Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Vitamin D-RAAS Connection: An Integrative Standpoint into Cardiovascular and Neuroinflammatory Disorders

Author(s): Virna Margarita Martín Giménez, Raúl Lelio Sanz, Feres José Mocayar Marón, León Ferder and Walter Manucha*

Volume 21, Issue 10, 2020

Page: [948 - 954] Pages: 7

DOI: 10.2174/1389203721666200606220719

Price: $65

Abstract

Background: The neuroinflammatory process is associated with the pathogenesis of many cardiovascular disorders, particularly with hypertension. In this regard, the deficiency of vitamin D seems to increase the risk of cardiovascular pathologies related to neuroinflammation. Long-term lack of vitamin D leads to over-activation of the renin-angiotensin-aldosterone system (RAAS), one of the essential mechanisms of blood pressure regulation.

Purpose of Review: This review summarizes the latest studies carried out to evaluate the primary mechanisms underlying the neuroprotective effect of vitamin D and its receptors (VDR) in the central nervous system. Besides, the present article condenses the evidence supporting the link between vitamin D and the RAAS in hypertension and neuroinflammation.

Highlights Standpoints: Vitamin D deficiency is highly prevalent in the world, and the rising prevalence of neuroinflammatory diseases and associated pathologies such as hypertension around the world justifies the urgent need of searching new and more effective therapeutic methods that could be related to RAAS modulation and vitamin D levels management.

Keywords: Vitamin D, VDR, neuroinflammation, hypertension, renin-angiotensin-aldosterone system, oxidative stress.

Graphical Abstract
[1]
Dusso, A.S.; Brown, A.J.; Slatopolsky, E.; Vitamin, D.; Vitamin, D. Am. J. Physiol. Renal Physiol., 2005, 289(1), F8-F28.
[http://dx.doi.org/10.1152/ajprenal.00336.2004] [PMID: 15951480]
[2]
Holick, M.F. Vitamin D deficiency. N. Engl. J. Med., 2007, 357(3), 266-281.
[http://dx.doi.org/10.1056/NEJMra070553] [PMID: 17634462]
[3]
Vaidya, A.; Williams, J.S. Vitamin D in the Pathophysiology of Hypertension, Kidney Disease, and Diabetes: Examining the Relationship Between Vitamin D and the Renin-Angiotensin System in Human Diseases. Metabolism, 2012, 61, 450-458.
[http://dx.doi.org/10.1016/j.metabol.2011.09.007] [PMID: 22075270]
[4]
Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 276.
[http://dx.doi.org/10.1186/s12974-018-1313-3] [PMID: 30249283]
[5]
Eldahshan, W.; Fagan, S.C.; Ergul, A. Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacol. Res., 2019.147104349
[http://dx.doi.org/10.1016/j.phrs.2019.104349] [PMID: 31315064]
[6]
Shen, X.Z.; Li, Y.; Li, L.; Shah, K.H.; Bernstein, K.E.; Lyden, P.; Shi, P. Microglia participate in neurogenic regulation of hypertension. Hypertension, 2015, 66(2), 309-316.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05333] [PMID: 26056339]
[7]
Mowry, F.E.; Biancardi, V.C. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol. Res., 2019, 144, 279-291.
[http://dx.doi.org/10.1016/j.phrs.2019.04.029] [PMID: 31039397]
[8]
Elsaafien, K.; Korim, W.S.; Setiadi, A.; May, C.N.; Yao, S.T. Chemoattraction and Recruitment of Activated Immune Cells, Central Autonomic Control, and Blood Pressure Regulation. Front. Physiol., 2019, 10, 984.
[http://dx.doi.org/10.3389/fphys.2019.00984] [PMID: 31427987]
[9]
Wu, Q.; Mi, Y.; Cheng, W.; Xia, C.; Zhu, D.; Du, D. Infiltrating T helper 17 cells in the paraventricular nucleus are pathogenic for stress-induced hypertension. Biochem. Biophys. Res. Commun., 2019, 515(1), 169-175.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.121] [PMID: 31133377]
[10]
Dange, R.B.; Agarwal, D.; Teruyama, R.; Francis, J. Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension. J. Neuroinflammation, 2015, 12, 31.
[http://dx.doi.org/10.1186/s12974-015-0242-7] [PMID: 25879545]
[11]
Korim, W.S.; Elsaafien, K.; Basser, J.R.; Setiadi, A.; May, C.N.; Yao, S.T. In renovascular hypertension, TNF-α type-1 receptors in the area postrema mediate increases in cardiac and renal sympathetic nerve activity and blood pressure. Cardiovasc. Res., 2019, 115(6), 1092-1101.
[http://dx.doi.org/10.1093/cvr/cvy268] [PMID: 30358805]
[12]
Avolio, E.; Pasqua, T.; Di Vito, A.; Fazzari, G.; Cardillo, G.; Alò, R.; Cerra, M.C.; Barni, T.; Angelone, T.; Canonaco, M. Role of Brain Neuroinflammatory Factors on Hypertension in the Spontaneously Hypertensive Rat. Neuroscience, 2018, 375, 158-168.
[http://dx.doi.org/10.1016/j.neuroscience.2018.01.067] [PMID: 29432887]
[13]
Du, D.; Hu, L.; Wu, J.; Wu, Q.; Cheng, W.; Guo, Y.; Guan, R.; Wang, Y.; Chen, X.; Yan, X.; Zhu, D.; Wang, J.; Zhang, S.; Guo, Y.; Xia, C. Neuroinflammation contributes to autophagy flux blockage in the neurons of rostral ventrolateral medulla in stress-induced hypertension rats. J. Neuroinflammation, 2017, 14(1), 169.
[http://dx.doi.org/10.1186/s12974-017-0942-2] [PMID: 28835252]
[14]
Brocca, M.E.; Pietranera, L.; de Kloet, E.R.; De Nicola, A.F. Mineralocorticoid Receptors, Neuroinflammation and Hypertensive Encephalopathy. Cell. Mol. Neurobiol., 2019, 39(4), 483-492.
[http://dx.doi.org/10.1007/s10571-018-0610-9] [PMID: 30117098]
[15]
Brocca, M.E.; Pietranera, L.; Meyer, M.; Lima, A.; Roig, P.; de Kloet, E.R.; De Nicola, A.F. Mineralocorticoid receptor associates with pro-inflammatory bias in the hippocampus of spontaneously hypertensive rats. J. Neuroendocrinol., 2017, 29(7)
[http://dx.doi.org/10.1111/jne.12489] [PMID: 28523794]
[16]
Yang, T.; Rodriguez, V.; Malphurs, W.L.; Schmidt, J.T.; Ahmari, N.; Sumners, C.; Martyniuk, C.J.; Zubcevic, J. Butyrate regulates inflammatory cytokine expression without affecting oxidative respiration in primary astrocytes from spontaneously hypertensive rats. Physiol. Rep., 2018, 6(14)e13732
[http://dx.doi.org/10.14814/phy2.13732] [PMID: 30039527]
[17]
Iulita, M.F.; Vallerand, D.; Beauvillier, M.; Haupert, N.; Ulysse, A. C.; Gagné, A.; Vernoux, N.; Duchemin, S.; Boily, M.; Tremblay, M.È.; Girouard, H. Differential effect of angiotensin II and blood pressure on hippocampal inflammation in mice. J. Neuroinflammation, 2018, 15(1), 62.
[http://dx.doi.org/10.1186/s12974-018-1090-z] [PMID: 29490666]
[18]
Tayebati, S.K.; Tomassoni, D.; Amenta, F. Neuroinflammatory Markers in Spontaneously Hypertensive Rat Brain: An Immunohistochemical Study. CNS Neurol. Disord. Drug Targets, 2016, 15(8), 995-1000.
[http://dx.doi.org/10.2174/1871527315666160527155014] [PMID: 27238154]
[19]
Goel, R.; Bhat, S.A.; Rajasekar, N.; Hanif, K.; Nath, C.; Shukla, R. Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: Protection by angiotensin converting enzyme inhibition. Pharmacol. Biochem. Behav., 2015, 133, 132-145.
[http://dx.doi.org/10.1016/j.pbb.2015.04.002] [PMID: 25869103]
[20]
Kono, S.; Kurata, T.; Sato, K.; Omote, Y.; Hishikawa, N.; Yamashita, T.; Deguchi, K.; Abe, K. Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke. J. Stroke Cerebrovasc. Dis., 2015, 24(3), 537-547.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.037] [PMID: 25534368]
[21]
Kurata, T.; Lukic, V.; Kozuki, M.; Wada, D.; Miyazaki, K.; Morimoto, N.; Ohta, Y.; Deguchi, K.; Ikeda, Y.; Kamiya, T.; Abe, K. Telmisartan reduces progressive accumulation of cellular amyloid beta and phosphorylated tau with inflammatory responses in aged spontaneously hypertensive stroke resistant rat. J. Stroke Cerebrovasc. Dis., 2014, 23(10), 2580-2590.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.05.023] [PMID: 25241340]
[22]
Kaiser, D.; Weise, G.; Möller, K.; Scheibe, J.; Pösel, C.; Baasch, S.; Gawlitza, M.; Lobsien, D.; Diederich, K.; Minnerup, J.; Kranz, A.; Boltze, J.; Wagner, D.C. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol. Commun., 2014, 2, 169.
[http://dx.doi.org/10.1186/s40478-014-0169-8] [PMID: 25519173]
[23]
Winklewski, P.J.; Radkowski, M.; Wszedybyl-Winklewska, M.; Demkow, U. Brain inflammation and hypertension: the chicken or the egg? J. Neuroinflammation, 2015, 12, 85.
[http://dx.doi.org/10.1186/s12974-015-0306-8] [PMID: 25935397]
[24]
Labandeira-Garcia, J.L.; Rodríguez-Perez, A.I.; Garrido-Gil, P.; Rodriguez-Pallares, J.; Lanciego, J.L.; Guerra, M.J. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front. Aging Neurosci., 2017, 9, 129.
[http://dx.doi.org/10.3389/fnagi.2017.00129] [PMID: 28515690]
[25]
Hammer, A.; Stegbauer, J.; Linker, R.A. Macrophages in neuroinflammation: role of the renin-angiotensin-system. Pflugers Arch., 2017, 469(3-4), 431-444.
[http://dx.doi.org/10.1007/s00424-017-1942-x] [PMID: 28190090]
[26]
Pacurari, M.; Kafoury, R.; Tchounwou, P.B.; Ndebele, K. The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int. J. Inflamm., 2014, 2014689360
[http://dx.doi.org/10.1155/2014/689360] [PMID: 24804145]
[27]
O’Connor, A.T.; Clark, M.A. Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis. Neurochem. Res., 2018, 43(7), 1297-1307.
[http://dx.doi.org/10.1007/s11064-018-2557-0] [PMID: 29858771]
[28]
Haspula, D.; Clark, M.A. Neuroinflammation and sympathetic overactivity: Mechanisms and implications in hypertension. Auton. Neurosci., 2018, 210, 10-17.
[http://dx.doi.org/10.1016/j.autneu.2018.01.002] [PMID: 29361405]
[29]
Ahmari, N.; Santisteban, M.M.; Miller, D.R.; Geis, N.M.; Larkin, R.; Redler, T.; Denson, H.; Khoshbouei, H.; Baekey, D.M.; Raizada, M.K.; Zubcevic, J. Elevated bone marrow sympathetic drive precedes systemic inflammation in angiotensin II hypertension. Am. J. Physiol. Heart Circ. Physiol., 2019, 317(2), H279-H289.
[http://dx.doi.org/10.1152/ajpheart.00510.2018] [PMID: 31150271]
[30]
Drews, H.J.; Yenkoyan, K.; Lourhmati, A.; Buadze, M.; Kabisch, D.; Verleysdonk, S.; Petschak, S.; Beer-Hammer, S.; Davtyan, T.; Frey, W.H., II; Gleiter, C.H.; Schwab, M.; Danielyan, L. Intranasal Losartan Decreases Perivascular Beta Amyloid, Inflammation, and the Decline of Neurogenesis in Hypertensive Rats. Neurotherapeutics, 2019, 16(3), 725-740.
[http://dx.doi.org/10.1007/s13311-019-00723-6] [PMID: 30796737]
[31]
Yu, Y.; Wei, S.G.; Weiss, R.M.; Felder, R.B.; Angiotensin, I.I.; Angiotensin, I.I. Type 1a Receptors in the Subfornical Organ Modulate Neuroinflammation in the Hypothalamic Paraventricular Nucleus in Heart Failure Rats. Neuroscience, 2018, 381, 46-58.
[http://dx.doi.org/10.1016/j.neuroscience.2018.04.012] [PMID: 29684507]
[32]
Haspula, D.; Clark, M.A. Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. J. Pharmacol. Exp. Ther., 2018, 366(2), 251-264.
[http://dx.doi.org/10.1124/jpet.118.248831] [PMID: 29752427]
[33]
Dai, S.Y.; Peng, W.; Zhang, Y.P.; Li, J.D.; Shen, Y.; Sun, X.F. Brain endogenous angiotensin II receptor type 2 (AT2-R) protects against DOCA/salt-induced hypertension in female rats. J. Neuroinflammation, 2015, 12, 47.
[http://dx.doi.org/10.1186/s12974-015-0261-4] [PMID: 25885968]
[34]
O’Connor, A.T.; Clark, M.A. Angiotensin II induces cyclooxygenase 2 expression in rat astrocytes via the angiotensin type 1 receptor. Neuropeptides, 2019, 77101958
[http://dx.doi.org/10.1016/j.npep.2019.101958] [PMID: 31378306]
[35]
Torika, N.; Asraf, K.; Roasso, E.; Danon, A.; Fleisher-Berkovich, S. Angiotensin Converting Enzyme Inhibitors Ameliorate Brain Inflammation Associated with Microglial Activation: Possible Implications for Alzheimer’s Disease. J. Neuroimmune Pharmacol., 2016, 11(4), 774-785.
[http://dx.doi.org/10.1007/s11481-016-9703-8] [PMID: 27562846]
[36]
Sriramula, S.; Xia, H.; Xu, P.; Lazartigues, E. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertension, 2015, 65(3), 577-586.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04691] [PMID: 25489058]
[37]
Bhat, S.A.; Goel, R.; Shukla, R.; Hanif, K. Angiotensin Receptor Blockade Modulates NFκB and STAT3 Signaling and Inhibits Glial Activation and Neuroinflammation Better than Angiotensin-Converting Enzyme Inhibition. Mol. Neurobiol., 2016, 53(10), 6950-6967.
[http://dx.doi.org/10.1007/s12035-015-9584-5] [PMID: 26666666]
[38]
Shi, P.; Grobe, J.L.; Desland, F.A.; Zhou, G.; Shen, X.Z.; Shan, Z.; Liu, M.; Raizada, M.K.; Sumners, C. Direct pro-inflammatory effects of prorenin on microglia. PLoS One, 2014, 9(10)e92937
[http://dx.doi.org/10.1371/journal.pone.0092937] [PMID: 25302502]
[39]
Liu, M.; Shi, P.; Sumners, C. Direct anti-inflammatory effects of angiotensin-(1-7) on microglia. J. Neurochem., 2016, 136(1), 163-171.
[http://dx.doi.org/10.1111/jnc.13386] [PMID: 26448556]
[40]
Jiang, T.; Xue, L.J.; Yang, Y.; Wang, Q.G.; Xue, X.; Ou, Z.; Gao, Q.; Shi, J.Q.; Wu, L.; Zhang, Y.D. AVE0991, a nonpeptide analogue of Ang-(1-7), attenuates aging-related neuroinflammation. Aging (Albany NY), 2018, 10(4), 645-657.
[http://dx.doi.org/10.18632/aging.101419] [PMID: 29667931]
[41]
Djukic, M.; Onken, M.L.; Schütze, S.; Redlich, S.; Götz, A.; Hanisch, U.K.; Bertsch, T.; Ribes, S.; Hanenberg, A.; Schneider, S.; Bollheimer, C.; Sieber, C.; Nau, R. Vitamin d deficiency reduces the immune response, phagocytosis rate, and intracellular killing rate of microglial cells. Infect. Immun., 2014, 82(6), 2585-2594.
[http://dx.doi.org/10.1128/IAI.01814-14] [PMID: 24686054]
[42]
Di Somma, C.; Scarano, E.; Barrea, L.; Zhukouskaya, V.V.; Savastano, S.; Mele, C.; Scacchi, M.; Aimaretti, G.; Colao, A.; Marzullo, P. Vitamin D and Neurological Diseases: An Endocrine View. Int. J. Mol. Sci., 2017, 18(11)E2482
[http://dx.doi.org/10.3390/ijms18112482] [PMID: 29160835]
[43]
Anand, D.; Colpo, G.D.; Zeni, G.; Zeni, C.P.; Teixeira, A.L. Attention-Deficit/Hyperactivity Disorder And Inflammation: What Does Current Knowledge Tell Us? A Systematic Review. Front. Psychiatry, 2017, 8, 228.
[http://dx.doi.org/10.3389/fpsyt.2017.00228] [PMID: 29170646]
[44]
Lima, L.A.R.; Lopes, M.J.P.; Costa, R.O.; Lima, F.A.V.; Neves, K.R.T.; Calou, I.B.F.; Andrade, G.M.; Viana, G.S.B. Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J. Neuroinflammation, 2018, 15(1), 249.
[http://dx.doi.org/10.1186/s12974-018-1266-6] [PMID: 30170624]
[45]
Koduah, P.; Paul, F.; Dörr, J.M. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J., 2017, 8(4), 313-325.
[http://dx.doi.org/10.1007/s13167-017-0120-8] [PMID: 29209434]
[46]
Kočovská, E.; Gaughran, F.; Krivoy, A.; Meier, U.C. Vitamin-D Deficiency As a Potential Environmental Risk Factor in Multiple Sclerosis, Schizophrenia, and Autism. Front. Psychiatry, 2017, 8, 47.
[http://dx.doi.org/10.3389/fpsyt.2017.00047] [PMID: 28396640]
[47]
El-Atifi, M.; Dreyfus, M.; Berger, F.; Wion, D. Expression of CYP2R1 and VDR in human brain pericytes: the neurovascular vitamin D autocrine/paracrine model. Neuroreport, 2015, 26(5), 245-248.
[http://dx.doi.org/10.1097/WNR.0000000000000328] [PMID: 25730676]
[48]
Yamini, P.; Ray, R.S.; Chopra, K. Vitamin D3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer’s disease. Inflammopharmacology, 2018, 26(1), 39-55.
[http://dx.doi.org/10.1007/s10787-017-0372-x] [PMID: 28702935]
[49]
Calvello, R.; Cianciulli, A.; Nicolardi, G.; De Nuccio, F.; Giannotti, L.; Salvatore, R.; Porro, C.; Trotta, T.; Panaro, M.A.; Lofrumento, D.D.; Vitamin, D.; Vitamin, D. Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses. J. Neuroimmune Pharmacol., 2017, 12(2), 327-339.
[http://dx.doi.org/10.1007/s11481-016-9720-7] [PMID: 27987058]
[50]
Huang, Y.N.; Ho, Y.J.; Lai, C.C.; Chiu, C.T.; Wang, J.Y. 1,25-Dihydroxyvitamin D3 attenuates endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation in primary cortical neuron-glia cultures. J. Neuroinflammation, 2015, 12, 147.
[http://dx.doi.org/10.1186/s12974-015-0370-0] [PMID: 26259787]
[51]
Cheng, J.; Rui, Y.; Qin, L.; Xu, J.; Han, S.; Yuan, L.; Yin, X.; Wan, Z.; Vitamin, D.; Vitamin, D. Combined with Resveratrol Prevents Cognitive Decline in SAMP8 Mice. Curr. Alzheimer Res., 2017, 14(8), 820-833.
[http://dx.doi.org/10.2174/1567205014666170207093455] [PMID: 28176624]
[52]
Kurtys, E.; Eisel, U.L.M.; Verkuyl, J.M.; Broersen, L.M.; Dierckx, R.A.J.O.; de Vries, E.F.J. The combination of vitamins and omega-3 fatty acids has an enhanced anti-inflammatory effect on microglia. Neurochem. Int., 2016, 99, 206-214.
[http://dx.doi.org/10.1016/j.neuint.2016.07.008] [PMID: 27465516]
[53]
Tang, H.; Hua, F.; Wang, J.; Yousuf, S.; Atif, F.; Sayeed, I.; Stein, D.G. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj., 2015, 29(10), 1165-1174.
[http://dx.doi.org/10.3109/02699052.2015.1035330] [PMID: 26083048]
[54]
Torbus-Paluszczak, M.; Bartman, W.; Adamczyk-Sowa, M. Klotho protein in neurodegenerative disorders. Neurol. Sci., 2018, 39(10), 1677-1682.
[http://dx.doi.org/10.1007/s10072-018-3496-x] [PMID: 30062646]
[55]
Vo, H.T.; Laszczyk, A.M.; King, G.D. Klotho, the Key to Healthy Brain Aging? Brain Plast., 2018, 3(2), 183-194.
[http://dx.doi.org/10.3233/BPL-170057] [PMID: 30151342]
[56]
Zhu, L.; Stein, L.R.; Kim, D.; Ho, K.; Yu, G.Q.; Zhan, L.; Larsson, T.E.; Mucke, L. Klotho controls the brain-immune system interface in the choroid plexus. Proc. Natl. Acad. Sci. USA, 2018, 115(48), E11388-E11396.
[http://dx.doi.org/10.1073/pnas.1808609115] [PMID: 30413620]
[57]
Lin, L.; Zhang, L.; Li, C.; Gai, Z.; Li, Y.; Vitamin, D.; Vitamin, D.; Vitamin, D.; and Vitamin, D. Receptor: New Insights in the Treatment of Hypertension. Curr. Protein Pept. Sci., 2019, 20(10), 984-995.
[http://dx.doi.org/10.2174/1389203720666190807130504] [PMID: 31389312]
[58]
Al-Ishaq, R.K.; Kubatka, P.; Brozmanova, M.; Gazdikova, K.; Caprnda, M.; Büsselberg, D. Health implication of vitamin D on the cardiovascular and the renal system. Arch. Physiol. Biochem., 2019, •••, 1-15.
[http://dx.doi.org/10.1080/13813455.2019.1628064] [PMID: 31291127]
[59]
Cui, C.; Xu, P.; Li, G.; Qiao, Y.; Han, W.; Geng, C.; Liao, D.; Yang, M.; Chen, D.; Jiang, P. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system. Redox Biol., 2019, 26101295
[http://dx.doi.org/10.1016/j.redox.2019.101295] [PMID: 31421410]
[60]
He, M.C.; Shi, Z.; Sha, N.N.; Chen, N.; Peng, S.Y.; Liao, D.F.; Wong, M.S.; Dong, X.L.; Wang, Y.J.; Yuan, T.F.; Zhang, Y. Paricalcitol alleviates lipopolysaccharide-induced depressive-like behavior by suppressing hypothalamic microglia activation and neuroinflammation. Biochem. Pharmacol., 2019, 163, 1-8.
[http://dx.doi.org/10.1016/j.bcp.2019.01.021] [PMID: 30703351]
[61]
Turin, A.; Bax, J.J.; Doukas, D.; Joyce, C.; Lopez, J.J.; Mathew, V.; Pontone, G.; Shah, F.; Singh, S.; Wilber, D.J.; Rabbat, M.G. Interactions Among Vitamin D, Atrial Fibrillation, and the Renin-Angiotensin-Aldosterone System. Am. J. Cardiol., 2018, 122(5), 780-784.
[http://dx.doi.org/10.1016/j.amjcard.2018.05.013] [PMID: 30057228]
[62]
Inaguma, D.; Ito, E.; Koide, S.; Takahashi, K.; Hayashi, H.; Hasegawa, M.; Yuzawa, Y. Combination Therapy with Renin-Angiotensin System Blockers and Vitamin D Receptor Activators for Predialysis Patients Is Associated with the Incidence of Cardiovascular Events after Dialysis Initiation: A Multicenter Nonrandomized Prospective Cohort Study. Cardiorenal Med., 2017, 8(1), 71-81.
[http://dx.doi.org/10.1159/000479894] [PMID: 29344028]
[63]
Xu, J.; Yang, J.; Chen, J.; Luo, Q.; Zhang, Q.; Zhang, H. Vitamin D alleviates lipopolysaccharide induced acute lung injury via regulation of the renin angiotensin system. Mol. Med. Rep., 2017, 16(5), 7432-7438.
[http://dx.doi.org/10.3892/mmr.2017.7546] [PMID: 28944831]
[64]
Carrara, D.; Bruno, R.M.; Bacca, A.; Taddei, S.; Duranti, E.; Ghiadoni, L.; Bernini, G. Cholecalciferol treatment downregulates renin-angiotensin system and improves endothelial function in essential hypertensive patients with hypovitaminosid D. J. Hypertens., 2016, 34(11), 2199-2205.
[http://dx.doi.org/10.1097/HJH.0000000000001072] [PMID: 27648718]
[65]
Deng, X.; Cheng, J.; Shen, M. Vitamin D improves diabetic nephropathy in rats by inhibiting renin and relieving oxidative stress. J. Endocrinol. Invest., 2016, 39(6), 657-666.
[http://dx.doi.org/10.1007/s40618-015-0414-4] [PMID: 26691308]
[66]
Zhang, W.; Chen, L.; Zhang, L.; Xiao, M.; Ding, J.; Goltzman, D.; Miao, D. Administration of exogenous 1,25(OH)2D3 normalizes overactivation of the central renin-angiotensin system in 1α(OH)ase knockout mice. Neurosci. Lett., 2015, 588, 184-189.
[http://dx.doi.org/10.1016/j.neulet.2015.01.013] [PMID: 25576706]
[67]
Kaur, G.; Singh, J.; Kumar, J. Vitamin D and cardiovascular disease in chronic kidney disease. Pediatr. Nephrol., 2019, 34(12), 2509-2522.
[http://dx.doi.org/10.1007/s00467-018-4088-y] [PMID: 30374603]
[68]
Shi, Y.; Liu, T.; Yao, L.; Xing, Y.; Zhao, X.; Fu, J.; Xue, X. Chronic vitamin D deficiency induces lung fibrosis through activation of the renin-angiotensin system. Sci. Rep., 2017, 7(1), 3312.
[http://dx.doi.org/10.1038/s41598-017-03474-6] [PMID: 28607392]
[69]
Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.F.; Liu, S.Q.; Cao, L.P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Invest., 2002, 110(2), 229-238.
[http://dx.doi.org/10.1172/JCI0215219] [PMID: 12122115]
[70]
Yuan, W.; Pan, W.; Kong, J.; Zheng, W.; Szeto, F.L.; Wong, K.E.; Cohen, R.; Klopot, A.; Zhang, Z.; Li, Y.C. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J. Biol. Chem., 2007, 282(41), 29821-29830.
[http://dx.doi.org/10.1074/jbc.M705495200] [PMID: 17690094]
[71]
Zhou, C.; Lu, F.; Cao, K.; Xu, D.; Goltzman, D.; Miao, D. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1alpha-hydroxylase knockout mice. Kidney Int., 2008, 74(2), 170-179.
[http://dx.doi.org/10.1038/ki.2008.101] [PMID: 18385669]
[72]
Zhang, Z.; Zhang, Y.; Ning, G.; Deb, D.K.; Kong, J.; Li, Y.C. Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: blockade of compensatory renin increase. Proc. Natl. Acad. Sci. USA, 2008, 105(41), 15896-15901.
[http://dx.doi.org/10.1073/pnas.0803751105] [PMID: 18838678]
[73]
Takenaka, T.; Inoue, T.; Miyazaki, T.; Kobori, H.; Nishiyama, A.; Ishii, N.; Hayashi, M.; Suzuki, H. Klotho suppresses the renin-angiotensin system in adriamycin nephropathy. Nephrol. Dial. Transplant., 2017, 32(5), 791-800.
[http://dx.doi.org/10.1093/ndt/gfw340] [PMID: 27798196]
[74]
Mitani, H.; Ishizaka, N.; Aizawa, T.; Ohno, M.; Usui, S.; Suzuki, T.; Amaki, T.; Mori, I.; Nakamura, Y.; Sato, M.; Nangaku, M.; Hirata, Y.; Nagai, R. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension, 2002, 39(4), 838-843.
[http://dx.doi.org/10.1161/01.HYP.0000013734.33441.EA] [PMID: 11967236]
[75]
Zhou, L.; Mo, H.; Miao, J.; Zhou, D.; Tan, R.J.; Hou, F.F.; Liu, Y. Klotho Ameliorates Kidney Injury and Fibrosis and Normalizes Blood Pressure by Targeting the Renin-Angiotensin System. Am. J. Pathol., 2015, 185(12), 3211-3223.
[http://dx.doi.org/10.1016/j.ajpath.2015.08.004] [PMID: 26475416]
[76]
Serrano, G.L.; Ritchie, B.; Hoffman, D.; Ferder, L. A new concept for an old system: the anti-inflammatory paradigm of the renin-angiotensin system. Med. Hypotheses, 2009, 72(5), 584-588.
[http://dx.doi.org/10.1016/j.mehy.2008.11.036] [PMID: 19157718]
[77]
Ferder, M.; Inserra, F.; Manucha, W.; Ferder, L. The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the renin-angiotensin system. Am. J. Physiol. Cell Physiol., 2013, 304(11), C1027-C1039.
[http://dx.doi.org/10.1152/ajpcell.00403.2011] [PMID: 23364265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy