.org/10.1002/adsc.201800968]
[13]
Zhen, L.; Yuan, K.; Li, X-Y.; Zhang, C.; Yang, J.; Fan, H.; Jiang, L. Cascade reaction of propargyl amines with AgSCF3, as well as one-pot reaction of propargyl amines, AgSCF3, and Di- tert-butyl peroxide: Access to allenyl thiocyanates and allenyl trifluoromethylthioethers. Org. Lett., 2018, 20(10), 3109-3113.
[http://dx.doi.org/10.1021/acs.orglett.8b01181] [PMID: 29745677]
[14]
Qiu, J.; Wu, D.; Karmaker, P.G.; Yin, H.; Chen, F-X. Enantioselective organocatalyzed direct α-thiocyanation of cyclic β-ketoesters by N-thiocyanatophthalimide. Org. Lett., 2018, 20(6), 1600-1603.
[http://dx.doi.org/10.1021/acs.orglett.8b00342] [PMID: 29474092]
[15]
Pashaei, M.; Mehdipour, E. Magnetic hydroxyapatite-immobilized 1,4-diazabicyclo [2.2.2] octane as a highly efficient and eco-friendly nanocatalyst for the promotion of nucleophilic substitution reactions of benzyl halides under green conditions. React. Kinet. Mech. Catal., 2017, 122, 1159-1174.
[http://dx.doi.org/10.1007/s11144-017-1276-x]
[16]
Chen, Y.; Wang, S.; Jiang, Q.; Cheng, C.; Xiao, X.; Zhu, G. Palladium-catalyzed site-selective sp3 C-H Bond thiocyanation of 2-aminofurans. J. Org. Chem., 2018, 83(2), 716-722.
[http://dx.doi.org/10.1021/acs.joc.7b02700] [PMID: 29251508]
[17]
Bao, X.; Wang, Q.; Zhu, J. Dual photoredox/copper catalysis for the remote C(sp3)-H functionalization of alcohols and alkyl halides by N-alkoxypyridinium salts. Angew. Chem. Int. Ed. Engl., 2019, 58(7), 2139-2143.
[http://dx.doi.org/10.1002/anie.201813356] [PMID: 30589177]
[18]
Haywood, T.; Cesarec, S.; Kealey, S.; Plisson, C.; Miller, P.W. Ammonium [11C]thiocyanate: revised preparation and reactivity studies of a versatile nucleophile for carbon-11 radiolabelling. MedChemComm, 2018, 9(8), 1311-1314.
[http://dx.doi.org/10.1039/C7MD00425G] [PMID: 30151085]
[19]
Zeng, X.; Chen, B.; Lu, Z.; Hammond, G.B.; Xu, B. Homogeneous and Nanoparticle gold-catalyzed hydrothiocyanation of haloalkynes. Org. Lett., 2019, 21(8), 2772-2776.
[http://dx.doi.org/10.1021/acs.orglett.9b00728] [PMID: 30964693]
[20]
Wu, C.; Lu, L-H.; Peng, A-Z.; Jia, G-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W-M.; Xu, X. Ultrasound-promoted Brønsted acid ionic liquid- catalyzed hydrothiocyanation of activated alkynes under minimal solvent conditions. Green Chem., 2018, 20, 3683-3688.
[http://dx.doi.org/10.1039/C8GC00491A]
[21]
Tao, Z-K.; Li, C-K.; Zhang, P-Z.; Shoberu, A.; Zou, J-P.; Zhang, W. Phosphinoyl radical-initiated 1,2-bifunctional thiocyanodiphenylphosphinoylation of alkenes. J. Org. Chem., 2018, 83(4), 2418-2424.
[http://dx.doi.org/10.1021/acs.joc.7b02929] [PMID: 29376357]
[22]
Zhang, D.; Wang, H.; Bolm, C. Photocatalytic difunctionalisations of alkenes with N-SCN sulfoximines. Chem. Commun. (Camb.), 2018, 54(45), 5772-5775.
[http://dx.doi.org/10.1039/C8CC03178A] [PMID: 29781485]
[23]
Yuan, P-F.; Zhang, Q-B.; Jin, X-L.; Lei, W-L.; Wu, L-Z. Liu. Q. Visible-light-promoted aerobic metal-free aminothiocyanation of activated ketones. Green Chem., 2018, 20, 5464-5468.
[http://dx.doi.org/10.1039/C8GC02720J]
[24]
Abraham, R.; Periakaruppan, P. A sustainable process for gram-scale synthesis of stereoselective aryl substituted (E)-2-thiocyanatoacrylic acids. J. Chem. Sci., 2018, 130(15), 1-15.
[http://dx.doi.org/10.1007/s12039-017-1412-1]
[25]
Modi, A.; Ali, W.; Patel, B.K. Organocatalytic regioselective concomitant thiocyanation and acylation of oxiranes using aroyl isothiocyanates. Org. Lett., 2017, 19(3), 432-435.
[http://dx.doi.org/10.1021/acs.orglett.6b03430] [PMID: 28075598]
[26]
Dahiya, A.; Ali, W.; Patel, B.K. Catalyst and solvent free domino ring opening cyclization: A greener and atom economic route to 2‐iminothiazolidines. ACS Sustain. Chem.& Eng., 2018, 6, 4272-4281.
[http://dx.doi.org/10.1021/acssuschemeng.7b04723]
[27]
Tambe, S.D.; Jadhav, M.S.; Rohokale, R.S.; Kshirsagar, U.A. Metal-free synthesis of 3-thiocyanatobenzothiophenes by Eosin Y photoredox-catalyzed cascade radical annulation of 2-alkynylthioanisoles. Eur. J. Org. Chem., 2018, 4867-4873.
[http://dx.doi.org/10.1002/ejoc.201800833]
[28]
Zhang, X-Z.; Ge, D-L.; Chen, S-Y.; Yu, X-Q. A catalyst-free approach to 3-thiocyanato-4H- chromen-4-ones. RSC Advances, 2016, 6, 66320-66323.
[http://dx.doi.org/10.1039/C6RA13303G]
[29]
Zeng, Y-F.; Tan, D-H.; Chen, Y.; Lv, W-X.; Liu, X-G.; Li, Q.; Wang, H. Direct radical trifluoromethylthiolation and thiocyanation of aryl alkynoate esters: mild and facile synthesis of 3-trifluoromethylthiolated and 3-thiocyanated coumarins. Org. Chem. Front., 2015, 2, 1511-1515.
[http://dx.doi.org/10.1039/C5QO00271K]
[30]
Yang, T.; Song, X-R.; Li, R.; Jin, F.; Zhang, Y.; Bai, J.; Yang, R.; Ding, H.; Xiao, Q. Metal-free and efficient approach to 4-thiocyanated 2H-chromenes via TFA-mediated cascade cyclization of 2-propynolphenols. Tetrahedron Lett., 2019, 60, 1248-1253.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.070]
[31]
Feng, Y.; Hussain, M.I.; Zhang, X.; Shi, J.; Hu, W.; Xiong, Y. Aerobic intramolecular aminothiocyanation of unactivated alkenes promoted by in situ generated iodine thiocyanate. Tetrahedron, 2018, 74, 2669-2676.
[http://dx.doi.org/10.1016/j.tet.2018.04.023]
[32]
Kong, D-L.; Du, J-X.; Chu, W-M.; Ma, C-Y.; Tao, J-Y.; Feng, W-H. Ag/Pyridine Co-mediated oxidative arylthiocyanation of activated alkenes. Molecules, 2018, 23(10), 2727-2743.
[http://dx.doi.org/10.3390/molecules23102727] [PMID: 30360416]
[33]
Banerjee, S.; Payra, S.; Saha, A. A Review on synthesis of benzothiazole derivatives. Curr. Organocatal., 2018, 4, 164-181.
[http://dx.doi.org/10.2174/2213337205666180119143539]
[34]
Prieto, A.; Uzel, A.; Bouyssi, D.; Monteiro, N. Thiocyanation of N,N-Dialkylhydrazonoyl bromides: an entry to sulfur-containing 1,2,4-triazole derivatives. Eur. J. Org. Chem., 2017, 4201-4204.
[http://dx.doi.org/10.1002/ejoc.201700819]
[35]
Dey, A.; Hajra, A. Metal-free synthesis of 2-arylbenzothiazoles from aldehydes, amines, and thiocyanate. Org. Lett., 2019, 21(6), 1686-1689.
[http://dx.doi.org/10.1021/acs.orglett.9b00245] [PMID: 30811211]
[36]
Zhu, J.; Xu, B.; Yu, J.; Ren, Y.; Wang, J.; Xie, P.; Pittman, C.U., Jr; Zhou, A. Copper-catalyzed generation of flavone selenide and thioether derivatives using KSeCN and KSCN via C-H functionalization. Org. Biomol. Chem., 2018, 16(33), 5999-6005.
[http://dx.doi.org/10.1039/C8OB01398E] [PMID: 30083694]
[37]
Yu, J-T.; Teng, F.; Cheng, J. The construction of X–CN (X=N, S, O). Bonds. Adv. Synth. Catal., 2017, 359, 26-38.
[http://dx.doi.org/10.1002/adsc.201600741]
[38]
Wang, Z-H.; Ji, X-M.; Hu, M-L.; Tang, R-Y. Nitromethane as a cyanating reagent for the synthesis of thiocyanates. Tetrahedron Lett., 2015, 56, 5067-5070.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.054]
[39]
Guo, W.; Tan, W.; Zhao, M.; Zheng, L.; Tao, K.; Chen, D.; Fan, X. Direct photocatalytic S-H bond cyanation with green “CN” source. J. Org. Chem., 2018, 83(12), 6580-6588.
[http://dx.doi.org/10.1021/acs.joc.8b00887] [PMID: 29775061]
[40]
Castanheiro, T.; Gulea, M.; Donnard, M.; Suffert, J. Practical access to aromatic thiocyanates by CuCN-mediated direct aerobic oxidative cyanation of thiophenols and diaryl disulfides: Practical access to Aromatic thiocyanates. Eur. J. Org. Chem., 2014, 7814-7817.
[http://dx.doi.org/10.1002/ejoc.201403279]
[41]
Castanheiro, T.; Suffert, J.; Gulea, M.; Donnard, M. Aerobic Copper-mediated domino three-component approach to 2-aminobenzothiazole derivatives. Org. Lett., 2016, 18(11), 2588-2591.
[http://dx.doi.org/10.1021/acs.orglett.6b00967] [PMID: 27192105]
[42]
Castanheiro, S.J.; Donnard, M.; Gulea, M. Synthesis of sulfur heterocycles via domino metal-mediated reactions. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192, 162-165.
[http://dx.doi.org/10.1080/10426507.2016.1255621]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy