Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Targeting the PI3K/AKT/mTOR Signaling Pathway in Primary Central Nervous System Lymphoma: Current Status and Future Prospects

Author(s): Xiaowei Zhang and Yuanbo Liu *

Volume 19, Issue 3, 2020

Page: [165 - 173] Pages: 9

DOI: 10.2174/1871527319666200517112252

Price: $65

Abstract

Primary Central Nervous System Lymphoma (PCNSL) is a rare invasive extranodal non- Hodgkin lymphoma, a vast majority of which is Diffuse Large B-Cell Lymphoma (DLBCL). Although high-dose methotrexate-based immunochemotherapy achieves a high remission rate, the risk of relapse and related death remains a crucial obstruction to long-term survival. Novel agents for the treatment of lymphatic malignancies have significantly broadened the horizons of therapeutic options for PCNSL. The PI3K/AKT/mTOR signaling pathway is one of the most important pathways for Bcell malignancy growth and survival. Novel therapies that target key components of this pathway have shown antitumor effects in many B-cell malignancies, including DLBCL. This review will discuss the aberrant status of the PI3K/AKT/mTOR signaling pathways in PCNSL and the application prospects of inhibitors in hopes of providing alternative clinical therapeutic strategies and improving prognosis.

Keywords: Primary central nervous system lymphoma, PI3K, AKT, mTOR, inhibitors, targeted therapy.

Graphical Abstract
[1]
Elias C, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011; 117(19): 5019-32.
[http://dx.doi.org/10.1182/blood-2011-01-293050] [PMID: 21300984]
[2]
Fraser E, Gruenberg K, Rubenstein JL. New approaches in primary central nervous system lymphoma. Linchuang Zhongliuxue Zazhi 2015; 4(1): 11.
[PMID: 25841718]
[3]
Cingolani A, Gastaldi R, Fassone L, et al. Epstein-Barr virus infection is predictive of CNS involvement in systemic AIDS-related non-Hodgkin’s lymphomas. J Clin Oncol 2000; 18(19): 3325-30.
[http://dx.doi.org/10.1200/JCO.2000.18.19.3325] [PMID: 11013271]
[4]
Camilleri-Broët S, Crinière E, Broët P, et al. A uniform activated B-cell-like immunophenotype might explain the poor prognosis of primary central nervous system lymphomas: analysis of 83 cases. Blood 2006; 107(1): 190-6.
[http://dx.doi.org/10.1182/blood-2005-03-1024] [PMID: 16150948]
[5]
Villano JL, Koshy M, Shaikh H, Dolecek TA, McCarthy BJ. Age, gender, and racial differences in incidence and survival in primary CNS lymphoma. Br J Cancer 2011; 105(9): 1414-8.
[http://dx.doi.org/10.1038/bjc.2011.357] [PMID: 21915121]
[6]
O’Neill BP, Decker PA, Tieu C, Cerhan JR. The changing incidence of primary central nervous system lymphoma is driven primarily by the changing incidence in young and middle-aged men and differs from time trends in systemic diffuse large B-cell non-Hodgkin’s lymphoma. Am J Hematol 2013; 88(12): 997-1000.
[http://dx.doi.org/10.1002/ajh.23551] [PMID: 23873804]
[7]
Chapuy B, Roemer MG, Stewart C, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2016; 127(7): 869-81.
[http://dx.doi.org/10.1182/blood-2015-10-673236] [PMID: 26702065]
[8]
Bruno A, Boisselier B, Labreche K, et al. Mutational analysis of primary central nervous system lymphoma. Oncotarget 2014; 5(13): 5065-75.
[http://dx.doi.org/10.18632/oncotarget.2080] [PMID: 24970810]
[9]
Takashima Y, Sasaki Y, Hayano A, et al. Target amplicon exome-sequencing identifies promising diagnosis and prognostic markers involved in RTK-RAS and PI3K-AKT signaling as central oncopathways in primary central nervous system lymphoma. Oncotarget 2018; 9(44): 27471-86.
[http://dx.doi.org/10.18632/oncotarget.25463] [PMID: 29937999]
[10]
Braggio E, Van Wier S, Ojha J, et al. Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas. Clin Cancer Res 2015; 21(17): 3986-94.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2116] [PMID: 25991819]
[11]
Todorovic Balint M, Jelicic J, Mihaljevic B, et al. Gene mutation profiles in primary diffuse large B cell lymphoma of central nervous system: next generation sequencing analyses. Int J Mol Sci 2016; 17(5): 683.
[http://dx.doi.org/10.3390/ijms17050683] [PMID: 27164089]
[12]
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274-93.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[13]
Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med 2016; 67(1): 11-28.
[http://dx.doi.org/10.1146/annurev-med-062913-051343] [PMID: 26473415]
[14]
Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13(2): 140-56.
[http://dx.doi.org/10.1038/nrd4204] [PMID: 24481312]
[15]
Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27(41): 5497-510.
[http://dx.doi.org/10.1038/onc.2008.245] [PMID: 18794884]
[16]
Ocana A, Vera-Badillo F, Al-Mubarak M, et al. Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One 2014; 9(4) e95219
[http://dx.doi.org/10.1371/journal.pone.0095219] [PMID: 24777052]
[17]
Sharma S, Mazumder AG, Rana AK, Patial V, Singh D. Spontaneous recurrent seizures mediated cardiac dysfunction via mTOR pathway upregulation: a putative target for SUDEP management. CNS Neurol Disord Drug Targets 2019; 18(7): 555-65.
[http://dx.doi.org/10.2174/1871527318666190801112027] [PMID: 31368880]
[18]
Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 1997; 22(7): 267-72.
[http://dx.doi.org/10.1016/S0968-0004(97)01061-X] [PMID: 9255069]
[19]
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15(1): 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[20]
Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene 2008; 27(41): 5486-96.
[http://dx.doi.org/10.1038/onc.2008.244] [PMID: 18794883]
[21]
Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304(5670): 554.
[http://dx.doi.org/10.1126/science.1096502] [PMID: 15016963]
[22]
Westin JR. Status of PI3K/Akt/mTOR pathway inhibitors in lymphoma. Clin Lymphoma Myeloma Leuk 2014; 14(5): 335-42.
[http://dx.doi.org/10.1016/j.clml.2014.01.007] [PMID: 24650973]
[23]
Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 2003; 3(4): 317-30.
[http://dx.doi.org/10.1038/nri1056] [PMID: 12669022]
[24]
Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 2004; 22(14): 2954-63.
[http://dx.doi.org/10.1200/JCO.2004.02.141] [PMID: 15254063]
[25]
Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011; 11(4): 289-301.
[http://dx.doi.org/10.1038/nrc3037] [PMID: 21430697]
[26]
Toker A, Marmiroli S. Signaling specificity in the Akt pathway in biology and disease. Adv Biol Regul 2014; 55: 28-38.
[http://dx.doi.org/10.1016/j.jbior.2014.04.001] [PMID: 24794538]
[27]
Cai SL, Tee AR, Short JD, et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 2006; 173(2): 279-89.
[http://dx.doi.org/10.1083/jcb.200507119] [PMID: 16636147]
[28]
Mavrakis KJ, Zhu H, Silva RLA, et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 2008; 22(16): 2178-88.
[http://dx.doi.org/10.1101/gad.1690808] [PMID: 18708578]
[29]
Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004; 18(16): 1926-45.
[http://dx.doi.org/10.1101/gad.1212704] [PMID: 15314020]
[30]
Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998; 12(4): 502-13.
[http://dx.doi.org/10.1101/gad.12.4.502] [PMID: 9472019]
[31]
Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6(11): 1122-8.
[http://dx.doi.org/10.1038/ncb1183] [PMID: 15467718]
[32]
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307(5712): 1098-101.
[http://dx.doi.org/10.1126/science.1106148] [PMID: 15718470]
[33]
Nitta N, Nakasu S, Shima A, Nozaki K. mTORC1 signaling in primary central nervous system lymphoma. Surg Neurol Int 2016; 7(Suppl. 17): S475-80.
[http://dx.doi.org/10.4103/2152-7806.185781] [PMID: 27512609]
[34]
Marosvári D, Nagy N, Kriston C, et al. Discrepancy between low levels of mTOR activity and high levels of P-S6 in primary central nervous system lymphoma may be explained by PAS domain-containing serine/threonine-protein kinase-mediated phosphorylation. J Neuropathol Exp Neurol 2018; 77(4): 268-73.
[http://dx.doi.org/10.1093/jnen/nlx121] [PMID: 29361117]
[35]
Drakos E, Rassidakis GZ, Medeiros LJ. Mammalian target of rapamycin (mTOR) pathway signalling in lymphomas. Expert Rev Mol Med 2008; 10 e4
[http://dx.doi.org/10.1017/S1462399408000586] [PMID: 18241520]
[36]
Vajpayee N, Thakral C, Gopaluni S, Newman N, Gajra A. Activation of mammalian target of rapamycin in diffuse large B-cell lymphoma: a clinicopathological study. Leuk Res 2012; 36(11): 1403-9.
[http://dx.doi.org/10.1016/j.leukres.2012.07.016] [PMID: 22902049]
[37]
Gao Y, Yuan CY, Yuan W. Will targeting PI3K/Akt/mTOR signaling work in hematopoietic malignancies? Stem Cell Investig 2016; 3: 31.
[http://dx.doi.org/10.21037/sci.2016.07.02] [PMID: 27583254]
[38]
Pfeifer M, Grau M, Lenze D, et al. PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA 2013; 110(30): 12420-5.
[http://dx.doi.org/10.1073/pnas.1305656110] [PMID: 23840064]
[39]
Abubaker J, Bavi PP, Al-Harbi S, et al. PIK3CA mutations are mutually exclusive with PTEN loss in diffuse large B-cell lymphoma. Leukemia 2007; 21(11): 2368-70.
[http://dx.doi.org/10.1038/sj.leu.2404873] [PMID: 17657213]
[40]
Baohua Y, Xiaoyan Z, Tiecheng Z, Tao Q, Daren S. Mutations of the PIK3CA gene in diffuse large B cell lymphoma. Diagn Mol Pathol 2008; 17(3): 159-65.
[http://dx.doi.org/10.1097/PDM.0b013e31815d0588] [PMID: 18382359]
[41]
Uddin S, Hussain AR, Siraj AK, et al. Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 2006; 108(13): 4178-86.
[http://dx.doi.org/10.1182/blood-2006-04-016907] [PMID: 16946303]
[42]
Fang WL, Huang KH, Lan YT, et al. Mutations in PI3K/AKT pathway genes and amplifications of PIK3CA are associated with patterns of recurrence in gastric cancers. Oncotarget 2016; 7(5): 6201-20.
[http://dx.doi.org/10.18632/oncotarget.6641] [PMID: 26701847]
[43]
Shoji K, Oda K, Nakagawa S, et al. The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer 2009; 101(1): 145-8.
[http://dx.doi.org/10.1038/sj.bjc.6605109] [PMID: 19491896]
[44]
Inabe K, Kurosaki T. Tyrosine phosphorylation of B-cell adaptor for phosphoinositide 3-kinase is required for Akt activation in response to CD19 engagement. Blood 2002; 99(2): 584-9.
[http://dx.doi.org/10.1182/blood.V99.2.584] [PMID: 11781242]
[45]
Pasqualucci L, Dalla-Favera R. The genetic landscape of diffuse large B-cell lymphoma. Semin Hematol 2015; 52(2): 67-76.
[http://dx.doi.org/10.1053/j.seminhematol.2015.01.005] [PMID: 25805586]
[46]
Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010; 463(7277): 88-92.
[http://dx.doi.org/10.1038/nature08638] [PMID: 20054396]
[47]
Grommes C, Pastore A, Palaskas N, et al. Ibrutinib unmasks critical role of Bruton tyrosine kinase in primary CNS lymphoma. Cancer Discov 2017; 7(9): 1018-29.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0613] [PMID: 28619981]
[48]
Fukumura K, Kawazu M, Kojima S, et al. Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol 2016; 131(6): 865-75.
[http://dx.doi.org/10.1007/s00401-016-1536-2] [PMID: 26757737]
[49]
Wang Q, Pechersky Y, Sagawa S, Pan AC, Shaw DE. Structural mechanism for Bruton’s tyrosine kinase activation at the cell membrane. Proc Natl Acad Sci USA 2019; 116(19): 9390-9.
[http://dx.doi.org/10.1073/pnas.1819301116] [PMID: 31019091]
[50]
Zhao H-F, Wang G, Wu C-P, et al. A multi-targeted natural flavonoid myricetin suppresses lamellipodia and focal adhesions formation and impedes glioblastoma cell invasiveness and abnormal motility. CNS Neurol Disord Drug Targets 2018; 17(7): 557-67.
[http://dx.doi.org/10.2174/1871527317666180611090006] [PMID: 29886836]
[51]
Maira S-M, Pecchi S, Huang A, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 2012; 11(2): 317-28.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0474] [PMID: 22188813]
[52]
Zang C, Eucker J, Liu H, et al. Inhibition of pan-class I phosphatidyl-inositol-3-kinase by NVP-BKM120 effectively blocks proliferation and induces cell death in diffuse large B-cell lymphoma. Leuk Lymphoma 2014; 55(2): 425-34.
[http://dx.doi.org/10.3109/10428194.2013.806800] [PMID: 23721513]
[53]
Grommes C, Pentsova E. Actr-11. phase II study of single agent buparlisib in recurrent/refractory primary (PCNSLl) and secondary cns lymphoma (SCNSL). Neuro-oncol 2016; 18(6): vi3.
[54]
Brown JR, Davids MS, Rodon J, et al. Phase I trial of the Pan-PI3K inhibitor pilaralisib (SAR245408/XL147) in patients with Chronic Lymphocytic Leukemia (CLL) or relapsed/refractory lymphoma. Clin Cancer Res 2015; 21(14): 3160-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3262] [PMID: 25840972]
[55]
Mahadevan D, Chiorean EG, Harris WB, et al. Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies. Eur J Cancer 2012; 48(18): 3319-27.
[http://dx.doi.org/10.1016/j.ejca.2012.06.027] [PMID: 22921184]
[56]
Dreyling M, Morschhauser F, Bouabdallah K, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol 2017; 28(9): 2169-78.
[http://dx.doi.org/10.1093/annonc/mdx289] [PMID: 28633365]
[57]
Gopal AK, Kahl BS, de Vos S, et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014; 370(11): 1008-18.
[http://dx.doi.org/10.1056/NEJMoa1314583] [PMID: 24450858]
[58]
Cho DC, Hutson TE, Samlowski W, et al. Two phase 2 trials of the novel Akt inhibitor perifosine in patients with advanced renal cell carcinoma after progression on vascular endothelial growth factor-targeted therapy. Cancer 2012; 118(24): 6055-62.
[http://dx.doi.org/10.1002/cncr.27668] [PMID: 22674198]
[59]
Friedman DR, Lanasa MC, Davis PH, et al. Perifosine treatment in chronic lymphocytic leukemia: results of a phase II clinical trial and in vitro studies. Leuk Lymphoma 2014; 55(5): 1067-75.
[http://dx.doi.org/10.3109/10428194.2013.824080] [PMID: 23863122]
[60]
Agarwal E, Chaudhuri A, Leiphrakpam PD, Haferbier KL, Brattain MG, Chowdhury S. Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer. BMC Cancer 2014; 14: 145.
[http://dx.doi.org/10.1186/1471-2407-14-145] [PMID: 24581231]
[61]
Petrich AM, Leshchenko V, Kuo PY, et al. Akt inhibitors MK-2206 and nelfinavir overcome mTOR inhibitor resistance in diffuse large B-cell lymphoma. Clin Cancer Res 2012; 18(9): 2534-44.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1407] [PMID: 22338016]
[62]
Coiffier B, Ribrag V. Exploring mammalian target of rapamycin (mTOR) inhibition for treatment of mantle cell lymphoma and other hematologic malignancies. Leuk Lymphoma 2009; 50(12): 1916-30.
[http://dx.doi.org/10.3109/10428190903207548] [PMID: 19757306]
[63]
Witzig TE, Reeder CB, LaPlant BR, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 2011; 25(2): 341-7.
[http://dx.doi.org/10.1038/leu.2010.226] [PMID: 21135857]
[64]
Kuhn JG, Chang SM, Wen PY, et al. Pharmacokinetic and tumor distribution characteristics of temsirolimus in patients with recurrent malignant glioma. Clin Cancer Res 2007; 13(24): 7401-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0781] [PMID: 18094423]
[65]
Hess G, Herbrecht R, Romaguera J, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 2009; 27(23): 3822-9.
[http://dx.doi.org/10.1200/JCO.2008.20.7977] [PMID: 19581539]
[66]
Smith SM, van Besien K, Karrison T, et al. Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: The University of Chicago phase II consortium. J Clin Oncol 2010; 28(31): 4740-6.
[http://dx.doi.org/10.1200/JCO.2010.29.2813] [PMID: 20837940]
[67]
Korfel A, Schlegel U, Herrlinger U, et al. Phase II trial of temsirolimus for relapsed/refractory primary CNS lymphoma. J Clin Oncol 2016; 34(15): 1757-63.
[http://dx.doi.org/10.1200/JCO.2015.64.9897] [PMID: 26976424]
[68]
Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010; 70(1): 288-98.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1751] [PMID: 20028854]
[69]
Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284(12): 8023-32.
[http://dx.doi.org/10.1074/jbc.M900301200] [PMID: 19150980]
[70]
Bi C, Zhang X, Lu T, et al. Inhibition of 4EBP phosphorylation mediates the cytotoxic effect of mechanistic target of rapamycin kinase inhibitors in aggressive B-cell lymphomas. Haematologica 2017; 102(4): 755-64.
[http://dx.doi.org/10.3324/haematol.2016.159160] [PMID: 28104700]
[71]
Rodrik-Outmezguine VS, Okaniwa M, Yao Z, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016; 534(7606): 272-6.
[http://dx.doi.org/10.1038/nature17963] [PMID: 27279227]
[72]
Beaufils F, Cmiljanovic N, Cmiljanovic V, et al. 5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a potent, brain-Penetrant, orally bioavailable, pan-class I PI3K/mTOR inhibitor as clinical candidate in oncology. J Med Chem 2017; 60(17): 7524-38.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00930] [PMID: 28829592]
[73]
Tarantelli C, Gaudio E, Arribas AJ, et al. PQR309 is a novel dual PI3K/mTOR inhibitor with preclinical antitumor activity in lymphomas as a single agent and in combination therapy. Clin Cancer Res 2018; 24(1): 120-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1041] [PMID: 29066507]
[74]
Yang Z, Feng P, Wen T, Wan M, Hong X. Differentiation of glioblastoma and lymphoma using feature extraction and support vector machine. CNS Neurol Disord Drug Targets 2017; 16(2): 160-8.
[http://dx.doi.org/10.2174/1871527315666161018122909] [PMID: 27758687]
[75]
de Oliveira CTP, Colenci R, Pacheco CC, et al. Hydrolyzed rutin decreases worsening of anaplasia in glioblastoma relapse. CNS Neurol Disord Drug Targets 2019; 18(5): 405-12.
[http://dx.doi.org/10.2174/1871527318666190314103104] [PMID: 30868970]
[76]
Ramírez-Expósito MJ, Martínez-Martos JM. Differential effects of Doxazosin on renin-angiotensin-System- regulating aminopeptidase activities in neuroblastoma and glioma tumoral cells. CNS Neurol Disord Drug Targets 2019; 18(1): 29-36.
[http://dx.doi.org/10.2174/1871527317666181029111739] [PMID: 30370863]
[77]
Craig DW, O’Shaughnessy JA, Kiefer JA, et al. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther 2013; 12(1): 104-16.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0781] [PMID: 23171949]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy