Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Highly Efficient Ultrasound Promoted Synthesis of 2-phenylquinoxaline in Glycerol- Water

Author(s): Mujahed Shaikh*, Devendra Wagare, Ashvini Sonone and Ayesha Durrani

Volume 17, Issue 6, 2020

Page: [483 - 487] Pages: 5

DOI: 10.2174/1570179417666200529121602

Abstract

Introduction: Quinoxalines show diversified applications in the field of medicinal chemistry.

Materials and Methods: Therefore, we have designed a highly efficient, environmentally benign and one-pot protocol for the synthesis of 2-phenylquinoxaline from the reaction of Acetophenone, N-bromosuccinimide and 1,2-phenylenediamine under ultrasound irradiation in glycerol-water.

Results and Discussion: We observed that, although the reaction efficiently completed in all of these solvents, the use of glycerol-water with different ratios gives consistently higher yields (89–94%) and decreases reaction times.

Conclusion: The main advantages of this protocol are that it is a green method, avoids the use of toxic catalysts and volatile organic medium and the product is obtained with excellent yield.

Keywords: O-Phenylenediamine, Acetophenone, Trimethylsilyl Chloride, Glycerol, Ultrasound, N-bromosuccinimide.

Graphical Abstract
[1]
Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-mycobacterium tuberculosis agents. J. Med. Chem., 2005, 48(6), 2019-2025.
[http://dx.doi.org/10.1021/jm049952w] [PMID: 15771444]
[2]
Carta, A1; Paglietti, G; Rahbar, Nikookar, M.E. Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity. Eur. J. Med. Chem., 2002, 37, 355-366.
[3]
Sakata, G.; Makino, K.; Kurasawa, Y. Recent progress in the quinoxaline chemistry. synthesis and biological activity. Heterocycles, 1998, 27, 2481-2515.
[4]
Kim, Y.B.; Kim, Y.H.; Park, J.Y.; Kim, S.K. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg. Med. Chem. Lett., 2004, 14(2), 541-544.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.086] [PMID: 14698199]
[5]
He, W.; Myers, M.R.; Hanney, B.; Spada, A.P.; Bilder, G.; Galzcinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.; Perrone, M.H. Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor. Bioorg. Med. Chem. Lett., 2003, 13(18), 3097-3100.
[http://dx.doi.org/10.1016/S0960-894X(03)00655-3] [PMID: 12941342]
[6]
Sato, N. 6.03 - Pyrazines and their Benzo Derivatives In Comprehensive Heterocyclic Chemistry II, Alan, R. K.; Charles, W. R.; Eric, F.V. 1994, 6, 233-278.
[7]
Matsuoka, M.; Iwamoto, A.; Furukawa, N.; Kitao, T. Syntheses of polycyclic-1,4-dithiines and related heterocycles. J. Het. Chem., 1992, 29, 439-443.
[http://dx.doi.org/10.1002/jhet.5570290224]
[8]
Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680]
[9]
Ravichandran, V.; Mohan, S.; Suresh, K. Synthesis and antimicrobial activity of Mannich bases of isatin and its derivatives with 2-[(2,6-dichlorophenyl)amino]phenylacetic acid. ARKIVOC, 2007, xiv, 51-57.
[http://dx.doi.org/10.3998/ark.5550190.0008.e07]
[10]
Giltaire, S.; Herphelin, F.; Frankart, A.; Hérin, M.; Stoppie, P.; Poumay, Y. The CYP26 inhibitor R115866 potentiates the effects of all-trans retinoic acid on cultured human epidermal keratinocytes. Br. J. Dermatol., 2009, 160(3), 505-513.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08960.x] [PMID: 19120344]
[11]
Naylor, M.A.; Stephens, M.A.; Nolan, J.; Sutton, B.; Tocher, J.H.; Fielden, E.M.; Adams, G.E.; Stratford, I.J. Heterocyclic mono-N-oxides with potential applications as bioreductive anti-tumour drugs: Part 1. 8-Alkylamino-substituted phenylimidazo [1,2-a] quinoxalines. Anticancer Drug Des., 1993, 8(6), 439-461.
[PMID: 8286012]
[12]
Pandeya, S.N. Sriram, D.; Nath, G.; and De., Clercq E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of NorfloxacinMannich bases. Sci. Pharm., 1999, 67, 103-111.
[13]
Pandeya, S.N.; Sriram, D.; Nath, G.; De Clercq, E. Synthesis, antibacterial, antifungal and anti-HIV activities of norfloxacin mannich bases. Eur. J. Med. Chem., 2000, 35(2), 249-255.
[http://dx.doi.org/10.1016/S0223-5234(00)00125-2] [PMID: 10758286]
[14]
Pandeya, S.N.; Sriram, D.; Nath, G.; de Clercq, E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin and its derivatives with triazole. Arzneimittelforschung, 2000, 50(1), 55-59.
[PMID: 10683717]
[15]
Dell, A.; Williams, D.H.; Morris, H.R.; Smith, G.A.; Feeney, J.; Roberts, G.C. Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc., 1975, 97(9), 2497-2502.
[http://dx.doi.org/10.1021/ja00842a029] [PMID: 1133418]
[16]
Monge, A.; Palop, J.A.; Urbasos, I.; Fernández-Alvarez, E.J. New quinoxaline and pyrimido[4,5‐b]quinoxaline derivatives. Potential antihypertensive and blood platelet antiaggregating agents. J. Heterocycl. Chem., 1989, 26(6), 1623-1626.
[http://dx.doi.org/10.1002/jhet.5570260621]
[17]
Matsuoka, M.; Iwamoto, A.; Furukawa, N.; Kitao, T. Syntheses of polycyclic-1,4-dithiines and related heterocycles. J. Heterocycl. Chem., 1992, 29, 439-443.
[http://dx.doi.org/10.1002/jhet.5570290224]
[18]
Lindsley, C.W.; Zhao, Z.; Leister, W.H.; Robinson, R.G.; Barnett, S.F. Defeo-Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E. Duggan, M. E., “Allosteric Akt (PKB) inhibitors: Discovery and SAR of isozyme selective inhibitors. Bioorganic & amp. Med. Chem. Lett., 2005, 15, 761-764.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.011]
[19]
Tandon, V.K.; Yadav, D.B.; Maurya, H.K.; Chaturvedi, A.K. Design, synthesis, and biological evaluation of 1, 2,3-trisubstituted-1, 4-dihydrobenzo[g] quinoxaline-5, 10-diones and related compounds as antifungal and antibacterial agents. Bioorg. Med. Chem., 2006, 14, 6120-6126.
[20]
Seitz, L.E.; Suling, W.J.; Reynolds, R.C. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 2002, 45(25), 5604-5606.
[http://dx.doi.org/10.1021/jm020310n] [PMID: 12459027]
[21]
Hegedus, L.S.; Greenberg, M.M.; Wendling, J.J.; Bullock, J.P. Synthesis of 5,12-dioxocyclam nickel (II) complexes having quinoxaline substituents at the 6 and 13 positions as potential DNA bis-intercalating and cleaving agents. J. Org. Chem., 2003, 68(11), 4179-4188.
[http://dx.doi.org/10.1021/jo020708r] [PMID: 12762716]
[22]
Lingaiah, N.; Jyothsna, D.P.; Rama, K.R.A.; Rajashaker, B. A facile and efficient synthesis of quinoxalines from phenacyl bromides and ortho phenylenediamine promoted by zirconium tungstate. Organic Chem. Curr.Res., 2014, S4
[http://dx.doi.org/10.4172/2161-0401.S4-001]
[23]
Srinivas, C.; Kumar, C.N.S.S.P.; Rao, V.J.; Palaniappan, S. Efficient, convenient and reusable polyaniline-sulfate salt catalyst for the synthesis of quinoxaline derivatives. J. Mol. Catal, A,, 2007, 265, 227-230.
[http://dx.doi.org/10.1016/j.molcata.2006.10.018]
[24]
Heravi, M.M.; Baghernejad, B.; Oskooie, H.A. A novel three-component reaction for the synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amines. Tetrahedron Lett., 2009, 50, 767-769.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.123]
[25]
Yadav, J.S.; Reddy, B.V.S.; Premalatha, K.; Shankar, K.S. Bismuth (III) catalyzed rapid synthesis of 2,3-disubstituted quinoxalines in water. Synthesis, 2008, 3787-3792.
[http://dx.doi.org/10.1055/s-0028-1083230]
[26]
Khan, S.A.; Mullick, P.; Pandit, S.; Kaushik, D. Synthesis of hydrazones derivatives of quinoxalinone- prospective antimicrobial and antiinflammatory agents Acta Poloniae Pharmaceutica, 2009, 66(2), 169-172.
[27]
Badran, M.M.; Moneer, A.A.; Refaat, M.H.; El-Malah, A.A. Synthesis and antimicrobial activity of novel quinoxaline derivatives. J. Chin. Chem. Soc. (Taipei), 2007, 54, 469-478.
[http://dx.doi.org/10.1002/jccs.200700066]
[28]
Mahmoud, A.A.; Mohamed, M.Y. Use of modern technique for synthesis of quinoxaline derivatives as potential anti-virus compounds. Pharma Chem., 2012, 4(3), 1323-1329.
[29]
Ruiz, M.D.; Autino, C.J.; Quaranta, N.; V’azquez, G.P.; Romanelli, P.G. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using recyclable alumina-supported heteropolyoxometalates. Sci.World J.,, 2012, 174784, 8.
[http://dx.doi.org/10.1100/2012/174784] [PMID: 22536123]
[30]
Brown, D.J. The chemistry of heterocyclic compounds. In Quinoxalines:Supplement II., Taylor, E.C.; Peter Wipf, P. John Wiley & Sons, INC.: NewYork. 2004, 1-92.
[31]
Varano, F.; Catarzi, D.; Colotta, V.; Cecchi, L.; Filacchioni, G.; Galli, A.; Costagli, C. Synthesis of a set of ethyl 1-carbamoyl-3-oxoquinoxaline-2-carboxylates and of their constrained analogue imidazo. Eur. J. Med. Chem., 2001, 36(2), 203-209.
[http://dx.doi.org/10.1016/S0223-5234(00)01203-4] [PMID: 11311751]
[32]
Pagliaro, M.; Rossi, M. In The Future of GlycerolNew Usages for a Versatile Raw Material; Clark, J.H.; Kraus, G.A., Eds.; RSC Green Chemistry Series: Cambridge, 2008.
[33]
Chan, T.H.; Brook, M.A.; Chaly, T. A simple procedure for the acetalization of carbonyl compounds. Synthesis, 1983, 203-205.
[http://dx.doi.org/10.1055/s-1983-30280]
[34]
Zeligs, M.A. Diet and estrogen status: the cruciferous connection. J. Med. Food, 1998, 1, 67-82.
[http://dx.doi.org/10.1089/jmf.1998.1.67]
[35]
Shaikh, M.; Wagare, D.; Farooqui, M.; Durrani, A. Facile and green one-pot synthesis of 2-aminothiazole in glycerol-water. Heterocyclic Lett., 2017, 7(4), 1061-1064.
[36]
Wagare, D.; Shaikh, M.; Farooqui, M.; Durrani, A. PEG-1500 in water: A green, recyclable catalyst for the one-pot synthesis of imidazo[1,2-a]pyrimidines under microwave irradiation. Chem. Biol. Interact., 2016, 6(6), 405-409.
[37]
Wagare, D.; Farooqui, M.T.D. Keche; Durrani, A.Efficient and green microwave-assisted one-pot synthesis of azaindolizines in PEG-400 and water. Syn. Comm., 2016, 46(21), 1741-1746.
[http://dx.doi.org/10.1080/00397911.2016.1223314]
[38]
Wagare, D.; Farooqui, M.D. Lingampalle; Durrani, A.; D., Ayesha. An enviornmentally benign one-pot synthesis of 3-aryl-furo[3,2-c]coumarins in PEG-400 an4q2d water. Pharma Chem., 2016, 8(1), 408-411.
[39]
Wagare, D.; Prashant, D.; Shaikh, M.; Farooqui, M.; Durrani, A. Highly efficient microwave-assisted one-pot synthesis of 4-aryl-2-aminothiazoles in aqueous medium. Environ. Chem. Lett., 2016, 6(6), 405-409.
[http://dx.doi.org/10.1007/s10311-017-0619-1]
[40]
Lingaiah, N.; Jyothsna, D.P.; Rama, K.R.A.; Rajashaker, B. A facile and efficient synthesis of quinoxalines from phenacyl. Organic Chem. Curr.Res., 2014, S4, 1-5.
[http://dx.doi.org/10.4172/2161-0401.S4-001]
[41]
Sachin, B.W.; Ramesh, S.G.; Venkat, N.A. A Simple and efficient protocol for the synthesis of quinoxalines catalyzed by pyridine. Org. Commun., 2013, 6(1), 23-30.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy