Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Recent Advances in Herbal Nanomedicines for Cancer Treatment

Author(s): Deepak Pradhan, Prativa Biswasroy, Amita Sahu, Dipak K. Sahu, Goutam Ghosh and Goutam Rath*

Volume 14, Issue 3, 2021

Published on: 24 May, 2020

Page: [292 - 305] Pages: 14

DOI: 10.2174/1874467213666200525010624

Price: $65

Abstract

Cancer continues to be one of the deadliest diseases that adversely impacts the large population of the world. A stack of scientific documents reflects a huge number of potent plant-based anticancer drugs such as curcumin (CUR), podophyllotoxin, camptothecin (CPT), vincristine, vinblastine, paclitaxel (PTX), etc. that have been integrated into the modern practice of cancer treatment. The demand for natural products raises exponentially as they are generally considered to be safe, and devoid of critical toxic effects at the therapeutic dose when compared to their synthetic counterparts. Despite rising interest towards the potent phytoconstituents, formulation developer faces various challenges in drug development processes such as poor water solubility, low bioavailability, marginal permeability, and nonspecific drug delivery at the target site, etc. Further, adverse drug reaction and multidrug resistance are other critical issues that need to be addressed. Nanomedicines owing to their unique structural and functional attributes help to fix the above challenges for improved translational outcomes. This review summarises the prospects and challenges of a nanotechnology-based drug delivery approach for the delivery of plant-based anticancer drugs.

Keywords: Herbal anticancer drugs, nanocarriers, nanoemulsions, dendrimers, carbon nanotubes, liposomes, solid lipid nanoparticles, therapeutic outcomes.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Wang, Y.; Probin, V.; Zhou, D. Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy. Curr. Cancer Ther. Rev., 2006, 2(3), 271-279.
[http://dx.doi.org/10.2174/157339406777934717] [PMID: 19936034]
[3]
Shah, C.P.; Moreb, J.S. Cardiotoxicity due to targeted anticancer agents: A growing challenge. Ther. Adv. Cardiovasc. Dis., 2019, 13, 1753944719843435.
[http://dx.doi.org/10.1177/1753944719843435] [PMID: 30995890]
[4]
Manappallil, R.G.; Prasan, D.; Peringat, J.; Biju, I.K. Severe bone marrow suppression due to methotrexate toxicity following aceclofenac-induced acute kidney injury. BMJ Case Rep., 2018, 2018, bcr-2018-224722.
[http://dx.doi.org/10.1136/bcr-2018-224722] [PMID: 29871962]
[5]
Heidari-Soreshjani, S.; Asadi-Samani, M.; Yang, Q.; Saeedi-Boroujeni, A. Phytotherapy of nephrotoxicity-induced by cancer drugs: an updated review. J. Nephropathol., 2017, 6(3), 254-263.
[http://dx.doi.org/10.15171/jnp.2017.41] [PMID: 28975109]
[6]
Sun, J.; Ren, Z.; Sun, X.; Hou, H.; Li, K.; Ge, Q. Efficacy and safety comparison of chemotherapies for advanced gastric cancer: A network meta-analysis. Oncotarget, 2017, 8(24), 39673-39682.
[http://dx.doi.org/10.18632/oncotarget.17784] [PMID: 28562333]
[7]
Tewari, D.; Rawat, P.; Singh, P.K. Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem. Toxicol., 2019, 123, 522-535.
[http://dx.doi.org/10.1016/j.fct.2018.11.041] [PMID: 30471312]
[8]
Khan, T.; Gurav, P. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-cancer Drugs. Front. Pharmacol., 2018, 8, 1002.
[http://dx.doi.org/10.3389/fphar.2017.01002] [PMID: 29479316]
[9]
Yang, H.; Huang, S.; Wei, Y.; Cao, S.; Pi, C.; Feng, T.; Liang, J.; Zhao, L.; Ren, G. Curcumin ehances the anticancer effect Of 5-fluorouracil against gastric cancer through down-regulation of COX-2 and NF- κB signaling pathways. J. Cancer, 2017, 8(18), 3697-3706.
[http://dx.doi.org/10.7150/jca.20196] [PMID: 29151957]
[10]
Redondo-Blanco, S.; Fernández, J.; Gutiérrez-Del-Río, I.; Villar, C.J.; Lombó, F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front. Pharmacol., 2017, 8, 109.
[http://dx.doi.org/10.3389/fphar.2017.00109] [PMID: 28352231]
[11]
Huang, K-S.; Yang, C-H.; Wang, Y-C.; Wang, W-T.; Lu, Y-Y. Microfluidic Synthesis of Vinblastine-Loaded Multifunctional Particles for Magnetically Responsive Controlled Drug Release. Pharmaceutics, 2019, 11(5), 212.
[http://dx.doi.org/10.3390/pharmaceutics11050212] [PMID: 31058849]
[12]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[13]
Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv., 2018, 36(2), 506-520.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[14]
Henning, R.J.; Harbison, R.D. Cardio-oncology: Cardiovascular complications of cancer therapy. Future Cardiol., 2017, 13(4), 379-396.
[http://dx.doi.org/10.2217/fca-2016-0081] [PMID: 28660778]
[15]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3, 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[16]
Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. Pegylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev, 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[17]
Shah, V.M.; Nguyen, D.X.; Alfatease, A.; Bracha, S.; Alani, A.W.G. Characterization of pegylated and non-pegylated liposomal formulation for the delivery of hypoxia activated vinblastine-N-oxide for the treatment of solid tumors. J. Control. Release, 2017, 253, 37-45.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.022] [PMID: 28302582]
[18]
Li, S.; Huang, S.; Peng, S-B. Overexpression of G protein-coupled receptors in cancer cells: involvement in tumor progression. Int. J. Oncol., 2005, 27(5), 1329-1339.
[http://dx.doi.org/10.3892/ijo.27.5.1329] [PMID: 16211229]
[19]
Cheung, A.; Bax, H.J.; Josephs, D.H.; Ilieva, K.M.; Pellizzari, G.; Opzoomer, J.; Bloomfield, J.; Fittall, M.; Grigoriadis, A.; Figini, M.; Canevari, S.; Spicer, J.F.; Tutt, A.N.; Karagiannis, S.N. Targeting folate receptor alpha for cancer treatment. Oncotarget, 2016, 7(32), 52553-52574.
[http://dx.doi.org/10.18632/oncotarget.9651] [PMID: 27248175]
[20]
Moudi, M.; Go, R.; Yien, C.Y.S.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med., 2013, 4(11), 1231-1235.
[PMID: 24404355]
[21]
Zu, Y.; Zhang, Y.; Zhao, X.; Zhang, Q.; Liu, Y.; Jiang, R. Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folate-conjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). Int. J. Nanomedicine, 2009, 4, 321-333.
[http://dx.doi.org/10.2147/IJN.S8501] [PMID: 20054435]
[22]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[23]
Kruger, C.A.; Abrahamse, H. Utilisation of targeted nanoparticle photosensitiser drug delivery systems for the enhancement of photodynamic therapy. Molecules, 2018, 23(10), E2628.
[http://dx.doi.org/10.3390/molecules23102628] [PMID: 30322132]
[24]
Kim, H-J.; Maiti, P.; Barrientos, A. Mitochondrial ribosomes in cancer. Semin. Cancer Biol., 2017, 47, 67-81.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.004] [PMID: 28445780]
[25]
Dewanjee, S.; Dua, T.K.; Bhattacharjee, N.; Das, A.; Gangopadhyay, M.; Khanra, R.; Joardar, S.; Riaz, M.; Feo, V.; Zia-Ul-Haq, M. Natural products as alternative choices for P-glycoprotein (P-gp) inhibition. Molecules, 2017, 22(6), E871.
[http://dx.doi.org/10.3390/molecules22060871] [PMID: 28587082]
[26]
Chikaura, H.; Nakashima, Y.; Fujiwara, Y.; Komohara, Y.; Takeya, M.; Nakanishi, Y. Effect of particle size on biological response by human monocyte-derived macrophages. Biosurface and Biotribology, 2016, 2(1), 18-25.
[http://dx.doi.org/10.1016/j.bsbt.2016.02.003]
[27]
Jaiswal, M.; Dudhe, R.; Sharma, P. K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 2015, 5(2), 123-127.
[28]
Wooster, T.J.; Golding, M.; Sanguansri, P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 2008, 24(22), 12758-12765.
[http://dx.doi.org/10.1021/la801685v] [PMID: 18850732]
[29]
Chrastina, A.; Baron, V.T.; Abedinpour, P.; Rondeau, G.; Welsh, J.; Borgström, P. Plumbagin-Loaded Nanoemulsion Drug Delivery Formulation and Evaluation of Antiproliferative Effect on Prostate Cancer Cells. BioMed Res. Int., 2018, 2018, 9035452.
[http://dx.doi.org/10.1155/2018/9035452] [PMID: 30534567]
[30]
Pastorekova, S.; Gillies, R.J. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev., 2019, 38(1-2), 65-77.
[http://dx.doi.org/10.1007/s10555-019-09799-0] [PMID: 31076951]
[31]
Raza, M.; Bharti, H.; Singal, A.; Nag, A.; Ghosh, P.C. Long circulatory liposomal maduramicin inhibits the growth of Plasmodium falciparum blood stages in culture and cures murine models of experimental malaria. Nanoscale, 2018, 10(28), 13773-13791.
[http://dx.doi.org/10.1039/C8NR02442A] [PMID: 29995025]
[32]
Sánchez-López, E.; Guerra, M.; Dias-Ferreira, J.; Lopez-Machado, A.; Ettcheto, M.; Cano, A.; Espina, M.; Camins, A.; Garcia, M.L.; Souto, E.B. Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials (Basel), 2019, 9(6), 821.
[http://dx.doi.org/10.3390/nano9060821] [PMID: 31159219]
[33]
Kim, J-E.; Park, Y-J. High paclitaxel-loaded and tumor cell-targeting hyaluronan-coated nanoemulsions. Colloids Surf. B Biointerfaces, 2017, 150, 362-372.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.050] [PMID: 27823852]
[34]
Zheng, N.; Gao, Y.; Ji, H.; Wu, L.; Qi, X.; Liu, X.; Tang, J.; Vitamin, E. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer. J. Drug Target., 2016, 24(7), 663-669.
[http://dx.doi.org/10.3109/1061186X.2015.1135335] [PMID: 26710274]
[35]
Yin, Y-M.; Cui, F-D.; Mu, C-F.; Choi, M-K.; Kim, J.S.; Chung, S-J.; Shim, C-K.; Kim, D-D. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J. Control. Release, 2009, 140(2), 86-94.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.015] [PMID: 19709639]
[36]
Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; Kunnumakkara, A.B. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int. J. Mol. Sci., 2019, 20(17), E4101.
[http://dx.doi.org/10.3390/ijms20174101] [PMID: 31443458]
[37]
Chen, B-H.; Huang, R-F.S.; Wei, Y-J.; Stephen Inbaraj, B. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene. Int. J. Nanomedicine, 2015, 10, 2823-2846.
[http://dx.doi.org/10.2147/IJN.S79107]
[38]
Natesan, S.; Sugumaran, A.; Ponnusamy, C.; Thiagarajan, V.; Palanichamy, R.; Kandasamy, R. Chitosan stabilized camptothecin nanoemulsions: Development, evaluation and biodistribution in preclinical breast cancer animal mode. Int. J. Biol. Macromol., 2017, 104(Pt. B), 1846-1852.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.127] [PMID: 28545970]
[39]
Chang, H-B.; Chen, B-H. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. Int. J. Nanomedicine, 2015, 10, 5059-5080.
[http://dx.doi.org/10.2147/IJN.S87225] [PMID: 26345201]
[40]
Monge-Fuentes, V.; Muehlmann, L.A.; Longo, J.P.F.; Silva, J.R.; Fascineli, M.L.; de Souza, P.; Faria, F.; Degterev, I.A.; Rodriguez, A.; Carneiro, F.P.; Lucci, C.M.; Escobar, P.; Amorim, R.F.B.; Azevedo, R.B. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J. Photochem. Photobiol. B, 2017, 166, 301-310.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.002] [PMID: 28024281]
[41]
Chen, B-H.; Hsieh, C-H.; Tsai, S-Y.; Wang, C-Y.; Wang, C-C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci. Rep., 2020, 10(1), 5163.
[http://dx.doi.org/10.1038/s41598-020-62136-2] [PMID: 32198390]
[42]
Janaszewska, A.; Lazniewska, J.; Trzepiński, P.; Marcinkowska, M.; Klajnert-Maculewicz, B. Cytotoxicity of Dendrimers. Biomolecules, 2019, 9(8), E330.
[http://dx.doi.org/10.3390/biom9080330] [PMID: 31374911]
[43]
Thiagarajan, G.; Ray, A.; Malugin, A.; Ghandehari, H. PAMAM-camptothecin conjugate inhibits proliferation and induces nuclear fragmentation in colorectal carcinoma cells. Pharm. Res., 2010, 27(11), 2307-2316.
[http://dx.doi.org/10.1007/s11095-010-0179-6] [PMID: 20552256]
[44]
Narvekar, M.; Xue, H.Y.; Eoh, J.Y.; Wong, H.L. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech, 2014, 15(4), 822-833.
[http://dx.doi.org/10.1208/s12249-014-0107-x] [PMID: 24687241]
[45]
Svenson, S.; Chauhan, A.S. Dendrimers for enhanced drug solubilization. Nanomedicine (Lond.), 2008, 3(5), 679-702.
[http://dx.doi.org/10.2217/17435889.3.5.679] [PMID: 18817470]
[46]
Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol., 2017, 8, 261.
[http://dx.doi.org/10.3389/fphar.2017.00261] [PMID: 28559844]
[47]
Shadrack, D.M.; Swai, H.S.; Munissi, J.J.E.; Mubofu, E.B.; Nyandoro, S.S. Polyamidoamine dendrimers for enhanced solubility of small molecules and other desirable properties for site specific delivery: Insights from experimental and computational studies. Molecules, 2018, 23(6), E1419.
[http://dx.doi.org/10.3390/molecules23061419] [PMID: 29895742]
[48]
Marcinkowska, M.; Stanczyk, M.; Janaszewska, A.; Sobierajska, E.; Chworos, A.; Klajnert-Maculewicz, B. Multicomponent conjugates of anticancer drugs and monoclonal antibody with PAMAM dendrimers to increase efficacy of HER-2 positive breast cancer therapy. Pharm. Res., 2019, 36(11), 154.
[http://dx.doi.org/10.1007/s11095-019-2683-7] [PMID: 31482205]
[49]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[50]
Chen, B.; Le, W.; Wang, Y.; Li, Z.; Wang, D.; Ren, L.; Lin, L.; Cui, S.; Hu, J.J.; Hu, Y.; Yang, P.; Ewing, R.C.; Shi, D.; Cui, Z. Targeting negative surface charges of cancer cells by multifunctional nanoprobes. Theranostics, 2016, 6(11), 1887-1898.
[http://dx.doi.org/10.7150/thno.16358] [PMID: 27570558]
[51]
Jevprasesphant, R.; Penny, J.; Attwood, D.; McKeown, N.B.; D’Emanuele, A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res., 2003, 20(10), 1543-1550.
[http://dx.doi.org/10.1023/A:1026166729873] [PMID: 14620505]
[52]
Fox, M.E.; Guillaudeu, S.; Fréchet, J.M.J.; Jerger, K.; Macaraeg, N.; Szoka, F.C. Synthesis and in vivo antitumor efficacy of PEGylated poly(l-lysine) dendrimer-camptothecin conjugates. Mol. Pharm., 2009, 6(5), 1562-1572.
[http://dx.doi.org/10.1021/mp9001206] [PMID: 19588994]
[53]
Mignani, S.; Rodrigues, J.; Tomas, H.; Zablocka, M.; Shi, X.; Caminade, A-M.; Majoral, J-P. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem. Soc. Rev., 2018, 47(2), 514-532.
[http://dx.doi.org/10.1039/C7CS00550D] [PMID: 29154385]
[54]
Zhou, Y.; Li, J.; Lu, F.; Deng, J.; Zhang, J.; Fang, P.; Peng, X.; Zhou, S-F. A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells. Drug Des. Devel. Ther., 2015, 9, 2635-2645.
[http://dx.doi.org/10.2147/DDDT.S77105] [PMID: 25999697]
[55]
Venkataraman, A.; Amadi, E.V.; Chen, Y.; Papadopoulos, C. Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett., 2019, 14(1), 220.
[http://dx.doi.org/10.1186/s11671-019-3046-3] [PMID: 31263975]
[56]
Patel, K.D.; Singh, R.K.; Kim, H-W. Carbon-Based Nanomaterials as an Emerging Platform for Theranostics. Mater. Horiz., 2019, 6(3), 434-469.
[http://dx.doi.org/10.1039/C8MH00966J]
[57]
Menezes, B.R.C.; Rodrigues, K.F.; Fonseca, B.C.D.S.; Ribas, R.G.; Montanheiro, T.L.D.A.; Thim, G.P. Recent advances in the use of carbon nanotubes as smart biomaterials. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(9), 1343-1360.
[http://dx.doi.org/10.1039/C8TB02419G] [PMID: 32255006]
[58]
Jogi, H.; Maheshwari, R.; Raval, N.; Kuche, K.; Tambe, V.; Mak, K-K.; Pichika, M.R.; Tekade, R.K. Carbon nanotubes in the delivery of anticancer herbal drugs. Nanomedicine (Lond.), 2018, 13(10), 1187-1220.
[http://dx.doi.org/10.2217/nnm-2017-0397] [PMID: 29905493]
[59]
Kumar, P.; Singh, A.K.; Raj, V.; Rai, A.; Keshari, A.K.; Kumar, D.; Maity, B.; Prakash, A.; Maiti, S.; Saha, S. Poly(lactic-co-glycolic acid)-loaded nanoparticles of betulinic acid for improved treatment of hepatic cancer: Characterization, in vitro and in vivo evaluations. Int. J. Nanomedicine, 2018, 13, 975-990.
[http://dx.doi.org/10.2147/IJN.S157391] [PMID: 29497292]
[60]
Tan, J.M.; Karthivashan, G.; Arulselvan, P.; Fakurazi, S.; Hussein, M.Z. Characterization and in vitro studies of the anticancer effect of oxidized carbon nanotubes functionalized with betulinic acid. Drug Des. Devel. Ther., 2014, 8, 2333-2343.
[http://dx.doi.org/10.2147/DDDT.S70650] [PMID: 25429205]
[61]
Kumar, M.; Sharma, G.; Misra, C.; Kumar, R.; Singh, B.; Katare, O.P.; Raza, K. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater. Sci. Eng. C, 2018, 89, 274-282.
[http://dx.doi.org/10.1016/j.msec.2018.03.033] [PMID: 29752099]
[62]
Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano, 2009, 3(9), 2740-2750.
[http://dx.doi.org/10.1021/nn9005686] [PMID: 19702292]
[63]
Rastogi, V.; Yadav, P.; Bhattacharya, S.S.; Mishra, A.K.; Verma, N.; Verma, A.; Pandit, J.K. Carbon nanotubes: An emerging drug carrier for targeting cancer cells. J. Drug Deliv., 2014, 2014, 670815.
[http://dx.doi.org/10.1155/2014/670815] [PMID: 24872894]
[64]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[65]
Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H. Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo. Drug Deliv., 2019, 26(1), 1017-1026.
[http://dx.doi.org/10.1080/10717544.2019.1672829] [PMID: 31578087]
[66]
Chen, Z.; Zhang, A.; Wang, X.; Zhu, J.; Fan, Y.; Yu, H.; Yang, Z. The advances of carbon nanotubes in cancer diagnostics and therapeutics. J. Nanomater., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/3418932]
[67]
Liu, Y.; Le, P.; Lim, S.J.; Ma, L.; Sarkar, S.; Han, Z.; Murphy, S.J.; Kosari, F.; Vasmatzis, G.; Cheville, J.C.; Smith, A.M. Enhanced mRNA FISH with compact quantum dots. Nat. Commun., 2018, 9(1), 4461.
[http://dx.doi.org/10.1038/s41467-018-06740-x] [PMID: 30367061]
[68]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[69]
Gupta, M.; Chauhan, D.N.; Sharma, V.; Chauhan, N.S. Novel Drug Delivery Systems for Phytoconstituents; CRC Press LLC: Milton, 2019.
[http://dx.doi.org/10.1201/9781351057639]
[70]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[71]
Wang, X.; Song, Y.; Su, Y.; Tian, Q.; Li, B.; Quan, J.; Deng, Y. Are pegylated liposomes better than conventional liposomes? a special case for vincristine. Drug Deliv., 2015, 1-9.
[http://dx.doi.org/10.3109/10717544.2015.1027015] [PMID: 26024386]
[72]
Leung, A.W.Y.; Amador, C.; Wang, L.C.; Mody, U.V.; Bally, M.B. What drives innovation: The canadian touch on liposomal therapeutics. Pharmaceutics, 2019, 11(3), 124.
[http://dx.doi.org/10.3390/pharmaceutics11030124] [PMID: 30884782]
[73]
De Leo, V.; Milano, F.; Mancini, E.; Comparelli, R.; Giotta, L.; Nacci, A.; Longobardi, F.; Garbetta, A.; Agostiano, A.; Catucci, L. Encapsulation of curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process. Molecules, 2018, 23(4), E739.
[http://dx.doi.org/10.3390/molecules23040739] [PMID: 29570636]
[74]
Feng, J.; Markwalter, C.E.; Tian, C.; Armstrong, M.; Prud’homme, R.K. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. J. Transl. Med., 2019, 17(1), 200.
[http://dx.doi.org/10.1186/s12967-019-1945-9] [PMID: 31200738]
[75]
Ravichandiran, V.; Masilamani, K.; Senthilnathan, B.; Maheshwaran, A.; Wong, T.W.; Roy, P. Quercetin-decorated curcumin liposome design for cancer therapy: In-vitro and in-vivo studies. Curr. Drug Deliv., 2017, 14(8), 1053-1059.
[http://dx.doi.org/10.2174/1567201813666160829100453] [PMID: 27572089]
[76]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[77]
Lin, C-H.; Al-Suwayeh, S.A.; Hung, C-F.; Chen, C-C.; Fang, J-Y. Camptothecin-loaded liposomes with α-melanocyte-stimulating hormone enhance cytotoxicity toward and cellular uptake by melanomas: An application of nanomedicine on natural product. J. Tradit. Complement. Med., 2013, 3(2), 102-109.
[http://dx.doi.org/10.4103/2225-4110.110423] [PMID: 24716164]
[78]
Adiwijaya, B.S.; Kim, J.; Lang, I.; Csõszi, T.; Cubillo, A.; Chen, J-S.; Wong, M.; Park, J.O.; Kim, J.S.; Rau, K.M.; Melichar, B.; Gallego, J.B.; Fitzgerald, J.; Belanger, B.; Molnar, I.; Ma, W.W. Population pharmacokinetics of liposomal irinotecan in patients with cancer. Clin. Pharmacol. Ther., 2017, 102(6), 997-1005.
[http://dx.doi.org/10.1002/cpt.720] [PMID: 28445610]
[79]
Eloy, J.O.; Petrilli, R.; Topan, J.F.; Antonio, H.M.R.; Barcellos, J.P.A.; Chesca, D.L.; Serafini, L.N.; Tiezzi, D.G.; Lee, R.J.; Marchetti, J.M. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf. B Biointerfaces, 2016, 141, 74-82.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.032] [PMID: 26836480]
[80]
Tang, J.; Wang, Q.; Yu, Q.; Qiu, Y.; Mei, L.; Wan, D.; Wang, X.; Li, M.; He, Q. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug delivery. Acta Biomater., 2019, 83, 379-389.
[http://dx.doi.org/10.1016/j.actbio.2018.11.002] [PMID: 30395963]
[81]
Childs, A.; Vesely, C.; Ensell, L.; Lowe, H.; Luong, T.V.; Caplin, M.E.; Toumpanakis, C.; Thirlwell, C.; Hartley, J.A.; Meyer, T. Expression of somatostatin receptors 2 and 5 in circulating tumour cells from patients with neuroendocrine tumours. Br. J. Cancer, 2016, 115(12), 1540-1547.
[http://dx.doi.org/10.1038/bjc.2016.377] [PMID: 27875519]
[82]
Mizutani, G.; Nakanishi, Y.; Watanabe, N.; Honma, T.; Obana, Y.; Seki, T.; Ohni, S.; Nemoto, N. Expression of somatostatin receptor (sstr) subtypes (sstr-1, 2a, 3, 4 and 5) in neuroendocrine tumors using real-time RT-PCR method and immunohistochemistry. Acta Histochem. Cytochem., 2012, 45(3), 167-176.
[http://dx.doi.org/10.1267/ahc.12006] [PMID: 22829710]
[83]
Paragliola, R.M.; Salvatori, R. Novel somatostatin receptor ligands therapies for acromegaly. Front. Endocrinol. (Lausanne), 2018, 9, 78.
[http://dx.doi.org/10.3389/fendo.2018.00078] [PMID: 29563895]
[84]
Wang, Q.; Zhu, R.; Wang, M.; Xing, S.; Li, L.; He, Y.; Cao, W.; Gao, D. Targeted therapy of octreotide-modified oleanolic acid liposomes to somatostatin receptor overexpressing tumor cells. Nanomedicine (Lond.), 2017, 12(8), 927-940.
[http://dx.doi.org/10.2217/nnm-2017-0009] [PMID: 28338414]
[85]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[86]
Nasrollahi, Z.; Mohammadi, S.R.; Mollarazi, E.; Yadegari, M.H.; Hassan, Z.M.; Talaei, F.; Dinarvand, R.; Akbari, H.; Atyabi, F. Functionalized nanoscale β-1,3-glucan to improve Her2+ breast cancer therapy: In vitro and in vivo study. J. Control. Release, 2015, 202, 49-56.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.014] [PMID: 25597638]
[87]
Jain, A.; Kesharwani, P.; Garg, N.K.; Jain, A.; Jain, S.A.; Jain, A.K.; Nirbhavane, P.; Ghanghoria, R.; Tyagi, R.K.; Katare, O.P. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf. B Biointerfaces, 2015, 134, 47-58.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.027] [PMID: 26142628]
[88]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[89]
Aburahma, M.H.; Badr-Eldin, S.M. Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin. Drug Deliv., 2014, 11(12), 1865-1883.
[http://dx.doi.org/10.1517/17425247.2014.935335] [PMID: 25152197]
[90]
Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release, 2017, 264, 306-332.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[91]
Naguib, Y.W.; Rodriguez, B.L.; Li, X.; Hursting, S.D.; Williams, R.O., III; Cui, Z. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: in vitro and in vivo evaluation. Mol. Pharm., 2014, 11(4), 1239-1249.
[http://dx.doi.org/10.1021/mp4006968] [PMID: 24621456]
[92]
Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 2019, 9(3), E474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[93]
Ma, P.; Mumper, R.J. Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol., 2013, 4(2), 1000164.
[http://dx.doi.org/10.4172/2157-7439.1000164] [PMID: 24163786]
[94]
Wang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; Yang, Q.; Chen, C. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules, 2018, 23(7), E1578.
[http://dx.doi.org/10.3390/molecules23071578] [PMID: 29966245]
[95]
Madan, J.; Pandey, R.S.; Jain, V.; Katare, O.P.; Chandra, R.; Katyal, A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine (Lond.), 2013, 9(4), 492-503.
[http://dx.doi.org/10.1016/j.nano.2012.10.003] [PMID: 23117045]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy