Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Research Article

Pharmacogenetic Evaluation of Metformin and Sulphonylurea Response in Mexican Mestizos with Type 2 Diabetes

Author(s): Menjivar Marta, Katy Sánchez-Pozos, Joel Jaimes-Santoyo, Jazmin Monroy-Escutia, Carolina Rivera- Santiago, María de los Ángeles Granados-Silvestre and María Guadalupe Ortiz-López*

Volume 21, Issue 4, 2020

Page: [291 - 300] Pages: 10

DOI: 10.2174/1389200221666200514125443

Price: $65

Abstract

Background: In Mexico, approximately 25% of patients with type 2 diabetes (T2D) have adequate glycemic control. Polymorphisms in pharmacogenetic genes have been shown to have clinical consequences resulting in drug toxicity or therapeutic inefficacy.

Objective: The study aimed to evaluate the impact of variants in genes known to be involved in response to oral hypoglycemic drugs, such as CYP2C9, OCT, MATE, ABCA1 and C11orf65, in the Mexican Mestizo population of T2D patients.

Methods: In this study, 265 patients with T2D were enrolled from the Hospital Juárez de México, Mexico City. Genotyping was performed by TaqMan® assays. SNP-SNP interactions were analyzed using the multifactor dimensionality reduction (MDR) method.

Results: Carriers of the del allele of rs72552763 could achieve better glycemic control than noncarriers. There was a significant difference in plasma glucose and HbA1c levels among rs622342 genotypes. The results suggested an SNP-SNP interaction between rs72552763 and rs622342 OCT1 and rs12943590 MATE2.

Conclusion: The interaction between rs72552763 and rs622342 in OCT1, and rs12943590 in MATE2 suggested an important role of these polymorphisms in metformin response in T2D Mexican Mestizo population.

Keywords: OCT, MATE, Mexican population, pharmacogenetics, polymorphism, allele frequency, oral hypoglycemic therapy.

Graphical Abstract
[1]
Secretaría de Salud. Instituto nacional de salud pública, 2012 Available at:.https://www.insp.mx/.0
[2]
Pantalone, K.M.; Misra-Hebert, A.D.; Hobbs, T.M.; Wells, B.J.; Kong, S.X.; Chagin, K.; Dey, T.; Milinovich, A.; Weng, W.; Bauman, J.M.; Burguera, B.; Zimmerman, R.S.; Kattan, M.W. Effect of glycemic control on the Diabetes Complications Severity Index score and development of complications in people with newly diagnosed type 2 diabetes. J. Diabetes, 2018, 10(3), 192-199.
[http://dx.doi.org/10.1111/1753-0407.12613] [PMID: 28976724]
[3]
Guía, De Práctica Clínica. Tratamiento de la Diabetes Mellitus tipo 2 en el primer nivel de Atención, 2014 Available at:.http://www.cenetec.salud.gob.mx/descargas/gpc/CatalogoMaestro/718_GPC_Tratamiento_de_diabetes_mellitus_tipo_2_/718GER.pdf
[4]
Kimura, N.; Masuda, S.; Tanihara, Y.; Ueo, H.; Okuda, M.; Katsura, T.; Inui, K. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinet., 2005, 20(5), 379-386.
[http://dx.doi.org/10.2133/dmpk.20.379] [PMID: 16272756]
[5]
Wang, D.S.; Jonker, J.W.; Kato, Y.; Kusuhara, H.; Schinkel, A.H.; Sugiyama, Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther., 2002, 302(2), 510-515.
[http://dx.doi.org/10.1124/jpet.102.034140] [PMID: 12130709]
[6]
Tzvetkov, M.V.; Saadatmand, A.R.; Bokelmann, K.; Meineke, I.; Kaiser, R.; Brockmöller, J. Effects of OCT1 polymorphisms on the cellular uptake, plasma concentrations and efficacy of the 5-HT(3) antagonists tropisetron and ondansetron. Pharmacogenomics J., 2012, 12(1), 22-29.
[http://dx.doi.org/10.1038/tpj.2010.75] [PMID: 20921968]
[7]
Kerb, R.; Brinkmann, U.; Chatskaia, N.; Gorbunov, D.; Gorboulev, V.; Mornhinweg, E.; Keil, A.; Eichelbaum, M.; Koepsell, H. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics, 2002, 12(8), 591-595.
[http://dx.doi.org/10.1097/00008571-200211000-00002] [PMID: 12439218]
[8]
Shu, Y.; Leabman, M.K.; Feng, B.; Mangravite, L.M.; Huang, C.C.; Stryke, D.; Kawamoto, M.; Johns, S.J.; DeYoung, J.; Carlson, E.; Ferrin, T.E.; Herskowitz, I.; Giacomini, K.M. Pharmacogenetics of membrane transporters investigators. evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 5902-5907.
[http://dx.doi.org/10.1073/pnas.0730858100] [PMID: 12719534]
[9]
Shu, Y.; Brown, C.; Castro, R.A.; Shi, R.J.; Lin, E.T.; Owen, R.P.; Sheardown, S.A.; Yue, L.; Burchard, E.G.; Brett, C.M.; Giacomini, K.M. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther., 2008, 83(2), 273-280.
[http://dx.doi.org/10.1038/sj.clpt.6100275] [PMID: 17609683]
[10]
Kang, H.J.; Song, I.S.; Shin, H.J.; Kim, W.Y.; Lee, C.H.; Shim, J.C.; Zhou, H.H.; Lee, S.S.; Shin, J.G. Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metab. Dispos., 2007, 35(4), 667-675.
[http://dx.doi.org/10.1124/dmd.106.013581] [PMID: 17220237]
[11]
Hou, W.; Zhang, D.; Lu, W.; Zheng, T.; Wan, L.; Li, Q.; Bao, Y.; Liu, F.; Jia, W. Polymorphism of organic cation transporter 2 improves glucose-lowering effect of metformin via influencing its pharmacokinetics in Chinese type 2 diabetic patients. Mol. Diagn. Ther., 2015, 19(1), 25-33.
[http://dx.doi.org/10.1007/s40291-014-0126-z] [PMID: 25573751]
[12]
Yonezawa, A.; Inui, K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br. J. Pharmacol., 2011, 164(7), 1817-1825.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01394.x] [PMID: 21457222]
[13]
Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes, 2009, 58(3), 745-749.
[http://dx.doi.org/10.2337/db08-1028] [PMID: 19228809]
[14]
Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet. Genomics, 2010, 20(1), 38-44.
[http://dx.doi.org/10.1097/FPC.0b013e328333bb11] [PMID: 19898263]
[15]
Out, M.; Becker, M.L.; van Schaik, R.H.; Lehert, P.; Stehouwer, C.D.; Kooy, A. A gene variant near ATM affects the response to metformin and metformin plasma levels: a post hoc analysis of an RCT. Pharmacogenomics, 2018, 19(8), 715-726.
[http://dx.doi.org/10.2217/pgs-2018-0010] [PMID: 29790415]
[16]
van Leeuwen, N.; Nijpels, G.; Becker, M.L.; Deshmukh, H.; Zhou, K.; Stricker, B.H.; Uitterlinden, A.G.; Hofman, A.; van ’t Riet, E.; Palmer, C.N.; Guigas, B.; Slagboom, P.E.; Durrington, P.; Calle, R.A.; Neil, A.; Hitman, G.; Livingstone, S.J.; Colhoun, H.; Holman, R.R.; McCarthy, M.I.; Dekker, J.M.; ’t Hart, L.M.; Pearson, E.R. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia, 2012, 55(7), 1971-1977.
[http://dx.doi.org/10.1007/s00125-012-2537-x] [PMID: 22453232]
[17]
Florez, J.C.; Jablonski, K.A.; Taylor, A.; Mather, K.; Horton, E.; White, N.H.; Barrett-Connor, E.; Knowler, W.C.; Shuldiner, A.R.; Pollin, T.I. Diabetes Prevention Program Research Group. The C allele of ATM rs11212617 does not associate with metformin response in the Diabetes Prevention Program. Diabetes Care, 2012, 35(9), 1864-1867.
[http://dx.doi.org/10.2337/dc11-2301] [PMID: 22751958]
[18]
Krajciova, L.; Deziova, L.; Petrovic, R.; Luha, J.; Turcani, P.; Chandoga, J. Frequencies of polymorphisms in CYP2C9 and VKORC1 genes influencing warfarin metabolism in Slovak population: implication for clinical practice. Bratisl. Lek Listy, 2014, 115(9), 563-568.
[http://dx.doi.org/10.4149/BLL_2014_109] [PMID: 25318916]
[19]
Van Booven, D.; Marsh, S.; McLeod, H.; Carrillo, M.W.; Sangkuhl, K.; Klein, T.E.; Altman, R.B. Cytochrome P450 2C9-CYP2C9. Pharmacogenet. Genomics, 2010, 20(4), 277-281.
[PMID: 20150829]
[20]
Aguilar-Salinas, C.A.; Muñoz-Hernandez, L.L.; Cobos-Bonilla, M.; Ramírez-Márquez, M.R.; Ordoñez-Sanchez, M.L.; Mehta, R.; Medina-Santillan, R.; Tusie-Luna, M.T. The R230C variant of the ATP binding cassette protein A1 (ABCA1) gene is associated with a decreased response to glyburide therapy in patients with type 2 diabetes mellitus. Metabolism, 2013, 62(5), 638-641.
[http://dx.doi.org/10.1016/j.metabol.2012.11.006] [PMID: 23273975]
[21]
Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res., 1988, 16(3), 1215.
[http://dx.doi.org/10.1093/nar/16.3.1215] [PMID: 3344216]
[22]
Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2), 945-959.
[PMID: 10835412]
[23]
Villalobos-Comparán, M.; Teresa Flores-Dorantes, M.; Teresa Villarreal-Molina, M.; Rodríguez-Cruz, M.; García-Ulloa, A.C.; Robles, L.; Huertas-Vázquez, A.; Saucedo-Villarreal, N.; López-Alarcón, M.; Sánchez-Muñoz, F.; Domínguez-López, A.; Gutiérrez-Aguilar, R.; Menjivar, M.; Coral-Vázquez, R.; Hernández-Stengele, G.; Vital-Reyes, V.S.; Acuña-Alonzo, V.; Romero-Hidalgo, S.; Ruiz-Gómez, D.G.; Riaño-Barros, D.; Herrera, M.F.; Gómez-Pérez, F.J.; Froguel, P.; García-García, E.; Teresa Tusié-Luna, M.; Aguilar-Salinas, C.A.; Canizales-Quinteros, S. The FTO gene is associated with adulthood obesity in the Mexican population. Obesity (Silver Spring), 2008, 16(10), 2296-2301.
[http://dx.doi.org/10.1038/oby.2008.367] [PMID: 18719664]
[24]
Ritchie, M.D.; Hahn, L.W.; Moore, J.H. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet. Epidemiol., 2003, 24(2), 150-157.
[http://dx.doi.org/10.1002/gepi.10218] [PMID: 12548676]
[25]
Moore, J.H. Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev. Mol. Diagn., 2004, 4(6), 795-803.
[http://dx.doi.org/10.1586/14737159.4.6.795] [PMID: 15525222]
[26]
American Diabetes Association. Standards of medical care in diabetes-2018. Diabetes Care, 2018, 41(Suppl. 1), S55-S64.
[http://dx.doi.org/10.2337/dc18-S006] [PMID: 29222377]
[27]
Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21(2), 263-265.
[http://dx.doi.org/10.1093/bioinformatics/bth457] [PMID: 15297300]
[28]
Lara-Riegos, J.C.; Ortiz-López, M.G.; Peña-Espinoza, B.I.; Montúfar-Robles, I.; Peña-Rico, M.A.; Sánchez-Pozos, K.; Granados-Silvestre, M.A.; Menjivar, M. Diabetes susceptibility in Mayas: Evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes. Gene, 2015, 565(1), 68-75.
[http://dx.doi.org/10.1016/j.gene.2015.03.065] [PMID: 25839936]
[29]
Acuña-Alonzo, V.; Flores-Dorantes, T.; Kruit, J.K.; Villarreal-Molina, T.; Arellano-Campos, O.; Hünemeier, T.; Moreno-Estrada, A.; Ortiz López, M.G.; Villamil-Ramírez, H.; León-Mimila, P.; Villalobos Comparan, M.; Jacobo-Albavera, L.; Ramírez-Jiménez, S.; Sikora, M.; Zhang, L.H.; Pape, T.D.; Granados-Silvestre, Mde.A.; Montufar-Robles, I.; Tito-Alvarez, A.M.; Zurita-Salinas, C.; Bustos-Arriaga, J.; Cedillo-Barrón, L.; Gómez-Trejo, C.; Barquera-Lozano, R.; Vieira Filho, J.P.; Granados, J.; Romero-Hidalgo, S.; Huertas-Vázquez, A.; González-Martín, A.; Gorostiza, A.; Bonatto, S.L.; Rodríguez-Cruz, M.; Wang, L.; Tusié-Luna, T.; Aguilar-Salinas, C.A.; Lisker, R.; Moises, R.S.; Menjivar, M.; Salzano, F.M.; Knowler, W.C.; Bortolini, M.C.; Hayden, M.R.; Baier, L.J.; Canizales-Quinteros, S. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Hum. Mol. Genet., 2010, 19(14), 2877-2885.
[http://dx.doi.org/10.1093/hmg/ddq173] [PMID: 20418488]
[30]
Secretaría de Salud. Encuesta Nacional de Salud y Nutrición de Medio Camino 2016: Resultados ponderados; Instituto Nacional de Salud Pública: Brazil, 2016.
[31]
Tanaka, S.; Tanaka, S.; Iimuro, S.; Ishibashi, S.; Yamashita, H.; Moriya, T.; Katayama, S.; Akanuma, Y.; Ohashi, Y.; Yamada, N.; Araki, A.; Ito, H.; Sone, H. Japan Diabetes Complications Study Group. Maximum BMI and microvascular complications in a cohort of Japanese patients with type 2 diabetes: the Japan Diabetes Complications Study. J. Diabetes Complications, 2016, 30(5), 790-797.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.02.020] [PMID: 26997170]
[32]
Katusić, D.; Tomić, M.; Jukić, T.; Kordić, R.; Sikić, J.; Vukojević, N.; Sarić, B. Obesity--a risk factor for diabetic retinopathy in type 2 diabetes? Coll. Antropol., 2005, 29(Suppl. 1), 47-50.
[PMID: 16193676]
[33]
Wu, L.; Parhofer, K.G. Diabetic dyslipidemia. Metabolism, 2014, 63(12), 1469-1479.
[http://dx.doi.org/10.1016/j.metabol.2014.08.010] [PMID: 25242435]
[34]
Howard, B.V.; Robbins, D.C.; Sievers, M.L.; Lee, E.T.; Rhoades, D.; Devereux, R.B.; Cowan, L.D.; Gray, R.S.; Welty, T.K.; Go, O.T.; Howard, W.J. LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: The Strong Heart Study. Arterioscler. Thromb. Vasc. Biol., 2000, 20(3), 830-835.
[http://dx.doi.org/10.1161/01.ATV.20.3.830] [PMID: 10712410]
[35]
Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; Lennie, T.A.; Levi, M.; Mazzone, T.; Pennathur, S. American Heart Association Clinical Lipidology, Thrombosis, and Prevention Committee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation, 2011, 123(20), 2292-2333.
[http://dx.doi.org/10.1161/CIR.0b013e3182160726] [PMID: 21502576]
[36]
Dawed, A.Y.; Zhou, K.; Pearson, E.R. Pharmacogenetics in type 2 diabetes: influence on response to oral hypoglycemic agents. Pharm. Genomics Pers. Med., 2016, 9, 17-29.
[PMID: 27103840]
[37]
Sánchez-Pozos, K.; Rivera-Santiago, C.; García-Rodríguez, M.H.; Ortiz-López, M.G.; Peña-Espinoza, B.I.; Granados-Silvestre, M.L.Á.; Llerena, A.; Menjívar, M. Genetic variability of CYP2C9*2 and CYP2C9*3 in seven indigenous groups from Mexico. Pharmacogenomics, 2016, 17(17), 1881-1889.
[http://dx.doi.org/10.2217/pgs-2016-0099] [PMID: 27790940]
[38]
Sanchez-Ibarra, H.E.; Reyes-Cortes, L.M.; Jiang, X.L.; Luna-Aguirre, C.M.; Aguirre-Trevino, D.; Morales-Alvarado, I.A.; Leon-Cachon, R.B.; Lavalle-Gonzalez, F.; Morcos, F.; Barrera-Saldaña, H.A. Genotypic and phenotypic factors influencing drug response in Mexican patients with type 2 diabetes mellitus. Front. Pharmacol., 2018, 9, 320.
[http://dx.doi.org/10.3389/fphar.2018.00320] [PMID: 29681852]
[39]
Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide distribution of cytochrome p450 alleles: a meta-analysis of population-scale sequencing projects. Clin. Pharmacol. Ther., 2017, 102(4), 688-700.
[http://dx.doi.org/10.1002/cpt.690] [PMID: 28378927]
[40]
Dujic, T. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: A GoDARTS Study., 2015, 64(5), 1786-93.
[41]
Dujic, T.; Causevic, A.; Bego, T.; Malenica, M.; Velija-Asimi, Z.; Pearson, E.R.; Semiz, S. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet. Med., 2016, 33(4), 511-514.
[http://dx.doi.org/10.1111/dme.13040] [PMID: 26605869]
[42]
Villarreal-Molina, M.T.; Flores-Dorantes, M.T.; Arellano-Campos, O.; Villalobos-Comparan, M.; Rodríguez-Cruz, M.; Miliar-García, A.; Huertas-Vazquez, A.; Menjivar, M.; Romero-Hidalgo, S.; Wacher, N.H.; Tusie-Luna, M.T.; Cruz, M.; Aguilar-Salinas, C.A.; Canizales-Quinteros, S. Metabolic Study Group. Association of the ATP-binding cassette transporter A1 R230C variant with early-onset type 2 diabetes in a Mexican population. Diabetes, 2008, 57(2), 509-513.
[http://dx.doi.org/10.2337/db07-0484] [PMID: 18003760]
[43]
Haghvirdizadeh, P.; Ramachandran, V.; Etemad, A.; Heidari, F.; Ghodsian, N.; Bin Ismail, N.; Ismail, P. Association of ATP-binding cassette transporter A1 gene polymorphisms in type 2 diabetes mellitus among Malaysians. J. Diab. Res.,, 2015,, 2015
[44]
Mofo Mato, E.P.; Guewo-Fokeng, M.; Essop, M.F.; Owira, P.M.O. Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes: A systematic review. Medicine (Baltimore), 2018, 97(27)e11349
[http://dx.doi.org/10.1097/MD.0000000000011349] [PMID: 29979413]
[45]
Christensen, M.M.; Brasch-Andersen, C.; Green, H.; Nielsen, F.; Damkier, P.; Beck-Nielsen, H.; Brosen, K. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet. Genomics, 2011, 21(12), 837-850.
[http://dx.doi.org/10.1097/FPC.0b013e32834c0010] [PMID: 21989078]
[46]
Speakman, J.R.; Blount, J.D.; Bronikowski, A.M.; Buffenstein, R.; Isaksson, C.; Kirkwood, T.B.; Monaghan, P.; Ozanne, S.E.; Beaulieu, M.; Briga, M.; Carr, S.K.; Christensen, L.L.; Cochemé, H.M.; Cram, D.L.; Dantzer, B.; Harper, J.M.; Jurk, D.; King, A.; Noguera, J.C.; Salin, K.; Sild, E.; Simons, M.J.; Smith, S.; Stier, A.; Tobler, M.; Vitikainen, E.; Peaker, M.; Selman, C. Oxidative stress and life histories: unresolved issues and current needs. Ecol. Evol., 2015, 5(24), 5745-5757.
[http://dx.doi.org/10.1002/ece3.1790] [PMID: 26811750]
[47]
Ebid, A.I.M.; Ehab, M.; Ismail, A.; Soror, S.; Mahmoud, M.A. The influence of SLC22A1 rs622342 and ABCC8 rs757110 genetic variants on the efficacy of metformin and glimepiride combination therapy in Egyptian patients with type 2 diabetes. J. Drug Assess., 2019, 8(1), 115-121.
[http://dx.doi.org/10.1080/21556660.2019.1619571] [PMID: 31231590]
[48]
Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J., 2009, 9(4), 242-247.
[http://dx.doi.org/10.1038/tpj.2009.15] [PMID: 19381165]
[49]
Engelbrechtsen, L.; Andersson, E.; Roepstorff, S.; Hansen, T.; Vestergaard, H. Pharmacogenetics and individual responses to treatment of hyperglycemia in type 2 diabetes. Pharmacogenet. Genomics, 2015, 25(10), 475-484.
[http://dx.doi.org/10.1097/FPC.0000000000000160] [PMID: 26181639]
[50]
Stocker, S.L.; Morrissey, K.M.; Yee, S.W.; Castro, R.A.; Xu, L.; Dahlin, A.; Ramirez, A.H.; Roden, D.M.; Wilke, R.A.; McCarty, C.A.; Davis, R.L.; Brett, C.M.; Giacomini, K.M. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther., 2013, 93(2), 186-194.
[http://dx.doi.org/10.1038/clpt.2012.210] [PMID: 23267855]
[51]
Chen, Y.; Li, S.; Brown, C.; Cheatham, S.; Castro, R.A.; Leabman, M.K.; Urban, T.J.; Chen, L.; Yee, S.W.; Choi, J.H.; Huang, Y.; Brett, C.M.; Burchard, E.G.; Giacomini, K.M. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet. Genomics, 2009, 19(7), 497-504.
[http://dx.doi.org/10.1097/FPC.0b013e32832cc7e9] [PMID: 19483665]
[52]
Meyer zu Schwabedissen, H.E.; Verstuyft, C.; Kroemer, H.K.; Becquemont, L.; Kim, R.B. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am. J. Physiol. Renal Physiol., 2010, 298(4), F997-F1005.
[http://dx.doi.org/10.1152/ajprenal.00431.2009] [PMID: 20053795]
[53]
Phani, N.M.; Vohra, M.; Kakar, A.; Adhikari, P.; Nagri, S.K.; D’Souza, S.C.; Umakanth, S.; Satyamoorthy, K.; Rai, P.S. Implication of critical pharmacokinetic gene variants on therapeutic response to metformin in Type 2 diabetes. Pharmacogenomics, 2018, 19(11), 905-911.
[http://dx.doi.org/10.2217/pgs-2018-0041] [PMID: 29914345]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy