Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Green Synthesis of Silver, Copper and Gold Nanoparticles Using Terminalia arjuna Bark and their Effect on Seed Germination

Author(s): Rama Sharma* and Hariom Gupta

Volume 11, Issue 2, 2021

Published on: 21 May, 2020

Page: [243 - 247] Pages: 5

DOI: 10.2174/2210681210999200521131404

Price: $65

Abstract

Background: Terminalia arjuna has many biological applications including synthesis of metal nanoparticles, which have no hazardous effect on the environment. We have demonstrated that metal nanoparticles synthesized using Terminalia arjuna bark can be used to enhance the germination of seeds.

Methods: To evaluate the effect on germination, we treated Vigna unguiculata (black-eyed peas) seeds with copper, silver and gold nanoparticles synthesized by Terminalia arjuna bark. The synthesized metal nanoparticles were characterized by UV-spectroscopy and their size was confirmed by diffraction light scattering technique.

Results: After incubation of 48 hours, the effects were observed. It was observed that Vigna unguiculata (black-eyed peas) seed showed 30% germination in silver nanoparticles solution and 70% in copper nanoparticles, whereas 0% germination was observed in gold nanoparticles.

Conclusion: The results obtained in the study show that nanobiotechnology can be applied in agriculture to boost the production of crops.

Keywords: Terminalia arjuna, phytochemical analysis, silver nanoparticles, copper nanoparticles, gold nanoparticles, seed germination.

Graphical Abstract
[1]
Ahmed, S. Annu; Ikram, S.; Yudha S, S. Biosynthesis of gold nanoparticles: A green approach. J. Photochem. Photobiol. B, 2016, 161, 141-153.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.04.034] [PMID: 27236049]
[2]
Antony, J.J.; Sivalingam, P.; Chen, B. Toxicological effects of silver nanoparticles. Environ. Toxicol. Pharmacol., 2015, 40(3), 729-732.
[http://dx.doi.org/10.1016/j.etap.2015.09.003] [PMID: 26425943]
[3]
Shanmuganathan, R. MubarakAli, D.; Prabakar, D.; Muthukumar, H.; Thajuddin, N.; Kumar, S.S.; Pugazhendhi, A. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: Green approach. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10362-10370.
[http://dx.doi.org/10.1007/s11356-017-9367-9] [PMID: 28600792]
[4]
Singh, P.; Singh, H.; Kim, Y.J.; Mathiyalagan, R.; Wang, C.; Yang, D.C. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme Microb. Technol., 2016, 86, 75-83.
[http://dx.doi.org/10.1016/j.enzmictec.2016.02.005] [PMID: 26992796]
[5]
Alharbi, K.K.; Al-Sheikh, Y.A. Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J. Biol. Sci., 2014, 21(2), 109-117.
[http://dx.doi.org/10.1016/j.sjbs.2013.11.001] [PMID: 24600302]
[6]
Seo, J.M.; Kim, E.B.; Hyun, M.S.; Kim, B.B.; Park, T.J. Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf. B Biointerfaces, 2015, 135, 27-34.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.022] [PMID: 26241913]
[7]
Sherwani, M.A.; Tufail, S.; Khan, A.A.; Owais, M. Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: Potential for treatment of C. albicans infection in BALB/c mice. PLoS One, 2015, 10(7), e0131684.
[http://dx.doi.org/10.1371/journal.pone.0131684] [PMID: 26148012]
[8]
Benelli, G.; Lukehart, C.M. Special Issue: Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J. Cluster Sci., 2017, 28(1), 1-2.
[http://dx.doi.org/10.1007/s10876-017-1165-5]
[9]
Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z.; Zeiri, Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed., 2014, 9, 4007-4021.
[PMID: 25187704]
[10]
Shankar, P.D.; Shobana, S.; Karuppusamy, I.; Pugazhendhi, A.; Ramkumar, V.S.; Arvindnarayan, S.; Kumar, G. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme Microb. Technol., 2016, 95, 28-44.
[http://dx.doi.org/10.1016/j.enzmictec.2016.10.015] [PMID: 27866624]
[11]
Vijayan, S.R.; Santhiyagu, P.; Ramasamy, R.; Arivalagan, P.; Kumar, G.; Ethiraj, K.; Ramaswamy, B.R. Seaweeds: A resource for marine bionanotechnology. Enzyme Microb. Technol., 2016, 95, 45-57.
[http://dx.doi.org/10.1016/j.enzmictec.2016.06.009] [PMID: 27866626]
[12]
Chauhan, A.; Zubair, S.; Tufail, S.; Sherwani, A.; Sajid, M.; Raman, S.C.; Azam, A.; Owais, M. Fungus-mediated biological synthesis of gold nanoparticles: Potential in detection of liver cancer. Int. J. Nanomed., 2011, 6, 2305-2319.
[PMID: 22072868]
[13]
Oves, M.; Khan, M.S.; Zaidi, A.; Ahmed, A.S.; Ahmed, F.; Ahmad, E.; Sherwani, A.; Owais, M.; Azam, A. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One, 2013, 8(3), e59140.
[http://dx.doi.org/10.1371/journal.pone.0059140] [PMID: 23555625]
[14]
Saratale, G.D.; Saratale, R.G.; Benelli, G.; Kumar, G.; Pugazhendhi, A.; Kim, D-S.; Shin, H-S. Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J. Cluster Sci., 2017, 28(3), 1709-1727.
[http://dx.doi.org/10.1007/s10876-017-1179-z]
[15]
Ramkumar, V.S.; Pugazhendhi, A.; Gopalakrishnan, K.; Sivagurunathan, P.; Saratale, G.D.; Dung, T.N.B.; Kannapiran, E. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol. Rep. (Amst.), 2017, 14, 1-7.
[http://dx.doi.org/10.1016/j.btre.2017.02.001] [PMID: 28459002]
[16]
Mittal, A.K.; Kaler, A.; Mulay, A.V.; Banerjee, U.C. Synthesis of gold nanoparticles using whole cells of Geotrichum candidum. J. Nanoparticles, 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/150414]
[17]
Sharma, R.; Singh, J.; Bhatia, A.K. Azadirachta indica and Brassica oleracea mediated green synthesis vs. chemical synthesis of silver nanoparticles and their antibacterial properties. Nanosci. Nanotechnol. Asia, 2019, 9(3), 393-397.
[http://dx.doi.org/10.2174/1573413714666180716154648]
[18]
Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007, 18(10), 105104.
[http://dx.doi.org/10.1088/0957-4484/18/10/105104]
[19]
Lee, X.K.; Shameli, K.; Miyake, M.; Kuwano, N.; Bt Ahmad Khairudin, N.B.; Bt Mohamad, S.E.; Yew, Y.P. Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J. Nanomater., 2016, 2016, 1-8.
[20]
Gopinath, K.; Gowri, S.; Karthika, V.; Arumugam, A. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J. Nanostructure Chem., 2014, 4(3), 115.
[http://dx.doi.org/10.1007/s40097-014-0115-0]
[21]
Kumar, B.; Smita, K.; Cumbal, L. Phytosynthesis of gold nanoparticles using Andean Aji (Capsicum baccatum L.). Cogent Chem., 2015, 1(1), 1120982.
[http://dx.doi.org/10.1080/23312009.2015.1120982]
[22]
Smitha, S.L.; Philip, D.; Gopchandran, K.G. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 74(3), 735-739.
[http://dx.doi.org/10.1016/j.saa.2009.08.007] [PMID: 19744880]
[23]
Kumar, K.M.; Mandal, B.K.; Sinha, M.; Krishnakumar, V. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 86, 490-494.
[http://dx.doi.org/10.1016/j.saa.2011.11.001] [PMID: 22130557]
[24]
Amalraj, A.; Gopi, S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med., 2016, 7(1), 65-78.
[http://dx.doi.org/10.1016/j.jtcme.2016.02.003] [PMID: 28053890]
[25]
Sivalokanathan, S.; Ilayaraja, M.; Balasubramanian, M.P. Antioxidant activity of Terminalia arjuna bark extract on N-nitrosodiethylamine induced hepatocellular carcinoma in rats. Mol. Cell. Biochem., 2006, 281(1-2), 87-93.
[http://dx.doi.org/10.1007/s11010-006-0433-8] [PMID: 16328960]
[26]
Chatha, S.A.S.; Hussain, A.I.; Rehan, A.; Mudasir, M.; Nosheen, A. others. Bioactive components and antioxidant properties of Terminalia arjuna L. extracts. J. Food Process. Technol., 2014, 5(2), 1-5.
[27]
Soni, N.; Singh, D.K.; Singh, V.K. Inhibition kinetics of acetylcholinesterase and phosphatases by the active constituents of Terminalia arjuna and Tamarindus indica in the cerebral ganglion of Lymnaea acuminata. Pharmacogn. J., 2017, 9(2), 148-156.
[http://dx.doi.org/10.5530/pj.2017.2.25]
[28]
Harborne, A. J. Phytochemical methods a guide to modern techniques of plant analysis; springer science & business media 1998.
[29]
Farnsworth, N.R. Biological and phytochemical screening of plants. J. Pharm. Sci., 1966, 55(3), 225-276.
[http://dx.doi.org/10.1002/jps.2600550302] [PMID: 5335471]
[30]
Rangari, V.D. Pharmacognosy and Phytochemistry; Career Publ. Nasik, Ed , 2002; 1, p. 132.
[31]
Suganthy, N.; Sri Ramkumar, V.; Pugazhendhi, A.; Benelli, G.; Archunan, G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10418-10433.
[http://dx.doi.org/10.1007/s11356-017-9789-4] [PMID: 28762049]
[32]
Kikui, S.; Sasaki, T.; Maekawa, M.; Miyao, A.; Hirochika, H.; Matsumoto, H.; Yamamoto, Y. Physiological and genetic analyses of aluminium tolerance in rice, focusing on root growth during germination. J. Inorg. Biochem., 2005, 99(9), 1837-1844.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.06.031] [PMID: 16095709]
[33]
Taleb, A.; Petit, C.; Pileni, M.P. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J. Phys. Chem. B, 1998, 102(12), 2214-2220.
[http://dx.doi.org/10.1021/jp972807s]
[34]
Noginov, M.A.; Zhu, G.; Bahoura, M.; Adegoke, J.; Small, C.E.; Ritzo, B.A.; Drachev, V.P.; Shalaev, V.M. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett., 2006, 31(20), 3022-3024.
[http://dx.doi.org/10.1364/OL.31.003022] [PMID: 17001387]
[35]
Link, S.; El-Sayed, M.A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 2003, 54(1), 331-366.
[http://dx.doi.org/10.1146/annurev.physchem.54.011002.103759] [PMID: 12626731]
[36]
Kreibig, U.; Vollmer, M. Theoretical considerations. Optical Properties of Metal Clusters; Springer, 1995, pp. 13-201.
[http://dx.doi.org/10.1007/978-3-662-09109-8_2]
[37]
Kirthika, P.; Dheeba, B.; Sivakumar, R.; Abdulla, S.S. Plant mediated synthesis and characterization of silver nanoparticles. Int. J. Pharm. Pharm. Sci., 2014, 6(8), 304-310.
[38]
Creighton, J.A.; Eadon, D.G. Ultraviolet--visible absorption spectra of the colloidal metallic elements. J. Chem. Soc., Faraday Trans., 1991, 87(24), 3881-3891.
[http://dx.doi.org/10.1039/FT9918703881]
[39]
Martinez, J.C.; Chequer, N.A.; González, J.L.; Cordova, T. Alternative methodology for gold nanoparticles diameter characterization using PCA technique and UV-VIS spectrophotometry. Nanosci. Nanotechnol., 2012, 2(6), 184-189.
[http://dx.doi.org/10.5923/j.nn.20120206.06]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy