Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Insights into the Photoelectric Properties of the SnF2 and SnF4-doped FASnI3 Perovskite NanoFilm

Author(s): Liping Peng* and Wei Xie

Volume 17, Issue 1, 2021

Published on: 09 June, 2020

Page: [130 - 138] Pages: 9

DOI: 10.2174/1573413716999200609132157

Abstract

Background: In this study, experimentally, we fabricated the FASnI3 perovskite solar cells based on the SnF2 and SnF4-doped FASnI3 nano-thin film materials, and obtained the photoelectric conversion efficiency (PCE) as 6.5 % and 5.59 %, respectively. Theoretically, we wanted to know why the PCE of SnF2-doped FASnI3 is higher than the SnF4-doped FASnI3.

Methods: We built three kinds of model structures by the CASTEP; they were undoped and SnF2 and SnF4 doped FASnI3 perovskite structure models, respectively. The method was ultrasoft to calculate the interaction between electron and ion, including an electron exchange correction method of generalized gradient approximation and Perdew-Burke-Emzerhof method.

Results: We found the probabilities of energy transfer between SnF2 molecules and the surrounding molecules and these were found to be the lowest among the three structures. By analyzing optical properties, band structures, effective masses, and density of states (DOS), etc., we found SnF2 doping to be superior to SnF4 doping in maintaining photoelectric properties of FASnI3. In addition, SnF2- doped FASnI3 possessed smaller hole effective mass than SnF4-doped FASnI3, adding Sn4+ ion into perovskite, as a shallow acceptor energy level can effectively reduce the optical absorption properties, however, adding Sn2+ ion into perovskite at an appropriate proportion enhanced photoelectric performance of FASnI3.

Conclusion: Sn4+ doping exhibited a negative effect, while Sn2+ doping showed a positive effect in promoting the photoelectric performance of FASnI3 perovskite. We found SnF2 doping to be superior to SnF4 doping in maintaining photoelectric properties of FASnI3. Our results may help to deeply understand the role of Sn2+ and Sn4+ ions in promoting the stability and high efficiency of FASnI3, and help in developing lead-free perovskite solar cells.

Keywords: FASnI3 perovskite solar cell, SnF2 and SnF4, doping, photovoltaic properties, band structures, effective masses, density of states.

Graphical Abstract
[1]
NREL National Renewable Energy Laboratory Available from:, http://news.unist.ac.kr/unist-hits-new-world-efficiency-record-with-perovskite-solar-cells/
[2]
Yang, W.S.; Park, B.W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; Seok, S.I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345), 1376-1379.
[http://dx.doi.org/10.1126/science.aan2301] [PMID: 28663498]
[3]
Zhu, X.; Lin, Y.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y. Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun., 2019, 10(1), 2843.
[http://dx.doi.org/10.1038/s41467-019-10634-x] [PMID: 31253792]
[4]
Nishikubo, R.; Ishida, N.; Katsuki, Y.; Wakamiya, A.; Saeki, A. Minute-scale degradation and shift of valence-band maxima of (CH3NH3)SnI3 and HC(NH2)2SnI3 Perovskites upon air exposure. J. Phys. Chem. C, 2017, 121, 19650-19656.
[http://dx.doi.org/10.1021/acs.jpcc.7b06294]
[5]
Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater., 2014, 13(9), 897-903.
[http://dx.doi.org/10.1038/nmat4014] [PMID: 24997740]
[6]
Peng, L.; Xu, L. Theoretical and experimental research base on the tin lodide organic-inorganic hybrid perovskite (CH3NH3SnI3) tetragonal and orthorhombic phases for photovoltaics. Sci. Adv. Mater., 2018, 10, 1519-1527.
[http://dx.doi.org/10.1166/sam.2018.3356]
[7]
Ma, X-X.; Li, Z-S. The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation. Appl. Surf. Sci., 2018, 428, 140-147.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.073]
[8]
Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. SOLAR CELLS. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234-1237.
[http://dx.doi.org/10.1126/science.aaa9272] [PMID: 25999372]
[9]
Geng, W.; Zhang, L.; Zhang, Y-N.; Lau, W-M.; Liu, L-M. First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics. PhysChemComm, 2014, 118, 19565-19571.
[10]
Feng, Z.; Hu, H.; Cui, S.; Bai, C. First-principles study of optical properties of SrZrO3 in cubic phase. Solid State Commun., 2008, 148, 472-475.
[http://dx.doi.org/10.1016/j.ssc.2008.08.030]
[11]
Heo, J.H.; Kim, J.; Kim, H.; Moon, S.H. Im, S.H.; Hong, K.H.; Im, S.H.; Hong, K.H. Roles of SnX2 (X = F, Cl, Br) additives in tin-based halide perovskites toward highly efficient and stable lead-free perovskite solar cells. J. Phys. Chem. Lett., 2018, 9(20), 6024-6031.
[http://dx.doi.org/10.1021/acs.jpclett.8b02555] [PMID: 30259748]
[12]
Chen, K.; Wu, P.; Yang, W.Q.; Su, R.; Luo, D.; Yang, X.; Tu, Y.G.; Zhu, R.; Gong, Q.H. Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy, 2018, 49, 411-418.
[http://dx.doi.org/10.1016/j.nanoen.2018.05.006]
[13]
Zong, Y.; Zhou, Z.; Chen, M.; Padture, N.P.; Zhou, Y. Lewis-adduct mediated grain-boundary functionalization for efficient ideal-bandgap perovskite solar cells with superior stability. Adv. Energy Mater., 2018, 81800997
[http://dx.doi.org/10.1002/aenm.201800997]
[14]
Lee, S.J. Shi, nS.S.; Kim, Y.C.; Kim, D.; Ahn, T.K.; Noh, J.H.; Seo, J.; Seok, S.I. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF(2)-pyrazine complex. J. Am. Chem. Soc., 2016, 138, 3974-3977.
[http://dx.doi.org/10.1021/jacs.6b00142] [PMID: 26960020]
[15]
Ji, L.; Zhang, T.; Wang, Y.; Zhang, P.; Liu, D.; Chen, Z.; Li, S. Realizing full coverage of stable perovskite film by modified anti-solvent process. Nanoscale Res. Lett., 2017, 12(1), 367.
[http://dx.doi.org/10.1186/s11671-017-2117-6] [PMID: 28535603]
[16]
Tai, Q.; Guo, X.; Tang, G.; You, P.; Ng, T.W.; Shen, D.; Cao, J.; Liu, C.K.; Wang, N.; Zhu, Y.; Lee, C.S.; Yan, F. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. Engl., 2019, 58(3), 806-810.
[http://dx.doi.org/10.1002/anie.201811539] [PMID: 30499609]
[17]
Zhu, Z.; Chueh, C.C.; Li, N.; Mao, C.; Jen, A.K. Realizing efficient lead-free formamidinium tin triiodide perovskite solar cells via a sequential deposition route. Adv. Mater., 2018, 30(6)1703800
[http://dx.doi.org/10.1002/adma.201703800] [PMID: 29250846]
[18]
Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter, 2009, 14, 2717-2744.
[http://dx.doi.org/10.1088/0953-8984/14/11/301]
[19]
Schueller, E.C.; Laurita, G.; Fabini, D.H.; Stoumpos, C.C.; Kanatzidis, M.G.; Seshadri, R. Crystal structure evolution and notable thermal expansion in hybrid perovskites formamidinium tin iodide and formamidinium lead bromide. Inorg. Chem., 2018, 57(2), 695-701.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02576] [PMID: 29278493]
[20]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6, 15-50.
[http://dx.doi.org/10.1016/0927-0256(96)00008-0]
[21]
Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter, 1992, 45(23), 13244-13249.
[http://dx.doi.org/10.1103/PhysRevB.45.13244] [PMID: 10001404]
[22]
Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), 3865-3868.
[http://dx.doi.org/10.1103/PhysRevLett.77.3865] [PMID: 10062328]
[23]
Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci., 2017, 128, 140-184.
[http://dx.doi.org/10.1016/j.commatsci.2016.10.015]
[24]
(a)Ke, W.; Stoumpos, C.C.; Zhu, M.; Mao, L.; Spanopoulos, I.; Liu, J.; Kontsevoi, O.Y.; Chen, M.; Sarma, D.; Zhang, Y.; Wasielewski, M.R.; Kanatzidis, M.G. Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite enFASnI3. Sci. Adv., 2017, 3(8), e1701293..
[http://dx.doi.org/10.1126/sciadv.1701293] [PMID: 28875173]
(b)Kayesh, M.E.; Chowdhury, T.H.; Matsuishi, K.; Kaneko, R.; Kazaoui, S.; Lee, J-J.; Noda, T.; Islam, A. Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett., 2018, 3(7), 1584-1589.
[http://dx.doi.org/10.1021/acsenergylett.8b00645]
[25]
Dang, Y.; Zhou, Y.; Liu, X.; Ju, D.; Xia, S.; Xia, H.; Tao, X. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. Engl., 2016, 55(10), 3447-3450.
[http://dx.doi.org/10.1002/anie.201511792] [PMID: 26889919]
[26]
Koh, T.M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W.L.; Boix, P.P.; Grimsdale, A.C.; Mhaisalkar, S.G.; Mathews, N. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 14996-15000.
[http://dx.doi.org/10.1039/C5TA00190K]
[27]
Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., 2014, 7, 982-988.
[http://dx.doi.org/10.1039/c3ee43822h]
[28]
Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. NH2CH═NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater., 2014, 26, 1485-1491.
[http://dx.doi.org/10.1021/cm404006p]
[29]
Chau, Y-F.; Wu, F-L.; Jiang, Z-H.; Li, H-Y. Evolution of the complete photonic bandgap of two-dimensional photonic crystal. Opt. Express, 2011, 19(6), 4862-4867.
[http://dx.doi.org/10.1364/OE.19.004862] [PMID: 21445122]
[30]
Chau, Y-F.; Yang, T-J.; Lee, W-D. Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits. Appl. Opt., 2004, 43(36), 6656-6663.
[http://dx.doi.org/10.1364/AO.43.006656] [PMID: 15646785]

© 2024 Bentham Science Publishers | Privacy Policy