Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis and Characterization of New Zinc Phthalocyanine - Dodecenyl Succinic Anhydride Benzoic Groups

Author(s): Hussein Ali Al-Bahrani, Mohanad Mousa Kareem, Abdul Amir Kadhum* and Nour A. Alrazzak

Volume 17, Issue 6, 2020

Page: [488 - 495] Pages: 8

DOI: 10.2174/1570179417666200519091950

Price: $65

Abstract

Background: The phthalocyanines a series of compounds involves four iso-indole units linked by aza nitrogen atoms bonded with metal atoms that are normally located in the center a phthalocyanines ring. Some of the central metal-phthalocyanines can be excited by ultraviolet light and emit a fluorescence in far-red region.

Objective: To synthesize a derivative of phthalocyanines namely 4,4',4' '-tri-(dodecenyl succinic anhydride)- 4' ' '-(5-amino salicylic acid) zinc phthalocyanine with a zinc central metal.

Materials and Methods: The reaction of 4- nitro Phthalonitrile and 4- amino Phthalonitrile with ZnCl2 in the presence of dimethyl amino ethanol afforded 4,4',4' '-triamino-4' ' '-nitro zinc phthalocyanine. This product reacted with 5-amino salicylic acid to yield tetra-(5-amino salicylic acid) zinc phthalocyanine. A dodecenyl succinic anhydride was added on the amine group of benzoic rings to afford 4,4',4' '-tri-(dodecenyl succinic anhydride)-4' ' '-(5-amino salicylic acid) zinc phthalocyanine(I), the target compound.

Results and Discussion: Compound I is successfully synthesized with a yield of 72% from tetra-(5-amino salicylic acid) zinc phthalocyanine with dodecenyl succinic anhydride.

Conclusion: The newly synthesized molecule of 4,4',4' '-tri-(dodecenyl succinic anhydride)-4' ' '-(5-amino salicylic acid) zinc phthalocyanine (I), tetra-(5-amino salicylic acid) zinc phthalocyanine(E) and 4,4',4' '- triamino-4' ' '-nitro zinc phthalocyanine (S). The reaction of 4- nitro Phthalonitrile and 4- amino and the structure of compound I is confirmed and its formation was proven.

Keywords: Zinc phthalocyanine, dodecenyl succinic anhydride, 5-amino salicylic acid, 4-nitro phthalonitrile, 4-amino phthalonitrile, dimethylaminoethanol.

« Previous
Graphical Abstract
[1]
Chakraborty, J.N. Dyeing with phthalocyanine dye, in Fundamentals and Practices in Colouration of Textiles, 2014.
[2]
Phindile, K.; Edith, A.; Tebello, N. Synthesis and photophysicochemical properties of zinc phthalocyanine derivatized with benzothiazole or carbazole photosensitizers. Polyhedron, 2013, 61, 119-125.
[http://dx.doi.org/10.1016/j.poly.2013.05.046]
[3]
Alkan, C.; Aras, L.; Gündüz, G. Synthesis, characterization, and electrical properties of diazophenylene bridged Co, Ni, Cu, Ce, and Er phthalocyanine polymers. J. Appl. Polym. Sci., 2007, 106, 378-385.
[http://dx.doi.org/10.1002/app.26461]
[4]
Kalkan, A.; Bayir, Z.A. Phthalocyanines with rigid carboxylic acid containing pendant arms. Polyhedron, 2006, 25, 39-42.
[http://dx.doi.org/10.1016/j.poly.2005.06.056]
[5]
Kuzmina, E.A.; Dubinina, T.V.; Tomilova, L.G. Recent advances in chemistry of phthalocyanines bearing electron-withdrawing halogen, nitro and N-substituted imide functional groups and prospects for their practical application. New J. Chem., 2019, 43, 9314-9327.
[http://dx.doi.org/10.1039/C9NJ01755K]
[6]
Tedesco, A.C.; Primo, F.L.; Beltrama, M. Phthalocyanines: Synthesis,Characterization and Biological Applications of Photodynamic Therapy (PDT), Nanobiotechnology, Magnetohyperthermia and Photodiagnosis(Theranostics). In: In: Module in Materials Science and Materials Engineering;; , 2016.
[7]
Ana, T.P.C. Gomes; Maria G.P.M.S. Neves; José A.S. Cavaleiro. cancer, photodynamic therapy and porphyrin-type derivatives. An. Acad. Bras. Cienc., 2018, 90(1), 993-1026.
[http://dx.doi.org/10.1590/0001-3765201820170811]
[8]
Tudor, D.; Nenu, I.; Filip, G.A.; Olteanu, D.; Cenariu, M.; Tabaran, F.; Ion, R.M.; Gligor, L.; Baldea, I. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy. PLoS One, 2017, 12(3)e0173241
[http://dx.doi.org/10.1371/journal.pone.0173241] [PMID: 28278159]
[9]
Derick, K.A.; Hayley, P.; Jason, S.; Marilena, L.; Alexander, J.; Mac, R. The intracellular redox environment modulates the cytotoxic efficacy of single and combination chemotherapy in breast cancer cells using photochemical internalization. RSC Advances, 2019, 9, 25861-25874.
[http://dx.doi.org/10.1039/C9RA04430B]
[10]
Evelyn, Y.X.; Roy, C.H.W.; Clarence, T.T.W.; Wing-Ping, F.; Dennis, K.P.N. Synthesis and biological evaluation of an epidermal growth factor receptor-targeted peptide conjugated phthalocyanine-based photosensitizer. RSC Advances, 2019, 9, 20652.
[http://dx.doi.org/10.1039/C9RA03911B]
[11]
Kuzyniak, W.; Schmidt, J.; Glac, W.; Berkholz, J.; Steinemann, G.; Hoffmann, B.; Ermilov, E.A.; Gürek, A.G.; Ahsen, V.; Nitzsche, B.; Höpfner, M. Novel zinc phthalocyanine as a promising photosensitizer for photodynamic treatment of esophageal cancer. Int. J. Oncol., 2017, 50(3), 953-963.
[http://dx.doi.org/10.3892/ijo.2017.3854] [PMID: 28098886]
[12]
Rak, J.; Pouckova, P.; Benes, J.; Vetvicka, D. Drug delivery systems for phthalocyanines for photodynamic therapy. Anticancer Res., 2019, 39(7), 3323-3339.
[http://dx.doi.org/10.21873/anticanres.13475] [PMID: 31262853]
[13]
Kulaç, D.; Bulut, M.; Altindal, A.; Özkaya, A.R.; Salih, B.; Bekaroglu, Ö. Synthesis and characterization of novel 4-nitro-2-(octyloxy)phenoxy substituted symmetrical and unsymmetrical Zn(II), Co(II) and Lu(III) phthalocyanines. Polyhedron, 2007, 26, 5432-5440.
[http://dx.doi.org/10.1016/j.poly.2007.08.015]
[14]
Cynthia, M.A.; Wesley, S.; Johan, E.V.L. Current status of phthalocyanines in the photodynamic therapy of cancer. J. Porphyr. Phthalocyanines, 2001, 5(2), 161-169.
[http://dx.doi.org/10.1002/jpp.324]
[15]
Dieter, W.; Günter, S.; Sergey, G.M.; Olga, N.S. Practical applications of phthalocyanines – from dyes and pigments to materials for optical electronic and photo-electronic devices. Macroheterocycles, 2012, 5(3), 191-202.
[http://dx.doi.org/10.6060/mhc2012.120990w]
[16]
Trevor, P.; Benoît, H.L.; Timothy, P.B. Assessing the potential of group 13 and 14 metal/metalloid phthalocyanines as hole transport layers in organic light emitting diodes. J. Appl. Phys., 2016, 119(14)145502
[http://dx.doi.org/10.1063/1.4945377]
[17]
Akdemir, N.; Erdem, G. Synthesis characterization of novel phthalocyanines containing (n-octyl) mercapto acetamid substituents. Synth. React. Inorg. Metal-Org Nano-Metal Chem, 2005, 35, 819-824.
[http://dx.doi.org/10.1080/15533170500360297]
[18]
Mohammed, H. A.; Kareem, M. M. Synthesis and characterization of new zinc-phthalocyanine with four dodecenyl-benzoic J. Babylon University/Pure and Applied Sciences, 2017, 25(2), 486-496.
[19]
Yiru, P.; Zhipeng, L.; Jinling, H.; Naisheng, Ch. Synthesis, separation and characterization of amphiphilic 2,10-di-sulfonato-18,26-di-phthalimidomethyl phthalocyanine zinc di-potassium salt by template reaction. Dyes Pigments, 2005, 67, 145-151.
[http://dx.doi.org/10.1016/j.dyepig.2004.10.001]
[20]
Glaser, M.; Peisert, H.; Adler, H.; Małgorzata, P.; Johannes, U.; Peter, N.; Michael, M.; Stefan, S.; Thomas, C. Transition-metal phthalocyanines on transition-metal oxides: iron and cobalt phthalocyanine on epitaxial mno and tiox films. J. Phys. Chem. C, 2015, 119(49), 27569-27579.
[http://dx.doi.org/10.1021/acs.jpcc.5b09612]
[21]
Maxence, U.; Maria-Eleni, R.; Mohammad, K.N.; Tomás, T. Phthalocyanines for dye-sensitized solar cells. Coord. Chem. Rev., 2019, 381, 1-64.
[http://dx.doi.org/10.1016/j.ccr.2018.10.007]
[22]
Harrath, K.; Hussain Talib, S.; Boughdiri, S. Theoretical design of metal-phthalocyanine dye-sensitized solar cells with improved efficiency. J. Mol. Model., 2018, 24(10), 279.
[http://dx.doi.org/10.1007/s00894-018-3821-6] [PMID: 30215152]
[23]
Sadik, C.; Sule, E.E.; Kasim, O.; Aysegul, U.O. Asymmetric phthalocyanine derivatives containing 4-carboxyphenyl substituents for dye-sensitized solar cells. Dyes Pigments, 2015, 113, 474-480.
[http://dx.doi.org/10.1016/j.dyepig.2014.09.018]
[24]
Valentin, R.; Luminita, W.; Alina, R.; Petrea, A.; Viorica, A. S. synthesis and characterization of some phthalic acid derivatives precursors for phthalocyanine chromogens Revista de Chimie –Bucharest- Original Edition, 2008, 59(9), 973-978.
[25]
Wright, J.D. Phthalocyanines. In:Encyclopedia of Materials: Science and Technology; K.H., Jürgen Buschow; Robert, W. Cahn; Patrick, Veyssière, Eds.; , 2001, Vol. 14, pp. 6987-6991.
[26]
Mantareva, V.; Gol, C.; Kussovski, V.; Durmuş, M.; Angelov, I. Impact of water-soluble zwitterionic Zn(II) phthalocyanines against pathogenic bacteria. Z. Natforsch. C J. Biosci., 2019, 74(7-8), 183-191.
[http://dx.doi.org/10.1515/znc-2018-0203] [PMID: 31194695]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy