Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Convolutional Neural Network-based Virtual Screening

Author(s): Wenying Shan, Xuanyi Li, Hequan Yao and Kejiang Lin*

Volume 28, Issue 10, 2021

Published on: 26 May, 2020

Page: [2033 - 2047] Pages: 15

DOI: 10.2174/0929867327666200526142958

Price: $65

Abstract

Virtual screening is an important means for lead compound discovery. The scoring function is the key to selecting hit compounds. Many scoring functions are currently available; however, there are no all-purpose scoring functions because different scoring functions tend to have conflicting results. Recently, neural networks, especially convolutional neural networks, have constantly been penetrating drug design and most CNN-based virtual screening methods are superior to traditional docking methods, such as Dock and AutoDock. CNNbased virtual screening is expected to improve the previous model of overreliance on computational chemical screening. Utilizing the powerful learning ability of neural networks provides us with a new method for evaluating compounds. We review the latest progress of CNN-based virtual screening and propose prospects.

Keywords: Deep learning, CNN-based virtual screening, scoring function, Dock, AutoDock, chemical screening.

[1]
Xu, Y.; Tong, X.; Sun, P.; Bi, L.; Lin, K. Virtual screening and biological evaluation of biofilm inhibitors on dual targets in quorum sensing system. Future Med. Chem., 2017, 9(17), 1983-1994.
[http://dx.doi.org/10.4155/fmc-2017-0127] [PMID: 29076756]
[2]
Zhi, Y.; Dai, Y.; Yang, J.; Tan, S.; Lin, D.; Lin, K. Lead compounds and key residues of ribosomal protein S1 in drug-resistant Mycobacterium tuberculosis. Bioorg. Chem., 2019, 82, 58-67.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.024] [PMID: 30268974]
[3]
Zhang, Z.; Wu, G.; Wang, C.; Jin, X.; Li, D.; Lin, K. Features of reversible P2Y12 receptor antagonists based on piperazinyl-glutamate-pyridines. Med. Chem. Res., 2016, 25(6), 1204-1215.
[http://dx.doi.org/10.1007/s00044-016-1557-3]
[4]
Huang, Z.-G.; Lin, K.-J.; Yin, H.-P.; Ye, B.-P.; Weng, X.-B.; You, Q.-D. Virtual screening and antibacterial activity of novel inhibitors targeting the DNA gyrase with new mechanism. Chem. J. Chin. Univ., 2013, 34(8), 1887-1893.
[http://dx.doi.org/10.7503/cjcu20130312]
[5]
Huang, L.; Huang, Z.; Bai, Z.; Xie, R.; Sun, L.; Lin, K. Development and strategies of VEGFR-2/KDR inhibitors. Future Med. Chem., 2012, 4(14), 1839-1852.
[http://dx.doi.org/10.4155/fmc.12.121] [PMID: 23043480]
[6]
Carpenter, K.A.; Cohen, D.S.; Jarrell, J.T.; Huang, X. Deep learning and virtual drug screening. Future Med. Chem., 2018, 10(21), 2557-2567.
[http://dx.doi.org/10.4155/fmc-2018-0314] [PMID: 30288997]
[7]
Li, Q.; Shah, S. Structure-based virtual screening. Methods Mol. Biol., 2017, 1558, 111-124.
[http://dx.doi.org/10.1007/978-1-4939-6783-4_5] [PMID: 28150235]
[8]
Muegge, I.; Martin, Y.C. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J. Med. Chem., 1999, 42(5), 791-804.
[http://dx.doi.org/10.1021/jm980536j] [PMID: 10072678]
[9]
Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol., 2000, 295(2), 337-356.
[http://dx.doi.org/10.1006/jmbi.1999.3371] [PMID: 10623530]
[10]
Zhou, H.; Skolnick, J. GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys. J., 2011, 101(8), 2043-2052.
[http://dx.doi.org/10.1016/j.bpj.2011.09.012] [PMID: 22004759]
[11]
Verdonk, M.L.; Ludlow, R.F.; Giangreco, I.; Rathi, P.C. Protein-ligand informatics force field. Protein-ligand informatics force field (PLIff): toward a fully knowledge driven “force field” for biomolecular interactions. J. Med. Chem., 2016, 59(14), 6891-6902.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00716] [PMID: 27353137]
[12]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Jr. Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[13]
Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V.; Mee, R.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des., 1997, 11(5), 425-445.
[http://dx.doi.org/10.1023/A:1007996124545] [PMID: 9385547]
[14]
Böhm, H.J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J. Comput. Aided Mol. Des., 1994, 8(3), 243-256.
[http://dx.doi.org/10.1007/BF00126743] [PMID: 7964925]
[15]
Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des., 2002, 16(1), 11-26.
[http://dx.doi.org/10.1023/A:1016357811882] [PMID: 12197663]
[16]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[17]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[18]
Zhong, Y.; Li, X.; Yao, H.; Lin, K. The characteristics of PD-L1 inhibitors, from peptides to small molecules. Molecules, 2019, 24(10), 1940.
[http://dx.doi.org/10.3390/molecules24101940] [PMID: 31137573]
[19]
Ma, L.; Zhang, Z.; Xue, X.; Wan, Y.; Ye, B.; Lin, K. A potent peptide as adiponectin receptor 1 agonist to against fibrosis. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 624-631.
[http://dx.doi.org/10.1080/14756366.2017.1284067] [PMID: 28260395]
[20]
Warren, G.L.; Andrews, C.W.; Capelli, A.M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Lindvall, M.; Nevins, N.; Semus, S.F.; Senger, S.; Tedesco, G.; Wall, I.D.; Woolven, J.M.; Peishoff, C.E.; Head, M.S. A critical assessment of docking programs and scoring functions. J. Med. Chem., 2006, 49(20), 5912-5931.
[http://dx.doi.org/10.1021/jm050362n] [PMID: 17004707]
[21]
Rifaioglu, A.S.; Atas, H.; Martin, M.J.; Cetin-Atalay, R.; Atalay, V.; Dogan, T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief. Bioinform., 2019, 20(5), 1878-1912.
[http://dx.doi.org/10.1093/bib/bby061] [PMID: 30084866]
[22]
Ashtawy, H.M.; Mahapatra, N.R. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinformatics, 2015, 16(Suppl. 6), S3.
[http://dx.doi.org/10.1186/1471-2105-16-S6-S3] [PMID: 25916860]
[23]
Jorissen, R.N.; Gilson, M.K. Virtual screening of molecular databases using a support vector machine. J. Chem. Inf. Model., 2005, 45(3), 549-561.
[http://dx.doi.org/10.1021/ci049641u] [PMID: 15921445]
[24]
Ballester, P.J.; Mitchell, J.B. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics, 2010, 26(9), 1169-1175.
[http://dx.doi.org/10.1093/bioinformatics/btq112] [PMID: 20236947]
[25]
Durrant, J.D.; McCammon, J.A. NNScore 2.0: a neural-network receptor-ligand scoring function. J. Chem. Inf. Model., 2011, 51(11), 2897-2903.
[http://dx.doi.org/10.1021/ci2003889] [PMID: 22017367]
[26]
Russell, S.J.; Norvig, P.; Davis, E. Artificial Intelligence: a Modern Approach, 3rd ed; Prentice Hall: Upper Saddle River, 2010, p. 18.
[27]
Simon, H.A. The Shape of Automation for Men and Management, 1st ed; Harper & Row: New York, 1965, p. 15.
[28]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[29]
LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. IEEE, 1998, 86(11), 2278-2324.
[http://dx.doi.org/10.1109/5.726791]
[30]
Skalic, M.; Martínez-Rosell, G.; Jiménez, J.; De Fabritiis, G. PlayMolecule BindScope: large scale CNN-based virtual screening on the web. Bioinformatics, 2019, 35(7), 1237-1238.
[http://dx.doi.org/10.1093/bioinformatics/bty758] [PMID: 30169549]
[31]
Imrie, F.; Bradley, A.R.; van der Schaar, M.; Deane, C.M. Protein family-specific models using deep neural networks and transfer learning improve virtual screening and highlight the need for more data. J. Chem. Inf. Model., 2018, 58(11), 2319-2330.
[http://dx.doi.org/10.1021/acs.jcim.8b00350] [PMID: 30273487]
[32]
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM, 2017, 60(6), 84-90.
[http://dx.doi.org/10.1145/3065386]
[33]
Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: a deep, convolutional neural network for bioactivity prediction in structure-based drug discovery, ArXiv, 2015. abs/1510.-0285
[34]
Xu, Y.; Pei, J.; Lai, L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model., 2017, 57(11), 2672-2685.
[http://dx.doi.org/10.1021/acs.jcim.7b00244] [PMID: 29019671]
[35]
Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33(19), 3036-3042.
[http://dx.doi.org/10.1093/bioinformatics/btx350] [PMID: 28575181]
[36]
Xu, Y.; Chen, P.; Lin, X.; Yao, H.; Lin, K. Discovery of CDK4 inhibitors by convolutional neural networks. Future Med. Chem., 2018, 11(3), 165-177.
[http://dx.doi.org/10.4155/fmc-2018-0478] [PMID: 30556417]
[37]
Xu, Y.; Yao, H.; Lin, K. An overview of neural networks for drug discovery and the inputs used. Expert Opin. Drug Discov., 2018, 13(12), 1091-1102.
[http://dx.doi.org/10.1080/17460441.2018.1547278] [PMID: 30449189]
[38]
Pereira, J.C.; Caffarena, E.R.; Dos Santos, C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model., 2016, 56(12), 2495-2506.
[http://dx.doi.org/10.1021/acs.jcim.6b00355] [PMID: 28024405]
[39]
Gonczarek, A.; Tomczak, J.M.; Zaręba, S.; Kaczmar, J.; Dąbrowski, P.; Walczak, M.J. Interaction prediction in structure-based virtual screening using deep learning. Comput. Biol. Med., 2018, 100, 253-258.
[http://dx.doi.org/10.1016/j.compbiomed.2017.09.007] [PMID: 28941550]
[40]
Tsubaki, M.; Tomii, K.; Sese, J. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 2019, 35(2), 309-318.
[http://dx.doi.org/10.1093/bioinformatics/bty535] [PMID: 29982330]
[41]
Armstrong, M.S.; Morris, G.M.; Finn, P.W.; Sharma, R.; Moretti, L.; Cooper, R.I.; Richards, W.G. ElectroShape: fast molecular similarity calculations incorporating shape, chirality and electrostatics. J. Comput. Aided Mol. Des., 2010, 24(9), 789-801.
[http://dx.doi.org/10.1007/s10822-010-9374-0] [PMID: 20614163]
[42]
Lang, P.T.; Brozell, S.R.; Mukherjee, S.; Pettersen, E.F.; Meng, E.C.; Thomas, V.; Rizzo, R.C.; Case, D.A.; James, T.L.; Kuntz, I.D. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA, 2009, 15(6), 1219-1230.
[http://dx.doi.org/10.1261/rna.1563609] [PMID: 19369428]
[43]
Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.; Wang, R. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics, 2015, 31(3), 405-412.
[http://dx.doi.org/10.1093/bioinformatics/btu626] [PMID: 25301850]
[44]
Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594.
[http://dx.doi.org/10.1021/jm300687e] [PMID: 22716043]
[45]
Rohrer, S.G.; Baumann, K. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data. J. Chem. Inf. Model., 2009, 49(2), 169-184.
[http://dx.doi.org/10.1021/ci8002649] [PMID: 19434821]
[46]
Dolinsky, T.J.; Nielsen, J.E.; McCammon, J.A.; Baker, N.A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res, 2004, (Web Server issue), W665-W667.
[http://dx.doi.org/10.1093/nar/gkh381] [PMID: 15215472]
[47]
Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904.
[http://dx.doi.org/10.1021/ci300604z] [PMID: 23379370 ]
[48]
Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D.R. Protein-ligand scoring with convolutional neural networks. J. Chem. Inf. Model., 2017, 57(4), 942-957.
[http://dx.doi.org/10.1021/acs.jcim.6b00740] [PMID: 28368587]
[49]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[50]
Deng, Z.; Chuaqui, C.; Singh, J. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J. Med. Chem., 2004, 47(2), 337-344.
[http://dx.doi.org/10.1021/jm030331x] [PMID: 14711306]
[51]
Pérez-Nueno, V.I.; Rabal, O.; Borrell, J.I.; Teixidó, J. APIF: a new interaction fingerprint based on atom pairs and its application to virtual screening. J. Chem. Inf. Model., 2009, 49(5), 1245-1260.
[http://dx.doi.org/10.1021/ci900043r] [PMID: 19364101]
[52]
Dunbar, J.B. Jr.; Smith, R.D.; Yang, C.Y.; Ung, P.M.; Lexa, K.W.; Khazanov, N.A.; Stuckey, J.A.; Wang, S.; Carlson, H.A. CSAR benchmark exercise of 2010: selection of the protein-ligand complexes. J. Chem. Inf. Model., 2011, 51(9), 2036-2046.
[http://dx.doi.org/10.1021/ci200082t] [PMID: 21728306]
[53]
Wang, R.; Fang, X.; Lu, Y.; Yang, C.Y.; Wang, S. The PDBbind database: methodologies and updates. J. Med. Chem., 2005, 48(12), 4111-4119.
[http://dx.doi.org/10.1021/jm048957q] [PMID: 15943484]
[54]
Riniker, S.; Landrum, G.A. Open-source platform to benchmark fingerprints for ligand-based virtual screening. J. Cheminform., 2013, 5(1), 26.
[http://dx.doi.org/10.1186/1758-2946-5-26] [PMID: 23721588]
[55]
Jiménez, J.; Škalič, M.; Martínez-Rosell, G.; De Fabritiis, G. KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model., 2018, 58(2), 287-296.
[http://dx.doi.org/10.1021/acs.jcim.7b00650] [PMID: 29309725]
[56]
Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics, 2018, 34(21), 3666-3674.
[http://dx.doi.org/10.1093/bioinformatics/bty374] [PMID: 29757353]
[57]
Hartshorn, M.J.; Verdonk, M.L.; Chessari, G.; Brewerton, S.C.; Mooij, W.T.; Mortenson, P.N.; Murray, C.W. Diverse, high-quality test set for the validation of protein-ligand docking performance. J. Med. Chem., 2007, 50(4), 726-741.
[http://dx.doi.org/10.1021/jm061277y] [PMID: 17300160]
[58]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: an open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[59]
Sunseri, J.; King, J.E.; Francoeur, P.G.; Koes, D.R. Convolutional neural network scoring and minimization in the D3R 2017 community challenge. J. Comput. Aided Mol. Des., 2019, 33(1), 19-34.
[http://dx.doi.org/10.1007/s10822-018-0133-y] [PMID: 29992528]
[60]
Gomes, J.; Ramsundar, B.; Feinberg, E.; Pande, V. Atomic convolutional networks for predicting protein-ligand binding affinity. ArXiv, 2017, 1703.10603.
[61]
Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys., 2011, 134(7), 074106.
[http://dx.doi.org/10.1063/1.3553717] [PMID: 21341827]
[62]
Behler, J.; Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 2007, 98(14), 146401.
[http://dx.doi.org/10.1103/PhysRevLett.98.146401] [PMID: 17501293]
[63]
Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; Wang, R. Forging the basis for developing protein-ligand interaction scoring functions. Acc. Chem. Res., 2017, 50(2), 302-309.
[http://dx.doi.org/10.1021/acs.accounts.6b00491] [PMID: 28182403]
[64]
Hochuli, J.; Helbling, A.; Skaist, T.; Ragoza, M.; Koes, D.R. Visualizing convolutional neural network protein-ligand scoring. J. Mol. Graph. Model., 2018, 84, 96-108.
[http://dx.doi.org/10.1016/j.jmgm.2018.06.005] [PMID: 29940506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy