Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Advent of Proteomic Tools for Diagnostic Biomarker Analysis in Alzheimer’s Disease

Author(s): Manisha Singh*, Surinder P. Singh, P.K. Dubey, Rachana R, Shalini Mani, Deepshikha Yadav, Mugdha Agarwal, Shriya Agarwal, Vinayak Agarwal and Harleen Kaur

Volume 21, Issue 10, 2020

Page: [965 - 977] Pages: 13

DOI: 10.2174/1389203721666200615173213

Price: $65

Abstract

Locating remedies for Alzheimer’s disease (AD) has been majorly restricted by the inefficiency to establish a definitive detection model for early-stage diagnosis of pathological events. This current lapse in AD diagnosis also limits the therapeutic efficiency of the drugs, which might have been effective if given at the earlier stages of the disease. The indicated situation directs towards the burgeoned need for an effective biomarker technique that will help in early detection of AD and would be imminently useful to facilitate improved diagnosis and stimulate therapeutic trials. Till date, the major biomarkers, specifically associated with AD detection, may help in determining the early-stage AD diagnosis and identifying alterations in the cellular proteome, offering deeper insight into disease etiology. Currently existing multidisciplinary clinical diagnosis of AD is a very tedious, expensive procedure and requires highly trained and skilled professionals who are rarely available outside the specialty clinics. Mutations in amyloid precursor protein (APP) or Presenilin 1 and 2 (PSEN1 and PSEN2) are some biomarkers acting as critical checkpoints for AD diagnosis. However, the presence of some associated biomarkers in cerebrospinal fluid (CSF) such as total-Tau (tTau), phosphorylated- Tau (pTau) 181 and Amyloid-β (Aβ) 1-42 using structural or functional imaging techniques is considered for confirmatory diagnosis of AD. Furthermore, the molecular diagnosis of AD incorporates various sophisticated techniques including immuno-sensing, machine learning, nano conjugation-based detections, etc. In the current review description, we have summarized the various diagnostic approaches and their relevance in mitigating the long-standing urgency of targeted diagnostic tools for detection of AD.

Keywords: Neurodegeneration, dementia, Amyloid-beta protein, functional imaging, immunosensing, differential diagnosis.

Graphical Abstract
[1]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; Snyder, P.J.; Carrillo, M.C.; Thies, B.; Phelps, C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 270-279.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008] [PMID: 21514249]
[2]
Alsunusi, S.; Kumosani, T.A.; Glabe, C.G.; Huwait, E.A.; Moselhy, S.S. In vitro study of the mechanism of intraneuronal β-amyloid aggregation in Alzheimer’s disease. Arch. Physiol. Biochem., 2020, •••, 1-8.
[http://dx.doi.org/10.1080/13813455.2020.1722707] [PMID: 32046518]
[3]
Anand, R.; Gill, K.D.; Mahdi, A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology, 2014, 76(Pt A),27-50
[http://dx.doi.org/http://dx.doi.org/10.1016/j.neuropharm.2013.07.004] [PMID: 23891641]
[4]
Andreasson, K.I.; Bachstetter, A.D.; Colonna, M.; Ginhoux, F.; Holmes, C.; Lamb, B.; Landreth, G.; Lee, D.C.; Low, D.; Lynch, M.A.; Monsonego, A.; O’Banion, M.K.; Pekny, M.; Puschmann, T.; Russek-Blum, N.; Sandusky, L.A.; Selenica, M.L.; Takata, K.; Teeling, J.; Town, T.; Van Eldik, L.J. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J. Neurochem., 2016, 138(5), 653-693.
[http://dx.doi.org/10.1111/jnc.13667] [PMID: 27248001]
[5]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (N. Y.), 2018, 4, 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[6]
Ayaz, M.; Ovais, M.; Ahmad, I.; Sadiq, A.; Khalil, A.; Ullah, F. Biosynthesized metal nanoparticles as potential Alzheimer’s disease therapeutics. ,In: Metal Nanoparticles for Drug Delivery and Diagnostic 32 Applications. , 2020; pp. 31-42.
[http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-816960-5.00003-3]
[7]
Azhar, A.; Ashraf, G.M.; Zia, Q.; Ansari, S.A.; Perveen, A.; Hafeez, A.; Saeed, M.; Kamal, M.A.; Alexiou, A.; Ganash, M.; Yarla, N.S.; Baeesa, S.S.; Alfiky, M.M.; Bajouh, O.S. Frontier view on nanotechnological strategies for neuro-therapy. Curr. Drug Metab., 2018, 19(7), 596-604.
[http://dx.doi.org/10.2174/1389200219666180305144143] [PMID: 29512448]
[8]
Bai, B.; Wang, X.; Li, Y.; Chen, P.C.; Yu, K.; Dey, K.K.; Yarbro, J.M.; Han, X.; Lutz, B.M.; Rao, S.; Jiao, Y.; Sifford, J.M.; Han, J.; Wang, M.; Tan, H.; Shaw, T.I.; Cho, J.H.; Zhou, S.; Wang, H.; Niu, M.; Mancieri, A.; Messler, K.A.; Sun, X.; Wu, Z.; Pagala, V.; High, A.A.; Bi, W.; Zhang, H.; Chi, H.; Haroutunian, V.; Zhang, B.; Beach, T.G.; Yu, G.; Peng, J. Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer’s Disease Progression. Neuron, 2020, 105(6), 975-991.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.12.015] [PMID: 31926610]
[9]
Baldacci, F.; Mazzucchi, S.; Della Vecchia, A.; Giampietri, L.; Giannini, N.; Koronyo-Hamaoui, M.; Ceravolo, R.; Siciliano, G.; Bonuccelli, U.; Elahi, F.M.; Vergallo, A.; Lista, S.; Giorgi, F.S.; Hampel, H. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev. Mol. Diagn., 2020, 20(4), 421-441.
[http://dx.doi.org/10.1080/14737159.2020.1731306] [PMID: 32066283]
[10]
Ballatore, C.; Lee, V.M.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci., 2007, 8(9), 663-672.
[http://dx.doi.org/10.1038/nrn2194] [PMID: 17684513]
[11]
Bateman, R.J.; Xiong, C.; Benzinger, T.L.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; Holtzman, D.M.; Santacruz, A.; Buckles, V.; Oliver, A.; Moulder, K.; Aisen, P.S.; Ghetti, B.; Klunk, W.E.; McDade, E.; Martins, R.N.; Masters, C.L.; Mayeux, R.; Ringman, J.M.; Rossor, M.N.; Schofield, P.R.; Sperling, R.A.; Salloway, S.; Morris, J.C. Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med., 2012, 367(9), 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[12]
Bettens, K.; Sleegers, K.; Van Broeckhoven, C. Genetic insights in Alzheimer’s disease. Lancet Neurol., 2013, 12(1), 92-104.
[http://dx.doi.org/10.1016/S1474-4422(12)70259-4] [PMID: 23237904]
[13]
Boss, M.A. Diagnostic approaches to Alzheimer’s disease. BBA- Mol. Basis Dis., 2000, 1502(1), 188-200.
[http://dx.doi.org/10.1016/S0925-4439(00)00044-2]
[14]
Cedazo-Mínguez, A. Apolipoprotein E and Alzheimer’s disease: molecular mechanisms and therapeutic opportunities. J. Cell. Mol. Med., 2007, 11(6), 1227-1238.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00130.x] [PMID: 18205697]
[15]
Chang, H.Y.; Sang, T.K.; Chiang, A.S. Untangling the Tauopathy for Alzheimer’s disease and parkinsonism. J. Biomed. Sci., 2018, 25(1), 54.
[http://dx.doi.org/10.1186/s12929-018-0457-x] [PMID: 29991349]
[16]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[17]
Crews, L.; Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet., 2010, 19(R1), R12-R20.
[http://dx.doi.org/10.1093/hmg/ddq160] [PMID: 20413653]
[18]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1)a020412
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[19]
Dauwels, J.; Vialatte, F.; Cichocki, A. Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr. Alzheimer Res., 2010, 7(6), 487-505.
[http://dx.doi.org/10.2174/156720510792231720] [PMID: 20455865]
[20]
Davatzikos, C.; Fan, Y.; Wu, X.; Shen, D.; Resnick, S.M. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging, 2008, 29(4), 514-523.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.11.010] [PMID: 17174012]
[21]
Davidsson, P.; Sjögren, M. Proteome studies of CSF in AD patients. Mech. Ageing Dev., 2006, 127(2), 133-137.
[http://dx.doi.org/10.1016/j.mad.2005.09.021] [PMID: 16293296]
[22]
de Vries, H.E.; Kooij, G.; Frenkel, D.; Georgopoulos, S.; Monsonego, A.; Janigro, D. Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia, 2012, 53(Suppl. 6), 45-52.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03702.x] [PMID: 23134495]
[23]
Drzezga, A.; Riemenschneider, M.; Strassner, B.; Grimmer, T.; Peller, M.; Knoll, A.; Wagenpfeil, S.; Minoshima, S.; Schwaiger, M.; Kurz, A. Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology, 2005, 64(1), 102-107.
[http://dx.doi.org/10.1212/01.WNL.0000148478.39691.D3] [PMID: 15642911]
[24]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Feldman, H.H.; Frisoni, G.B.; Hampel, H.; Jagust, W.J.; Johnson, K.A.; Knopman, D.S.; Petersen, R.C.; Scheltens, P.; Sperling, R.A.; Dubois, B. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 2016, 87(5), 539-547.
[http://dx.doi.org/10.1212/WNL.0000000000002923] [PMID: 27371494]
[25]
Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; Cappa, S.; Crutch, S.; Engelborghs, S.; Frisoni, G.B.; Fox, N.C.; Galasko, D.; Habert, M.O.; Jicha, G.A.; Nordberg, A.; Pasquier, F.; Rabinovici, G.; Robert, P.; Rowe, C.; Salloway, S.; Sarazin, M.; Epelbaum, S.; de Souza, L.C.; Vellas, B.; Visser, P.J.; Schneider, L.; Stern, Y.; Scheltens, P.; Cummings, J.L. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol., 2014, 13(6), 614-629.
[http://dx.doi.org/10.1016/S1474-4422(14)70090-0] [PMID: 24849862]
[26]
Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; Broich, K.; Cavedo, E.; Crutch, S.; Dartigues, J.F.; Duyckaerts, C.; Epelbaum, S.; Frisoni, G.B.; Gauthier, S.; Genthon, R.; Gouw, A.A.; Habert, M.O.; Holtzman, D.M.; Kivipelto, M.; Lista, S.; Molinuevo, J.L.; O’Bryant, S.E.; Rabinovici, G.D.; Rowe, C.; Salloway, S.; Schneider, L.S.; Sperling, R.; Teichmann, M.; Carrillo, M.C.; Cummings, J.; Jack, C.R., Jr Proceedings of the Meeting of the International Working Group (IWG) and the American Alzheimer’s Association on “The Preclinical State of AD”; July 23, 2015; Washington DC, USA. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement., 2016, 12(3), 292-323.
[http://dx.doi.org/10.1016/j.jalz.2016.02.002] [PMID: 27012484]
[27]
Dubois, B.; Picard, G.; Sarazin, M. Early detection of Alzheimer’s disease: new diagnostic criteria. Dialogues Clin. Neurosci., 2009, 11(2), 135-139.
[PMID: 19585949]
[28]
Dukart, J.; Mueller, K.; Barthel, H.; Villringer, A.; Sabri, O.; Schroeter, M.L. Alzheimer’s Disease Neuroimaging Initiative. Meta-analysis based SVM classification enables accurate detection of Alzheimer’s disease across different clinical centers using FDG-PET and MRI. Psychiatry Res., 2013, 212(3), 230-236.
[http://dx.doi.org/10.1016/j.pscychresns.2012.04.007] [PMID: 23149027]
[29]
Durrenberger, P.F.; Fernando, F.S.; Kashefi, S.N.; Bonnert, T.P.; Seilhean, D.; Nait-Oumesmar, B.; Schmitt, A.; Gebicke-Haerter, P.J.; Falkai, P.; Grünblatt, E.; Palkovits, M.; Arzberger, T.; Kretzschmar, H.; Dexter, D.T.; Reynolds, R. Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J. Neural Transm. (Vienna), 2015, 122(7), 1055-1068.
[http://dx.doi.org/10.1007/s00702-014-1293-0] [PMID: 25119539]
[30]
Counts, S.E.; He, B.; Prout, J.G.; Michalski, B.; Farotti, L.; Fahnestock, M.; Mufson, E.J. Cerebrospinal Fluid proNGF: A Putative Biomarker for Early Alzheimer’s Disease. Curr. Alzheimer Res., 2016, 13(7), 800-808.
[http://dx.doi.org/10.2174/1567205013666160129095649] [PMID: 26825093]
[31]
Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature, 2017, 547(7662), 185-190.
[http://dx.doi.org/10.1038/nature23002] [PMID: 28678775]
[32]
Ghavami, S.; Shojaei, S.; Yeganeh, B.; Ande, S.R.; Jangamreddy, J.R.; Mehrpour, M.; Christoffersson, J.; Chaabane, W.; Moghadam, A.R.; Kashani, H.H.; Hashemi, M.; Owji, A.A.; Łos, M.J. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol., 2014, 112, 24-49.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.004] [PMID: 24211851]
[33]
Gil Montoya, J.A.; Barrios, R.; Sanchez-Lara, I.; Ramos, P.; Carnero, C.; Fornieles, F.; Montes, J.; Santana, S.; Luna, J.D.; Gonzalez-Moles, M.A. Systemic inflammatory impact of periodontitis on cognitive impairment. Gerodontology, 2020, 37(1), 11-18.
[http://dx.doi.org/10.1111/ger.12431] [PMID: 31347730]
[34]
Graham, W.V.; Bonito-Oliva, A.; Sakmar, T.P. Update on Alzheimer’s disease therapy and prevention strategies. Annu. Rev. Med., 2017, 68, 413-430.
[http://dx.doi.org/10.1146/annurev-med-042915-103753] [PMID: 28099083]
[35]
Guerreiro, R.; Orme, T.; Naj, A.C.; Kuzma, A.B.; Schellenberg, G.D.; Bras, J. Is APOE ε4 required for Alzheimer’s disease to develop in TREM2 p.R47H variant carriers? Neuropathol. Appl. Neurobiol., 2019, 45(2), 187-189.
[http://dx.doi.org/10.1111/nan.12517] [PMID: 30229991]
[36]
Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[37]
Haass, C. Take five--BACE and the γ-secretase quartet conduct Alzheimer’s amyloid β-peptide generation. EMBO J., 2004, 23(3), 483-488.
[http://dx.doi.org/10.1038/sj.emboj.7600061] [PMID: 14749724]
[38]
Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol., 2007, 8(2), 101-112.
[http://dx.doi.org/10.1038/nrm2101] [PMID: 17245412]
[39]
Hadavi, D.; Poot, A.A. Biomaterials for the treatment of Alzheimer’s disease. Front. Bioeng. Biotechnol., 2016, 4, 49.
[http://dx.doi.org/10.3389/fbioe.2016.00049] [PMID: 27379232]
[40]
Hampel, H.; Broich, K.; Hoessler, Y.; Pantel, J. Biological markers for early detection and pharmacological treatment of Alzheimer’s disease. Dialogues Clin. Neurosci., 2009, 11(2), 141-157.
[PMID: 19585950]
[41]
Hampel, H.; Bürger, K.; Teipel, S.J.; Bokde, A.L.; Zetterberg, H.; Blennow, K. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement., 2008, 4(1), 38-48.
[http://dx.doi.org/10.1016/j.jalz.2007.08.006] [PMID: 18631949]
[42]
Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; Nisticò, R.; Corbo, M.; Imbimbo, B.P.; Streffer, J.; Voytyuk, I.; Timmers, M.; Tahami Monfared, A.A.; Irizarry, M.; Albala, B.; Koyama, A.; Watanabe, N.; Kimura, T.; Yarenis, L.; Lista, S.; Kramer, L.; Vergallo, A. The β-secretase BACE1 in Alzheimer’s disease.Biol. Psychiatry, 226 2020, S0006-3223(20)30063-9., 2020.
[http://dx.doi.org/https://doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[43]
Han, S.; Kollmer, M.; Markx, D.; Claus, S.; Walther, P.; Fändrich, M. Amyloid plaque structure and cell surface interactions of β-amyloid fibrils revealed by electron tomography. Sci. Rep., 2017, 7, 43577.
[http://dx.doi.org/10.1038/srep43577] [PMID: 28240273]
[44]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[45]
Hayne, D.J.; Lim, S.; Donnelly, P.S. Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6701-6715.
[http://dx.doi.org/10.1039/C4CS00026A] [PMID: 24671229]
[46]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[47]
Hong, H.; Kim, B.S.; Im, H.I. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int. Neurourol. J., 2016, 20(Suppl. 1), S2-S7.
[http://dx.doi.org/10.5213/inj.1632604.302] [PMID: 27230456]
[48]
Hwang, S.S.; Chan, H.; Sorci, M.; Van Deventer, J.; Wittrup, D.; Belfort, G.; Walt, D. Detection of amyloid β oligomers toward early diagnosis of Alzheimer’s disease. Anal. Biochem., 2019, 566, 40-45.
[http://dx.doi.org/10.1016/j.ab.2018.09.011] [PMID: 30267709]
[49]
Jack, C.R., Jr; Shiung, M.M.; Gunter, J.L.; O’Brien, P.C.; Weigand, S.D.; Knopman, D.S.; Boeve, B.F.; Ivnik, R.J.; Smith, G.E.; Cha, R.H.; Tangalos, E.G.; Petersen, R.C. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology, 2004, 62(4), 591-600.
[http://dx.doi.org/10.1212/01.WNL.0000110315.26026.EF] [PMID: 14981176]
[50]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R. Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[51]
Jack, C.R., Jr; Holtzman, D.M. Biomarker modeling of Alzheimer’s disease. Neuron, 2013, 80(6), 1347-1358.
[http://dx.doi.org/10.1016/j.neuron.2013.12.003] [PMID: 24360540]
[52]
Jack, C.R., Jr; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; Lesnick, T.G.; Pankratz, V.S.; Donohue, M.C.; Trojanowski, J.Q. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol., 2013, 12(2), 207-216.
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[53]
Kalaria, R.N. Neurodegenerative disease: Diabetes, microvascular pathology and Alzheimer disease. Nat. Rev. Neurol., 2009, 5(6), 305-306.
[http://dx.doi.org/10.1038/nrneurol.2009.72] [PMID: 19498432]
[54]
Karthivashan, G.; Ganesan, P.; Park, S.Y.; Kim, J.S.; Choi, D.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv., 2018, 25(1), 307-320.
[http://dx.doi.org/10.1080/10717544.2018.1428243] [PMID: 29350055]
[55]
Khoury, R.; Ghossoub, E. Diagnostic Biomarkers of Alzheimer’s Disease: A State-of-the-Art Review. Biomark Neuropsychiatry., 2019, 1100005
[http://dx.doi.org/10.1016/j.bionps.2019.100005]
[56]
Kumari, R.; Pushkar, S. Analysis of Biomedical Image for Alzheimer’s Disease Detection. InExamining Fractal Image Processing and Analysis; IGI Global, 2020, pp. 224-251.
[57]
Lama, R.K.; Gwak, J.; Park, J.S.; Lee, S.W. Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine and PCA features. J. Healthc. Eng., 2017, 20175485080
[http://dx.doi.org/10.1155/2017/5485080]
[58]
Lashuel, H.A.; Hartley, D.; Petre, B.M.; Walz, T.; Lansbury, P.T. Jr Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature, 2002, 418(6895), 291.
[http://dx.doi.org/10.1038/418291a] [PMID: 12124613]
[59]
Lin, T.W.; Chang, C.F.; Chang, Y.J.; Liao, Y.H.; Yu, H.M.; Chen, Y.R. Alzheimer’s amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity. PLoS One, 2017, 12(3)e0174561
[http://dx.doi.org/10.1371/journal.pone.0174561] [PMID: 28362827]
[60]
López-de-Ipiña, K.; Alonso, J.B.; Travieso, C.M.; Solé-Casals, J.; Egiraun, H.; Faundez-Zanuy, M.; Ezeiza, A.; Barroso, N.; Ecay-Torres, M.; Martinez-Lage, P.; Martinez de Lizardui, U. On the selection of non-invasive methods based on speech analysis oriented to automatic Alzheimer disease diagnosis. Sensors (Basel), 2013, 13(5), 6730-6745.
[http://dx.doi.org/10.3390/s130506730] [PMID: 23698268]
[61]
Lopez-de-Ipiña, K.; Alonso, J.B.; Solé-Casals, J.; Barroso, N.; Henriquez, P.; Faundez-Zanuy, M.; Travieso, C.M.; Ecay-Torres, M.; Martinez-Lage, P.; Eguiraun, H. On automatic diagnosis of Alzheimer’s disease based on spontaneous speech analysis and emotional temperature. Cognit. Comput., 2015, 7(1), 44-55.
[http://dx.doi.org/10.1007/s12559-013-9229-9]
[62]
Dinda, S.C.; Pattnaik, G. Nanobiotechnology-based drug delivery in brain targeting. Curr. Pharm. Biotechnol., 2013, 14(15), 1264-1274.
[http://dx.doi.org/10.2174/1389201015666140608143719] [PMID: 24910011]
[63]
Mattsson, N.; Zegers, I.; Andreasson, U.; Bjerke, M.; Blankenstein, M.A.; Bowser, R.; Carrillo, M.C.; Gobom, J.; Heath, T.; Jenkins, R.; Jeromin, A.; Kaplow, J.; Kidd, D.; Laterza, O.F.; Lockhart, A.; Lunn, M.P.; Martone, R.L.; Mills, K.; Pannee, J.; Ratcliffe, M.; Shaw, L.M.; Simon, A.J.; Soares, H.; Teunissen, C.E.; Verbeek, M.M.; Umek, R.M.; Vanderstichele, H.; Zetterberg, H.; Blennow, K.; Portelius, E. Reference measurement procedures for Alzheimer’s disease cerebrospinal fluid biomarkers: definitions and approaches with focus on amyloid β42. Biomarkers Med., 2012, 6(4), 409-417.
[http://dx.doi.org/10.2217/bmm.12.39] [PMID: 22917143]
[64]
Wolf, H.; Jelic, V.; Gertz, H.J.; Nordberg, A.; Julin, P.; Wahlund, L.O. A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurol. Scand. Suppl., 2003, 179, 52-76.
[http://dx.doi.org/10.1034/j.1600-0404.107.s179.10.x] [PMID: 12603252]
[65]
Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; Tomita, T.; Matsuzaki, K.; Ishii, K.; Ishii, K.; Arahata, Y.; Iwamoto, S.; Ito, K.; Tanaka, K.; Masters, C.L.; Yanagisawa, K. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature, 2018, 554(7691), 249-254.
[http://dx.doi.org/10.1038/nature25456] [PMID: 29420472]
[66]
Nazem, A.; Mansoori, G.A. Nanotechnology for Alzheimer’s disease detection and treatment. Insciences J., 2011, 1(4), 169-193.
[http://dx.doi.org/10.5640/insc.0104169]
[67]
Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; Wu, E.; Dakin, K.; Petzold, M.; Blennow, K.; Zetterberg, H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol., 2016, 15(7), 673-684.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[68]
Painter, M.M.; Atagi, Y.; Liu, C.C.; Rademakers, R.; Xu, H.; Fryer, J.D.; Bu, G. TREM2 in CNS homeostasis and neurodegenerative disease. Mol. Neurodegener., 2015, 10(1), 43.
[http://dx.doi.org/10.1186/s13024-015-0040-9] [PMID: 26337043]
[69]
Paraskevaidi, M.; Morais, C.L.M.; Lima, K.M.G.; Snowden, J.S.; Saxon, J.A.; Richardson, A.M.T.; Jones, M.; Mann, D.M.A.; Allsop, D.; Martin-Hirsch, P.L.; Martin, F.L. Differential diagnosis of Alzheimer’s disease using spectrochemical analysis of blood. Proc. Natl. Acad. Sci. USA, 2017, 114(38), E7929-E7938.
[http://dx.doi.org/10.1073/pnas.1701517114] [PMID: 28874525]
[70]
Pluvinage, J.V.; Wyss-Coray, T. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat. Rev. Neurosci., 2020, •••, 1-0.
[http://dx.doi.org/10.1038/s41583-019-0255-9]
[71]
Qiang, W.; Yau, W.M.; Lu, J.X.; Collinge, J.; Tycko, R. Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature, 2017, 541(7636), 217-221.
[http://dx.doi.org/10.1038/nature20814] [PMID: 28052060]
[72]
Ricciarelli, R.; Fedele, E. The amyloid cascade hypothesis in Alzheimer’s disease: it’s time to change our mind. Curr. Neuropharmacol., 2017, 15(6), 926-935.
[http://dx.doi.org/10.2174/1570159X15666170116143743] [PMID: 28093977]
[73]
Ringman, J.M.; Frautschy, S.A.; Cole, G.M.; Masterman, D.L.; Cummings, J.L. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr. Alzheimer Res., 2005, 2(2), 131-136.
[http://dx.doi.org/10.2174/1567205053585882] [PMID: 15974909]
[74]
Rosenberg, G.A. Neurological diseases in relation to the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(7), 1139-1151.
[http://dx.doi.org/10.1038/jcbfm.2011.197] [PMID: 22252235]
[75]
Rozemuller, A.J.; Jansen, C.; Carrano, A.; van Haastert, E.S.; Hondius, D.; van der Vies, S.M.; Hoozemans, J.J. Neuroinflammation and common mechanism in Alzheimer’s disease and prion amyloidosis: amyloid-associated proteins, neuroinflammation and neurofibrillary degeneration. Neurodegener. Dis., 2012, 10(1-4), 301-304.
[http://dx.doi.org/10.1159/000335380] [PMID: 22398730]
[76]
Sala Frigerio, C.; De Strooper, B. Alzheimer’s disease mechanisms and emerging roads to novel therapeutics. Annu. Rev. Neurosci., 2016, 39, 57-79.
[http://dx.doi.org/10.1146/annurev-neuro-070815-014015] [PMID: 27050320]
[77]
Sastre, M.; Klockgether, T.; Heneka, M.T. Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int. J. Dev. Neurosci., 2006, 24(2-3), 167-176.
[http://dx.doi.org/10.1016/j.ijdevneu.2005.11.014] [PMID: 16472958]
[78]
Selkoe, D.J. Preventing Alzheimer’s disease. Science, 2012, 21337(6101), 1488-1492.
[79]
Shaw, L.M.; Korecka, M.; Figurski, M.; Toledo, J.; Irwin, D.; Hee Kang, J.; Trojanowski, J.Q. Detection of Alzheimer Disease Pathology in Patients Using Biochemical Biomarkers: Prospects and Challenges for Use in Clinical Practice. J. Appl. Lab. Med., 2019, 5(1), 183-193.
[http://dx.doi.org/10.1373/jalm.2019.029587] [PMID: 31848218]
[80]
Sheinerman, K.S.; Tsivinsky, V.G.; Abdullah, L.; Crawford, F.; Umansky, S.R. Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging (Albany NY), 2013, 5(12), 925-938.
[http://dx.doi.org/10.18632/aging.100624] [PMID: 24368295]
[81]
Souchet, B.; Audrain, M.; Billard, J.M.; Dairou, J.; Fol, R.; Orefice, N.S.; Tada, S.; Gu, Y.; Dufayet-Chaffaud, G.; Limanton, E.; Carreaux, F.; Bazureau, J.P.; Alves, S.; Meijer, L.; Janel, N.; Braudeau, J.; Cartier, N. Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice. Acta Neuropathol. Commun., 2019, 7(1), 46.
[http://dx.doi.org/10.1186/s40478-019-0678-6] [PMID: 30885273]
[82]
Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol., 2012, 11(11), 1006-1012.
[http://dx.doi.org/10.1016/S1474-4422(12)70191-6] [PMID: 23079557]
[83]
Swainson, R.; Hodges, J.R.; Galton, C.J.; Semple, J.; Michael, A.; Dunn, B.D.; Iddon, J.L.; Robbins, T.W.; Sahakian, B.J. Early detection and differential diagnosis of Alzheimer’s disease and depression with neuropsychological tasks. Dement. Geriatr. Cogn. Disord., 2001, 12(4), 265-280.
[http://dx.doi.org/10.1159/000051269] [PMID: 11351138]
[84]
Tong, L.M.; Fong, H.; Huang, Y. Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Exp. Mol. Med., 2015, 47(3)e151
[http://dx.doi.org/10.1038/emm.2014.124] [PMID: 25766620]
[85]
Tripoliti, E.E.; Fotiadis, D.I.; Argyropoulou, M.; Manis, G. A six stage approach for the diagnosis of the Alzheimer’s disease based on fMRI data. J. Biomed. Inform., 2010, 43(2), 307-320.
[http://dx.doi.org/10.1016/j.jbi.2009.10.004] [PMID: 19883796]
[86]
Weiner, M.W.; Aisen, P.S.; Jack, C.R., Jr; Jagust, W.J.; Trojanowski, J.Q.; Shaw, L.; Saykin, A.J.; Morris, J.C.; Cairns, N.; Beckett, L.A.; Toga, A.; Green, R.; Walter, S.; Soares, H.; Snyder, P.; Siemers, E.; Potter, W.; Cole, P.E.; Schmidt, M. Alzheimer’s Disease Neuroimaging Initiative. The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimers Dement., 2010, 6(3), 202-11.e7.
[http://dx.doi.org/10.1016/j.jalz.2010.03.007] [PMID: 20451868]
[87]
Weston, A.D.; Hood, L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res., 2004, 3(2), 179-196.
[http://dx.doi.org/10.1021/pr0499693] [PMID: 15113093]
[88]
Winblad, B.; Amouyel, P.; Andrieu, S.; Ballard, C.; Brayne, C.; Brodaty, H.; Cedazo-Minguez, A.; Dubois, B.; Edvardsson, D.; Feldman, H.; Fratiglioni, L.; Frisoni, G.B.; Gauthier, S.; Georges, J.; Graff, C.; Iqbal, K.; Jessen, F.; Johansson, G.; Jönsson, L.; Kivipelto, M.; Knapp, M.; Mangialasche, F.; Melis, R.; Nordberg, A.; Rikkert, M.O.; Qiu, C.; Sakmar, T.P.; Scheltens, P.; Schneider, L.S.; Sperling, R.; Tjernberg, L.O.; Waldemar, G.; Wimo, A.; Zetterberg, H. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol., 2016, 15(5), 455-532.
[http://dx.doi.org/10.1016/S1474-4422(16)00062-4] [PMID: 26987701]
[89]
Wischik, C.; Staff, R. Challenges in the conduct of disease-modifying trials in AD: practical experience from a phase 2 trial of Tau-aggregation inhibitor therapy. J. Nutr. Health Aging, 2009, 13(4), 367-369.
[http://dx.doi.org/10.1007/s12603-009-0046-5] [PMID: 19300883]
[90]
Wischik, C.M.; Harrington, C.R.; Storey, J.M. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol., 2014, 88(4), 529-539.
[http://dx.doi.org/10.1016/j.bcp.2013.12.008] [PMID: 24361915]
[91]
Zhang, B.; Gaiteri, C.; Bodea, L.G.; Wang, Z.; McElwee, J.; Podtelezhnikov, A.A.; Zhang, C.; Xie, T.; Tran, L.; Dobrin, R.; Fluder, E.; Clurman, B.; Melquist, S.; Narayanan, M.; Suver, C.; Shah, H.; Mahajan, M.; Gillis, T.; Mysore, J.; MacDonald, M.E.; Lamb, J.R.; Bennett, D.A.; Molony, C.; Stone, D.J.; Gudnason, V.; Myers, A.J.; Schadt, E.E.; Neumann, H.; Zhu, J.; Emilsson, V. Integrated systems approach identifies genetic nodes and networks in late-onset alzheimer’s disease. Cell, 2013, 153(3), 707-720.
[http://dx.doi.org/10.1016/j.cell.2013.03.030] [PMID: 23622250]
[92]
Zhang, J.; Gao, Y.; Gao, Y.; Munsell, B.C.; Shen, D. Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging, 2016, 35(12), 2524-2533.
[http://dx.doi.org/10.1109/TMI.2016.2582386] [PMID: 27333602]
[93]
Zhang, W.; Brombosz, S.M.; Mendoza, J.L.; Moore, J.S. A high-yield, one-step synthesis of o-phenylene ethynylene cyclic trimer via precipitation-driven alkyne metathesis. J. Org. Chem., 2005, 70(24), 10198-10201.
[http://dx.doi.org/10.1021/jo0517803] [PMID: 16292873]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy