Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Expedition of Eudragit® Polymers in the Development of Novel Drug Delivery Systems

Author(s): Sunil Kumar Jain, Akhlesh K. Jain and Kuldeep Rajpoot*

Volume 17, Issue 6, 2020

Page: [448 - 469] Pages: 22

DOI: 10.2174/1567201817666200512093639

Price: $65

Abstract

Eudragit® polymer has been widely used in film-coating for enhancing the quality of products over other materials (e.g., shellac or sugar). Eudragit® polymers are obtained synthetically from the esters of acrylic and methacrylic acid. For the last few years, they have shown immense potential in the formulations of conventional, pH-triggered, and novel drug delivery systems for incorporating a vast range of therapeutics including proteins, vitamins, hormones, vaccines, and genes. Different grades of Eudragit® have been used for designing and delivery of therapeutics at a specific site via the oral route, for instance, in stomach-specific delivery, intestinal delivery, colon-specific delivery, mucosal delivery. Further, these polymers have also shown their great aptitude in topical and ophthalmic delivery. Moreover, available literature evidences the promises of distinct Eudragit® polymers for efficient targeting of incorporated drugs to the site of interest. This review summarizes some potential researches that are being conducted by eminent scientists utilizing the distinct grades of Eudragit® polymers for efficient delivery of therapeutics at various sites of interest.

Keywords: Eudragit®, stomach-specific, colon-specific, ophthalmic, drug delivery, gene delivery.

Graphical Abstract
[1]
Prabhu, P.; Ahamed, N.; Matapady, H.N.; Ahmed, M.G.; Narayanacharyulu, R.; Satyanarayana, D.; Subrahmanayam, E. Investigation and comparison of colon specificity of novel polymer khaya gum with guar gum. Pak. J. Pharm. Sci., 2010, 23(3), 259-265.
[PMID: 20566437]
[2]
Prado, H.J.; Matulewicz, M.C.; Bonelli, P.; Cukierman, A.L. Basic butylated methacrylate copolymer/kappa-carrageenan interpolyelec-trolyte complex: preparation, characterization and drug release behaviour. Eur. J. Pharm. Biopharm., 2008, 70(1), 171-178.
[http://dx.doi.org/10.1016/j.ejpb.2008.04.017] [PMID: 18583115]
[3]
Potestà, P. Eudragit FS 30 D: a new pH-sensitive polymer covering for mesalamine. Eur. Rev. Med. Pharmacol. Sci., 2001, 5(1), 30.
[PMID: 11860220]
[4]
Qiao, M.; Zhang, L.; Ma, Y.; Zhu, J.; Xiao, W. A novel electrostatic dry coating process for enteric coating of tablets with Eudragit® L 100-55. Eur. J. Pharm. Biopharm., 2013, 83(2), 293-300.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.006] [PMID: 23183445]
[5]
Qiao, M.; Luo, Y.; Zhang, L.; Ma, Y.; Stephenson, T.S.; Zhu, J. Sustained release coating of tablets with Eudragit(®) RS/RL using a novel electrostatic dry powder coating process. Int. J. Pharm., 2010, 399(1-2), 37-43.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.047] [PMID: 20678560]
[6]
Qi, S.; Gryczke, A.; Belton, P.; Craig, D.Q. Characterisation of solid dispersions of paracetamol and EUDRAGIT E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis. Int. J. Pharm., 2008, 354(1-2), 158-167.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.048] [PMID: 18242020]
[7]
Goto, S.; Kawata, M.; Nakamura, M.; Maekawa, K.; Aoyama, T.; Eudragit, E.; Eudragit, E.; Eudragit, E. L and S (acrylic resins) mi-crocapsules as pH sensitive release preparations of ketoprofen. J. Microencapsul., 1986, 3(4), 305-316.
[http://dx.doi.org/10.3109/02652048609021800] [PMID: 3508191]
[8]
Goto, S.; Kawata, M.; Nakamura, M.; Maekawa, K.; Aoyama, T. Eudragit RS and RL (acrylic resins) microcapsules as pH insensitive and sustained release preparations of ketoprofen. J. Microencapsul., 1986, 3(4), 293-304.
[http://dx.doi.org/10.3109/02652048609021799] [PMID: 3508190]
[9]
Patra, C.N.; Priya, R.; Swain, S.; Kumar Jena, G.; Panigrahi, K.C.; Ghose, D. Pharmaceutical significance of Eudragit: a review. FJPS, 2017, 3(1), 33-45.
[10]
Nikam, V.; Kotade, K.; Gaware, V.; Dolas, R. Eudragit a ver-satile polymer: a review. Pharmacologyonline, 2011, 1, 152-164.
[11]
Esposito, E.; Roncarati, R.; Cortesi, R.; Cervellati, F.; Nastruzzi, C. Production of Eudragit microparticles by spray-drying technique: influence of experimental parameters on morphological and dimensional characteristics. Pharm. Dev. Technol., 2000, 5(2), 267-278.
[http://dx.doi.org/10.1081/PDT-100100541] [PMID: 10810756]
[12]
Rowe, R.C.; Sheskey, P.J.; Weller, P., IV American Pharmaceutical Association Pharmaceutical press; J. Hand Book of Pharmaceutical Excipients: Washington, DC, USA, 2003.
[13]
Riley, S.A.; Tavares, I.A.; Bennett, A.; Mani, V. Delayed-release mesalazine (5-aminosalicylic acid): coat dissolution and excretion in ileostomy subjects. Br. J. Clin. Pharmacol., 1988, 26(2), 173-177.
[http://dx.doi.org/10.1111/j.1365-2125.1988.tb03383.x] [PMID: 3207553]
[14]
Jeganathan, B.; Prakya, V. Interpolyelectrolyte complexes of Eudragit® EPO with hypromellose acetate succinate and Eudragit® EPO with hypromellose phthalate as potential carriers for oral controlled drug delivery. AAPS PharmSciTech, 2015, 16(4), 878-888.
[http://dx.doi.org/10.1208/s12249-014-0252-2] [PMID: 25591951]
[15]
Higashi, K.; Yamamoto, K.; Pandey, M.K.; Mroue, K.H.; Moribe, K.; Yamamoto, K.; Ramamoorthy, A. Insights into atomic-level in-teraction between mefenamic acid and eudragit EPO in a supersaturated solution by high-resolution magic-angle spinning NMR spec-troscopy. Mol. Pharm., 2014, 11(1), 351-357.
[http://dx.doi.org/10.1021/mp4005723] [PMID: 24283196]
[16]
Khachane, P.; Date, A.A.; Nagarsenker, M.S. Eudragit EPO nanoparticles: application in improving therapeutic efficacy and reducing ulcerogenicity of meloxicam on oral administration. J. Biomed. Nanotechnol., 2011, 7(4), 590-597.
[http://dx.doi.org/10.1166/jbn.2011.1322] [PMID: 21870464]
[17]
Rai, G.; Yadav, A.K.; Jain, N.K.; Agrawal, G.P. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon. Drug Deliv., 2016, 23(1), 328-337.
[http://dx.doi.org/10.3109/10717544.2014.913733] [PMID: 24845476]
[18]
Payab, S.; Davaran, S.; Tanhaei, A.; Fayyazi, B.; Jahangiri, A.; Farzaneh, A.; Adibkia, K. Triamcinolone acetonide-Eudragit(®) RS100 nanofibers and nanobeads: morphological and physicochemical characterization. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 362-369.
[http://dx.doi.org/10.3109/21691401.2014.953250] [PMID: 25180944]
[19]
Hejazi, R.; Amiji, M. Chitosan-based gastrointestinal delivery systems. J. Control. Release, 2003, 89(2), 151-165.
[http://dx.doi.org/10.1016/S0168-3659(03)00126-3] [PMID: 12711440]
[20]
Nagai, T. Adhesive topical drug delivery system. J. Control. Release, 1985, 2, 121-134.
[http://dx.doi.org/10.1016/0168-3659(85)90038-0]
[21]
Mastiholimath, V.S.; Dandagi, P.M.; Gadad, A.P.; Patil, M.B.; Manvi, F.V.; Chandur, V.K. Formulation and evaluation of ornidazole dental implants for periodontitis. Indian J. Pharm. Sci., 2006, 68(1), 68-71.
[http://dx.doi.org/10.4103/0250-474X.22967]
[22]
Mukherjee, B.; Roy, G.; Ghosh, S. Development of denticap, a matrix based sustained release formulation for treatment of toothache, dental infection and other gum problem. Curr. Drug Deliv., 2009, 6(2), 199-207.
[http://dx.doi.org/10.2174/156720109787846270] [PMID: 19450227]
[23]
Gad, H.A.; el-Nabarawi, M.A.; Abd el-Hady, S.S. Formulation and evaluation of secnidazole or doxycycline dento-oral gels. Drug Dev. Ind. Pharm., 2008, 34(12), 1356-1367.
[http://dx.doi.org/10.1080/03639040802122944] [PMID: 18785044]
[24]
Meher, J.G.; Tarai, M.; Yadav, N.P.; Patnaik, A.; Mishra, P.; Yadav, K.S. Development and characterization of cellulose-polymethacrylate mucoadhesive film for buccal delivery of carvedilol. Carbohydr. Polym., 2013, 96(1), 172-180.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.076] [PMID: 23688467]
[25]
Jain, S.K.; Gupta, M.; Sahoo, A.K.; Pandey, A.N.; Jain, A.K. Lectin conjugated gastro-retentive microspheres of amoxicillin for effective treatment of Helicobacter pylori. Curr. Sci., 2014, 106(2), 267.
[26]
Lee, W.J.; Cha, S.; Shin, M.; Jung, M.; Islam, M.A.; Cho, C.S.; Yoo, H.S. Efficacy of thiolated eudragit microspheres as an oral vaccine delivery system to induce mucosal immunity against enterotoxigenic Escherichia coli in mice. Eur. J. Pharm. Biopharm., 2012, 81(1), 43-48.
[http://dx.doi.org/10.1016/j.ejpb.2012.01.010] [PMID: 22306699]
[27]
Lim, J.H.; You, S.K.; Baek, J.S.; Hwang, C.J.; Na, Y.G.; Shin, S.C.; Cho, C.W. Surface-modified gemcitabine with mucoadhesive polymer for oral delivery. J. Microencapsul., 2012, 29(5), 487-496.
[http://dx.doi.org/10.3109/02652048.2012.665086] [PMID: 22783823]
[28]
Yoo, J.W.; Giri, N.; Lee, C.H. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int. J. Pharm., 2011, 403(1-2), 262-267.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.032] [PMID: 20971177]
[29]
Lopedota, A.; Trapani, A.; Cutrignelli, A.; Chiarantini, L.; Pantucci, E.; Curci, R.; Manuali, E.; Trapani, G. The use of Eudragit RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. Eur. J. Pharm. Biopharm., 2009, 72(3), 509-520.
[http://dx.doi.org/10.1016/j.ejpb.2009.02.013] [PMID: 19281845]
[30]
Reda, R.I.; Wen, M.M.; El-Kamel, A.H. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int. J. Nanomedicine, 2017, 12, 2335-2351.
[http://dx.doi.org/10.2147/IJN.S131253] [PMID: 28392691]
[31]
Momoh, M.A.; Kenechukwu, F.C.; Nnamani, P.O.; Umetiti, J.C. Influence of magnesium stearate on the physicochemical and pharmacodynamic characteristics of insulin-loaded Eudragit entrapped mucoadhesive microspheres. Drug Deliv., 2015, 22(6), 837-848.
[http://dx.doi.org/10.3109/10717544.2014.898108] [PMID: 24670092]
[32]
Singh, B.; Maharjan, S.; Jiang, T.; Kang, S.K.; Choi, Y.J.; Cho, C.S. Combinatorial approach of antigen delivery using M cell-homing peptide and mucoadhesive vehicle to enhance the efficacy of oral vaccine. Mol. Pharm., 2015, 12(11), 3816-3828.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00265] [PMID: 26394158]
[33]
Smart, J.D. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev., 2005, 57(11), 1556-1568.
[http://dx.doi.org/10.1016/j.addr.2005.07.001] [PMID: 16198441]
[34]
Dressman, J.B.; Berardi, R.R.; Dermentzoglou, L.C.; Russell, T.L.; Schmaltz, S.P.; Barnett, J.L.; Jarvenpaa, K.M. Upper Gastrointestinal (GI) pH in young, healthy men and women. Pharm. Res., 1990, 7(7), 756-761.
[http://dx.doi.org/10.1023/A:1015827908309] [PMID: 2395805]
[35]
Hauptstein, S.; Bonengel, S.; Rohrer, J.; Bernkop-Schnürch, A. Preactivated thiolated poly(methacrylic acid-co-ethyl acrylate): synthesis and evaluation of mucoadhesive potential. Eur. J. Pharm. Sci., 2014, 63, 132-139.
[http://dx.doi.org/10.1016/j.ejps.2014.07.002] [PMID: 25019181]
[36]
Karn, P.R.; Vanić, Z.; Pepić, I.; Skalko-Basnet, N. Mucoadhesive liposomal delivery systems: the choice of coating material. Drug Dev. Ind. Pharm., 2011, 37(4), 482-488.
[http://dx.doi.org/10.3109/03639045.2010.523425] [PMID: 20961263]
[37]
Islam, M.A.; Jiang, H.L.; Quan, J.S.; Arote, R.B.; Kang, M.L.; Yoo, H.S.; Yun, C.H.; Choi, Y.J.; Cho, C.S. Mucoadhesive and pH-sensitive thiolated Eudragit microspheres for oral delivery of Pasteurella multocida antigens containing dermonecrotoxin. J. Nanosci. Nanotechnol., 2011, 11(5), 4174-4181.
[http://dx.doi.org/10.1166/jnn.2011.3639] [PMID: 21780423]
[38]
Quan, J.S.; Jiang, H.L.; Kim, E.M.; Jeong, H.J.; Choi, Y.J.; Guo, D.D.; Yoo, M.K.; Lee, H.G.; Cho, C.S. pH-sensitive and mucoadhesive thiolated Eudragit-coated chitosan microspheres. Int. J. Pharm., 2008, 359(1-2), 205-210.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.003] [PMID: 18490120]
[39]
Jain, S.K.; Kumar, A.; Kumar, A.; Pandey, A.N.; Rajpoot, K. Development and in vitro characterization of a multiparticulate delivery system for acyclovir-resinate complex. Artif. Cells Nanomed. Biotechnol., 2016, 44(5), 1266-1275.
[PMID: 25813568]
[40]
Jain, S.K.; Prajapati, N.; Rajpoot, K.; Kumar, A. A novel sustained release drug-resin complex-based microbeads of ciprofloxacin HCl. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1891-1900.
[http://dx.doi.org/10.3109/21691401.2015.1111233] [PMID: 26698089]
[41]
Choudhary, S.; Jain, A.; Amin, M.C.I.M.; Mishra, V.; Agrawal, G.P.; Kesharwani, P. Stomach specific polymeric low density microballoons as a vector for extended delivery of rabeprazole and amoxicillin for treatment of peptic ulcer. Colloids Surf. B Biointerfaces, 2016, 141, 268-277.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.048] [PMID: 26859118]
[42]
Loh, Z.C.; Elkordy, A.A. Formulation and evaluation of different floating tablets containing metronidazole to target stomach. Curr. Drug Deliv., 2015, 12(4), 425-443.
[http://dx.doi.org/10.2174/156720181204150729125655] [PMID: 25924732]
[43]
Jain, S.K.; Awasthi, A.M.; Jain, N.K.; Agrawal, G.P. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: preparation and in vitro characterization. J. Control. Release, 2005, 107(2), 300-309.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.007] [PMID: 16095748]
[44]
Ramachandran, S.; Shaheedha, S.M.; Thirumurugan, G.; Dhanaraju, M.D. Floating controlled drug delivery system of famotidine loaded hollow microspheres (microballoons) in the stomach. Curr. Drug Deliv., 2010, 7(1), 93-97.
[http://dx.doi.org/10.2174/156720110790396436] [PMID: 20044907]
[45]
Barzegar-Jalali, M.; Alaei-Beirami, M.; Javadzadeh, Y.; Mo-hammadi, G.; Hamidi, A.; Andalib, S.; Adibkia, K. Comparison of physicochemical characteristics and drug release of diclofenac sodium-Eudragit® RS100 nanoparticles and solid dispersions. Powder Technol., 2012, 219, 211-216.
[http://dx.doi.org/10.1016/j.powtec.2011.12.046]
[46]
Yuan, J.; Liu, T.; Li, H.; Shi, T.; Xu, J.; Liu, H.; Wang, Z.; Wang, Q.; Xu, L.; Wang, Y.; Li, S. Oral sustained-release suspension based on a novel taste-masked and mucoadhesive carrier-ion-exchange fiber. Int. J. Pharm., 2014, 472(1-2), 74-81.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.048] [PMID: 24882038]
[47]
Jain, S.K.; Agrawal, G.P.; Jain, N.K. Evaluation of porous carrier-based floating orlistat microspheres for gastric delivery. AAPS PharmSciTech, 2006, 7(4), 90.
[http://dx.doi.org/10.1208/pt070490] [PMID: 17233542]
[48]
Jain, S.K.; Agrawal, G.P.; Jain, N.K. A novel calcium silicate based microspheres of repaglinide: in vivo investigations. J. Control. Release, 2006, 113(2), 111-116.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.005] [PMID: 16759733]
[49]
Irshad, S.; Khan, I.U.; Khalid, S.H.; Asghar, S.; Irfan, M.; Khalid, I.; Sabir, N.; Ali, A.; Khan, A.N.; Yousaf, A.M.; Hussain, T.; Shahzad, Y. Probing the effect of various lipids and polymer blends on clopidogrel encapsulated floating microcarriers. Daru, 2019, 27(2), 571-582.
[http://dx.doi.org/10.1007/s40199-019-00285-0] [PMID: 31228127]
[50]
Martí Coma-Cros, E.; Biosca, A.; Lantero, E.; Manca, M.L.; Caddeo, C.; Gutiérrez, L.; Ramírez, M.; Borgheti-Cardoso, L.N.; Manconi, M.; Fernàndez-Busquets, X. Antimalarial activity of orally administered curcumin incorporated in Eudragit®-containing liposomes. Int. J. Mol. Sci., 2018, 19(5), 1361.
[http://dx.doi.org/10.3390/ijms19051361] [PMID: 29734652]
[51]
Farooq, U.; Khan, S.; Nawaz, S.; Ranjha, N.M.; Haider, M.S.; Khan, M.M.; Dar, E.; Nawaz, A. Enhanced gastric retention and drug release via development of novel floating microspheres based on Eudragit E100 and polycaprolactone: synthesis and in vitro evaluation. Des. Monomers Polym., 2017, 20(1), 419-433.
[http://dx.doi.org/10.1080/15685551.2017.1326702] [PMID: 29491813]
[52]
Kaledaite, R.; Bernatoniene, J.; Dvorackova, K.; Gajdziok, J.; Muselik, J.; Peciura, R.; Masteikova, R. The development and in vitro evaluation of herbal pellets coated with Eudragit FS 30. Pharm. Dev. Technol., 2015, 20(7), 769-774.
[PMID: 24841190]
[53]
Porwal, A.; Swami, G.; Saraf, S. Preparation and evaluation of sustained release microballoons of propranolol. Daru, 2011, 19(3), 193-201.
[PMID: 22615657]
[54]
Li, D.X.; Kim, J.O.; Oh, D.H.; Lee, W.S.; Hong, M.J.; Kang, J.Y.; Choi, J.S.; Woo, J.S.; Yong, C.S.; Choi, H.G. Development of nifedipine-loaded coated gelatin microcapsule as a long acting oral delivery. Arch. Pharm. Res., 2009, 32(1), 127-132.
[http://dx.doi.org/10.1007/s12272-009-1126-0] [PMID: 19183885]
[55]
Yi, E.J.; Kim, J.Y.; Rhee, Y.S.; Kim, S.H.; Lee, H.J.; Park, C.W.; Park, E.S. Preparation of sildenafil citrate microcapsules and in vitro/in vivo evaluation of taste masking efficiency. Int. J. Pharm., 2014, 466(1-2), 286-295.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.001] [PMID: 24607218]
[56]
Jang, D.J.; Bae, S.K.; Oh, E. Coated dextrin microcapsules of amlodipine incorporable into orally disintegrating tablets for geriatric patients. Biomed. Pharmacother., 2014, 68(8), 1117-1124.
[http://dx.doi.org/10.1016/j.biopha.2014.10.010] [PMID: 25458788]
[57]
Li, L.P.; Wang, X.J.; Zhang, J.Y.; Zhang, L.L.; Cao, Y.B.; Gu, L.Q.; Yu, Y.Q.; Yang, Q.L.; Shen, C.Y.; Han, B.; Jiang, Y.Y. Antifungal activity of osthol in vitro and enhancement in vivo through Eudragit S100 nanocarriers. Virulence, 2018, 9(1), 555-562.
[http://dx.doi.org/10.1080/21505594.2017.1356503] [PMID: 28795862]
[58]
Singh, V.; Chaudhary, A.K. Preparation of Eudragit E100 microspheres by modified solvent evaporation method. Acta Pol. Pharm., 2011, 68(6), 975-980.
[PMID: 22125964]
[59]
Tromm, A.; Bunganič, I.; Tomsová, E.; Tulassay, Z.; Lukáš, M.; Kykal, J.; Bátovský, M.; Fixa, B.; Gabalec, L.; Safadi, R.; Kramm, H.J.; Altorjay, I.; Löhr, H.; Koutroubakis, I.; Bar-Meir, S.; Stimac, D.; Schäffeler, E.; Glasmacher, C.; Dilger, K.; Mohrbacher, R.; Greinwald, R. Budesonide 9 mg is at least as effective as mesalamine 4.5 g in patients with mildly to moderately active Crohn’s disease. Gastroenterology, 2011, 140(2), 425-434.e1.
[http://dx.doi.org/10.1053/j.gastro.2010.11.004] [PMID: 21070781]
[60]
Zeng, A.; Dong, K.; Wang, M.; Sun, J.; Dong, Y.; Wang, K.; Guo, C.; Yan, Y.; Zhang, L.; Shi, X.; Xing, J. Investigation of the colon-targeting, improvement on the side-effects and therapy on the experimental colitis in mouse of a resin microcapsule loading dexamethasone sodium phosphate. Drug Deliv., 2016, 23(6), 1992-2002.
[PMID: 26006768]
[61]
Xiao, B.; Si, X.; Zhang, M.; Merlin, D. Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis therapy. Colloids Surf. B Biointerfaces, 2015, 135, 379-385.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.081] [PMID: 26275840]
[62]
Jain, S.K.; Patel, K.; Rajpoot, K.; Jain, A. Development of a berberine loaded multifunctional design for the treatment of helicobacter pylori induced gastric ulcer. Drug Deliv. Lett., 2019, 9(1), 50-57.
[http://dx.doi.org/10.2174/2210303108666181120110756]
[63]
Patrey, N.K.; Rajpoot, K.; Jain, A.K.; Jain, S.K. Diltiazem loaded floating microspheres of ethylcellulose and Eudragit for gastric delivery: in vitro evaluation. AJBR, 2016, 2(2), 71-77.
[64]
Sareen, R.; Jain, N.; Rajkumari, A.; Dhar, K.L. pH triggered delivery of curcumin from Eudragit-coated chitosan microspheres for in-flammatory bowel disease: characterization and pharmacodynamic evaluation. Drug Deliv., 2016, 23(1), 55-62.
[http://dx.doi.org/10.3109/10717544.2014.903534] [PMID: 24758141]
[65]
Rajpoot, K.; Jain, S.K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1236-1247.
[http://dx.doi.org/10.1080/21691401.2017.1366338] [PMID: 28849671]
[66]
Rajpoot, K.; Jain, S.K. Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: development, characterization, and in vitro cytotoxicity study using HT-29 cells. J. Microencapsul., 2019, 36(7), 659-676.
[http://dx.doi.org/10.1080/02652048.2019.1665723] [PMID: 31495238]
[67]
Chaurasia, S.; Chaubey, P.; Patel, R.R.; Kumar, N.; Mishra, B. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies. Drug Dev. Ind. Pharm., 2016, 42(5), 694-700.
[PMID: 26165247]
[68]
Asghar, L.F.; Chandran, S. Multiparticulate formulation approach to colon specific drug delivery: current perspectives. J. Pharm. Pharm. Sci., 2006, 9(3), 327-338.
[PMID: 17207416]
[69]
Beloqui, A.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Préat, V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int. J. Pharm., 2014, 473(1-2), 203-212.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.009] [PMID: 25014369]
[70]
De, A.K.; Sana, S.; Datta, S.; Mukherjee, A. Protective efficacy of ursodeoxycholic acid nanoparticles in animal model of inflammatory bowel disease. J. Microencapsul., 2014, 31(8), 725-737.
[http://dx.doi.org/10.3109/02652048.2014.918666] [PMID: 24963957]
[71]
Sareen, R.; Nath, K.; Jain, N.; Dhar, K.L. Curcumin loaded microsponges for colon targeting in inflammatory bowel disease: fabrication, optimization, and in vitro and pharmacodynamic evaluation. BioMed Res. Int., 2014, 2014, 340-701.
[http://dx.doi.org/10.1155/2014/340701] [PMID: 25093165]
[72]
Kshirsagar, S.J.; Bhalekar, M.R.; Patel, J.N.; Mohapatra, S.K.; Shewale, N.S. Preparation and characterization of nanocapsules for colon-targeted drug delivery system. Pharm. Dev. Technol., 2012, 17(5), 607-613.
[http://dx.doi.org/10.3109/10837450.2011.557732] [PMID: 21428704]
[73]
Barea, M.J.; Jenkins, M.J.; Lee, Y.S.; Johnson, P.; Bridson, R.H. Encapsulation of liposomes within pH responsive microspheres for oral colonic drug delivery. Int. J. Biomater., 2012, 2012, 458-712.
[http://dx.doi.org/10.1155/2012/458712] [PMID: 22792110]
[74]
Tsai, S.W.; Yu, D.S.; Tsao, S.W.; Hsu, F.Y. Hyaluronan-cisplatin conjugate nanoparticles embedded in Eudragit S100-coated pectin/alginate microbeads for colon drug delivery. Int. J. Nanomedicine, 2013, 8, 2399-2407.
[http://dx.doi.org/10.2147/IJN.S46613] [PMID: 23861585]
[75]
Anande, N.M.; Jain, S.K.; Jain, N.K. Con-A conjugated mucoadhesive microspheres for the colonic delivery of diloxanide furoate. Int. J. Pharm., 2008, 359(1-2), 182-189.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.009] [PMID: 18486369]
[76]
Paharia, A.; Yadav, A.K.; Rai, G.; Jain, S.K.; Pancholi, S.S.; Agrawal, G.P. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS PharmSciTech, 2007, 8(1), 12.
[http://dx.doi.org/10.1208/pt0801012] [PMID: 17408212]
[77]
Li, H.; Sanchez-Vazquez, B.; Trindade, R.P.; Zou, Q.; Mai, Y.; Dou, L.; Zhu, L-M.; Williams, G.R. Electrospun oral formulations for combined photo-chemotherapy of colon cancer. Colloids Surf. B Biointerfaces, 2019, 183, 110411-110411.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110411] [PMID: 31421404]
[78]
Venkatesh, D.; Reddy, A.; Samanta, M.K.; Suresh, B. Development and in vitro evaluation of colonic drug delivery systems for tegaserod maleate. Asian J. Pharm., 2009, 3(1), 50.
[http://dx.doi.org/10.4103/0973-8398.49175]
[79]
Amrutkar, J.R.; Gattani, S.G. A novel hydrogel plug of Sterculia urens for pulsatile delivery: in vitro and in vivo evaluation. J. Microencapsul., 2012, 29(1), 72-82.
[http://dx.doi.org/10.3109/02652048.2011.629789] [PMID: 22034955]
[80]
Soni, M.L.; Namdeo, K.P.; Jain, S.K.; Gupta, M.; Dangi, J.S.; Kumar, M.; Dangi, Y.S. pH-enzyme di-dependent chronotherapeutic drug delivery system of theophylline for nocturnal asthma. Chem. Pharm. Bull. (Tokyo), 2011, 59(2), 191-195.
[http://dx.doi.org/10.1248/cpb.59.191] [PMID: 21297298]
[81]
Asghar, L.F.; Chandran, S. Design and evaluation of matrices of Eudragit with polycarbophil and carbopol for colon-specific delivery. J. Drug Target., 2008, 16(10), 741-757.
[http://dx.doi.org/10.1080/10611860802473345] [PMID: 19005938]
[82]
Li, Y.; Li, H.J.; Yang, G.R.; Gu, W.P.; Ma, Y.K.; Zhang, M.H.; Sun, J.; Sun, S.J. Colon-specific delivery tablets of sodium 4-aminosalicylic acid. Yao Xue Xue Bao, 2006, 41(10), 927-932.
[PMID: 17184108]
[83]
Ahrabi, S.F.; Madsen, G.; Dyrstad, K.; Sande, S.A.; Graffner, C. Development of pectin matrix tablets for colonic delivery of model drug ropivacaine. Eur. J. Pharm. Sci., 2000, 10(1), 43-52.
[http://dx.doi.org/10.1016/S0928-0987(99)00087-1] [PMID: 10699382]
[84]
Jain, S.K.; Rai, G.; Saraf, D.; Agrawal, G. Albendazole micro-spheres for colonic delivery. Pharm. Technol., 2004, 4, 67.
[85]
Dew, M.J.; Hughes, P.; Harries, A.D.; Williams, G.; Evans, B.K.; Rhodes, J. Maintenance of remission in ulcerative colitis with oral preparation of 5-aminosalicylic acid. Br. Med. J. (Clin. Res. Ed.), 1982, 285(6347), 1012.
[http://dx.doi.org/10.1136/bmj.285.6347.1012] [PMID: 6127137]
[86]
Dew, M.J.; Hughes, P.J.; Lee, M.G.; Evans, B.K.; Rhodes, J. An oral preparation to release drugs in the human colon. Br. J. Clin. Pharmacol., 1982, 14(3), 405-408.
[http://dx.doi.org/10.1111/j.1365-2125.1982.tb01999.x] [PMID: 7126413]
[87]
Oshi, M.A.; Naeem, M.; Bae, J.; Kim, J.; Lee, J.; Hasan, N.; Kim, W.; Im, E.; Jung, Y.; Yoo, J.W. Colon-targeted dexamethasone mi-crocrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of inflammatory bowel disease. Carbohydr. Polym., 2018, 198, 434-442.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.107] [PMID: 30093020]
[88]
Sareen, R.; Jain, N.; Dhar, K.L. Development of colon specific microspheres of flurbiprofen for inflammatory bowel disease. Curr. Drug Deliv., 2013, 10(5), 564-571.
[http://dx.doi.org/10.2174/1567201811310050008] [PMID: 23360241]
[89]
Kietzmann, D.; Moulari, B.; Béduneau, A.; Pellequer, Y.; Lamprecht, A. Colonic delivery of carboxyfluorescein by pH-sensitive microspheres in experimental colitis. Eur. J. Pharm. Biopharm., 2010, 76(2), 290-295.
[http://dx.doi.org/10.1016/j.ejpb.2010.06.013] [PMID: 20600885]
[90]
Ghorab, D.M.; Amin, M.M.; Khowessah, O.M.; Tadros, M.I. Colon-targeted celecoxib-loaded Eudragit® S100-coated poly-ε-caprolactone microparticles: preparation, characterization and in vivo evaluation in rats. Drug Deliv., 2011, 18(7), 523-535.
[http://dx.doi.org/10.3109/10717544.2011.595841] [PMID: 21793779]
[91]
Simonoska Crcarevska, M.; Glavas Dodov, M.; Goracinova, K. Chitosan coated Ca-alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. Eur. J. Pharm. Biopharm., 2008, 68(3), 565-578.
[http://dx.doi.org/10.1016/j.ejpb.2007.06.007] [PMID: 17651952]
[92]
Krishnamachari, Y.; Madan, P.; Lin, S. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int. J. Pharm., 2007, 338(1-2), 238-247.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.015] [PMID: 17368982]
[93]
Bansal, D.; Gulbake, A.; Tiwari, J.; Jain, S.K. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int. J. Biol. Macromol., 2016, 82, 687-695.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.052] [PMID: 26464131]
[94]
Prasad, S.; Dangi, J.S. Development and characterization of pH responsive polymeric nanoparticles of SN-38 for colon cancer. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1824-1834.
[http://dx.doi.org/10.3109/21691401.2015.1105239] [PMID: 26540095]
[95]
Li, P.; Yang, Z.; Wang, Y.; Peng, Z.; Li, S.; Kong, L.; Wang, Q. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J. Microencapsul., 2015, 32(1), 40-45.
[http://dx.doi.org/10.3109/02652048.2014.944947] [PMID: 25198909]
[96]
Ma, Y.; Coombes, A.G. Designing colon-specific delivery systems for anticancer drug-loaded nanoparticles: an evaluation of alginate carriers. J. Biomed. Mater. Res. A, 2014, 102(9), 3167-3176.
[http://dx.doi.org/10.1002/jbm.a.34988] [PMID: 24124007]
[97]
Jain, A.; Jain, S.K.; Ganesh, N.; Barve, J.; Beg, A.M. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine (Lond.), 2010, 6(1), 179-190.
[http://dx.doi.org/10.1016/j.nano.2009.03.002] [PMID: 19447205]
[98]
Anwer, M.K.; Al-Shdefat, R.; Ezzeldin, E.; Alshahrani, S.M.; Alshetaili, A.S.; Iqbal, M. Preparation, evaluation and bioavailability studies of Eudragit coated PLGA nanoparticles for sustained release of eluxadoline for the treatment of irritable bowel syndrome. Front. Pharmacol., 2017, 8, 844.
[http://dx.doi.org/10.3389/fphar.2017.00844] [PMID: 29209215]
[99]
Ansari, F.; Pourjafar, H.; Jodat, V.; Sahebi, J.; Ataei, A. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express, 2017, 7(1), 144.
[http://dx.doi.org/10.1186/s13568-017-0442-x] [PMID: 28687035]
[100]
Pandey, S.; Vijayendra Swamy, S.M.; Ubaid Ulla, U.M.; Gupta, A.; Patel, H.; Yadav, J.S. Cell line and augument cellular uptake study of statistically optimized sustained release capecitabine loaded Eudragit S100/PLGA(poly(lacticco- glycolic acid)) nanoparticles for colon targeting. Curr. Drug Deliv., 2017, 14(6), 887-899.
[http://dx.doi.org/10.2174/1567201813666160817150621] [PMID: 27538461]
[101]
Sood, A.; Dev, A.; Mohanbhai, S.J.; Shrimali, N.; Kapasiya, M.; Kushwaha, A.C.; Roy Choudhury, S.; Guchhait, P.; Karmakar, S. Disulfide-bridged chitosan-Eudragit S-100 nanoparticles for colorectal cancer. ACS Appl. Nano Mater., 2019, 2(10), 6409-6417.
[http://dx.doi.org/10.1021/acsanm.9b01377]
[102]
Xu, Q.; Zhang, N.; Qin, W.; Liu, J.; Jia, Z.; Liu, H. Preparation, in vitro and in vivo evaluation of budesonide loaded core/shell nanofibers as oral colonic drug delivery system. J. Nanosci. Nanotechnol., 2013, 13(1), 149-156.
[http://dx.doi.org/10.1166/jnn.2013.6920] [PMID: 23646710]
[103]
Kumari, A.; Jain, A.; Hurkat, P.; Tiwari, A.; Jain, S.K. Eudragit S100 coated microsponges for colon targeting of prednisolone. Drug Dev. Ind. Pharm., 2018, 44(6), 902-913.
[http://dx.doi.org/10.1080/03639045.2017.1420079] [PMID: 29260916]
[104]
Jain, V.; Jain, D.; Singh, R. Factors effecting the morphology of Eudragit S-100 based microsponges bearing dicyclomine for colonic delivery. J. Pharm. Sci., 2011, 100(4), 1545-1552.
[http://dx.doi.org/10.1002/jps.22360] [PMID: 20960455]
[105]
Chuong, M.C.; Christensen, J.M.; Ayres, J.W. Sustained delivery of intact drug to the colon: mesalamine formulation and temporal gastrointestinal transit analysis. Pharm. Dev. Technol., 2009, 14(1), 116-125.
[http://dx.doi.org/10.1080/10837450802420559] [PMID: 18821272]
[106]
Bansode, S.T.; Kshirsagar, S.J.; Madgulkar, A.R.; Bhalekar, M.R.; Bandivadekar, M.M. Design and development of SMEDDS for colon-specific drug delivery. Drug Dev. Ind. Pharm., 2016, 42(4), 611-623.
[PMID: 26146768]
[107]
Xu, M.; Sun, M.; Qiao, H.; Ping, Q.; Elamin, E.S. Preparation and evaluation of colon adhesive pellets of 5-aminosalicylic acid. Int. J. Pharm., 2014, 468(1-2), 165-171.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.040] [PMID: 24746693]
[108]
Hu, Z.; Kimura, G.; Ito, Y.; Mawatari, S.; Shimokawa, T.; Yoshikawa, H.; Yoshikawa, Y.; Takada, K. Technology to obtain sustained release characteristics of drugs after delivered to the colon. J. Drug Target., 1999, 6(6), 439-448.
[http://dx.doi.org/10.3109/10611869908996850] [PMID: 10937289]
[109]
Mastiholimath, V.S.; Dandagi, P.M.; Jain, S.S.; Gadad, A.P.; Kulkarni, A.R. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. Int. J. Pharm., 2007, 328(1), 49-56.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.045] [PMID: 16942847]
[110]
Nandy, B.C.; Verma, V.; Dey, S.; Mazumder, B. Three levels face centered central composite design of colon targeted micro-particulates system of celecoxib: screening of formulations variables and in vivo studies. Curr. Drug Deliv., 2014, 11(5), 621-635.
[http://dx.doi.org/10.2174/1567201811666140519161628] [PMID: 24844925]
[111]
Nour, S.A.; Abdelmalak, N.S.; Naguib, M.J. Bumadizone calcium dihydrate microspheres compressed tablets for colon targeting: formulation, optimization and in vivo evaluation in rabbits. Drug Deliv., 2015, 22(3), 286-297.
[http://dx.doi.org/10.3109/10717544.2014.889779] [PMID: 24601826]
[112]
Gavini, E.; Spada, G.; Rassu, G.; Cerri, G.; Brundu, A.; Cossu, M.; Sorrenti, M.; Giunchedi, P. Development of solid nanoparticles based on hydroxypropyl-β-cyclodextrin aimed for the colonic transmucosal delivery of diclofenac sodium. J. Pharm. Pharmacol., 2011, 63(4), 472-482.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01220.x] [PMID: 21401598]
[113]
Khalid, Q.; Ahmad, M.; Minhas, M.U.; Rashid, H. Development and evaluation of eudragit based microparticles of dexibuprofen for site specific drug release. Pak. J. Pharm. Sci., 2018, 31(4), 1385-1392.
[PMID: 30033424]
[114]
Shen, X.; Yu, D.; Zhu, L.; Branford-White, C.; White, K.; Chatterton, N.P. Electrospun diclofenac sodium loaded Eudragit® L 100-55 nanofibers for colon-targeted drug delivery. Int. J. Pharm., 2011, 408(1-2), 200-207.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.058] [PMID: 21291969]
[115]
Naeem, M.; Bae, J.; Oshi, M.A.; Kim, M.S.; Moon, H.R.; Lee, B.L.; Im, E.; Jung, Y.; Yoo, J.W. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. Int. J. Nanomedicine, 2018, 13, 1225-1240.
[http://dx.doi.org/10.2147/IJN.S157566] [PMID: 29535519]
[116]
Petrovska-Jovanovska, V.; Geskovski, N.; Crcarevska, M.S.; Memed, O.; Petruševski, G.; Chachorovska, M.; Petrusevska, M.; Poceva-Panovska, A.; Mladenovska, K.; Ugarkovic, S.; Glavas-Dodov, M. Formulation and characterization of ORMOSIL particles loaded with budesonide for local colonic delivery. Int. J. Pharm., 2015, 484(1-2), 75-84.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.044] [PMID: 25708004]
[117]
Naeem, M.; Choi, M.; Cao, J.; Lee, Y.; Ikram, M.; Yoon, S.; Lee, J.; Moon, H.R.; Kim, M.S.; Jung, Y.; Yoo, J.W. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des. Devel. Ther., 2015, 9, 3789-3799.
[PMID: 26229440]
[118]
Shah, S.U.; Socha, M.; Sejil, C.; Gibaud, S. Spray-dried microparticles of glutathione and S-nitrosoglutathione based on Eudragit® FS 30D polymer. Ann. Pharm. Fr., 2017, 75(2), 95-104.
[http://dx.doi.org/10.1016/j.pharma.2016.09.001] [PMID: 27770996]
[119]
Kulthe, S.S.; Bahekar, J.K.; Godhani, C.C.; Choudhari, Y.M.; Inamdar, N.N.; Mourya, V.K. Modulated release of 5-fluorouracil from pH-sensitive and colon targeted pellets: an industrially feasible approach. Drug Dev. Ind. Pharm., 2013, 39(1), 138-145.
[http://dx.doi.org/10.3109/03639045.2012.660951] [PMID: 22369145]
[120]
Bott, C.; Rudolph, M.W.; Schneider, A.R.; Schirrmacher, S.; Skalsky, B.; Petereit, H.U.; Langguth, P.; Dressman, J.B.; Stein, J. In vivo evaluation of a novel pH- and time-based multiunit colonic drug delivery system. Aliment. Pharmacol. Ther., 2004, 20(3), 347-353.
[http://dx.doi.org/10.1111/j.1365-2036.2004.02033.x] [PMID: 15274672]
[121]
Lamprecht, A.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Design of pH-sensitive microspheres for the colonic delivery of the immunosuppressive drug tacrolimus. Eur. J. Pharm. Biopharm., 2004, 58(1), 37-43.
[http://dx.doi.org/10.1016/j.ejpb.2004.01.003] [PMID: 15207535]
[122]
Lamprecht, A.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. pH-sensitive microsphere delivery increases oral bioavailability of calcitonin. J. Control. Release, 2004, 98(1), 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.001] [PMID: 15245884]
[123]
Lamprecht, A.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Microsphere design for the colonic delivery of 5-fluorouracil. J. Control. Release, 2003, 90(3), 313-322.
[http://dx.doi.org/10.1016/S0168-3659(03)00195-0] [PMID: 12880698]
[124]
Meissner, Y.; Ubrich, N.; Ghazouani, F.E.; Maincent, P.; Lamprecht, A. Low molecular weight heparin loaded pH-sensitive microparticles. Int. J. Pharm., 2007, 335(1-2), 147-153.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.014] [PMID: 17150317]
[125]
Meissner, Y.; Pellequer, Y.; Lamprecht, A. Nanoparticles in inflammatory bowel disease: particle targeting versus pH-sensitive delivery. Int. J. Pharm., 2006, 316(1-2), 138-143.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.032] [PMID: 16675176]
[126]
Srivastava, A.; Gowda, D.V.; Madhunapantula, S.V. Siddaramaiah. Development and efficacy assessment of an enteric coated porous tablet loaded with F4 fimbriae for oral vaccination of piglets against F4+ Escherichia coli infections. Curr. Drug Deliv., 2016, 13(1), 121-130.
[http://dx.doi.org/10.2174/1567201812999150727131119] [PMID: 26212139]
[127]
Singh, B.; Jiang, T.; Kim, Y.K.; Kang, S.K.; Choi, Y.J.; Cho, C.S. Release and cytokine production of BmpB from BmpB-loaded pH-sensitive and mucoadhesive thiolated Eudragit microspheres. J. Nanosci. Nanotechnol., 2015, 15(1), 606-610.
[http://dx.doi.org/10.1166/jnn.2015.8781] [PMID: 26328412]
[128]
Li, H.S.; Singh, B.; Park, T.E.; Hong, Z.S.; Kang, S.K.; Cho, C.S.; Choi, Y.J. Mannan-decorated thiolated Eudragit microspheres for targeting antigen presenting cells via nasal vaccination. Eur. J. Pharm. Sci., 2015, 80, 16-25.
[http://dx.doi.org/10.1016/j.ejps.2015.09.014] [PMID: 26415829]
[129]
López, Y.; Pastor, M.; Infante, J.F.; Díaz, D.; Oliva, R.; Fernández, S.; Cedré, B.; Hernández, T.; Campos, L.; Esquisabel, A.; Pedraz, J.L.; Perez, V.; Talavera, A. Repeated dose toxicity study of Vibrio cholerae-loaded gastro-resistant microparticles. J. Microencapsul., 2014, 31(1), 86-92.
[http://dx.doi.org/10.3109/02652048.2013.808278] [PMID: 23795905]
[130]
de Barros, J.M.S.; Scherer, T.; Charalampopoulos, D.; Khutoryanskiy, V.V.; Edwards, A.D. A laminated polymer film formulation for enteric delivery of live vaccine and probiotic bacteria. J. Pharm. Sci., 2014, 103(7), 2022-2032.
[http://dx.doi.org/10.1002/jps.23997] [PMID: 24801679]
[131]
Katara, R.; Majumdar, D.K. Eudragit RL 100-based nanoparticulate system of aceclofenac for ocular delivery. Colloids Surf. B Biointerfaces, 2013, 103, 455-462.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.056] [PMID: 23261566]
[132]
Marais, E.; Hamman, J.; Plessis, Ld.; Lemmer, R.; Steenekamp, J. Eudragit® L100/N-trimethylchitosan chloride microspheres for oral insulin delivery. Molecules, 2013, 18(6), 6734-6747.
[http://dx.doi.org/10.3390/molecules18066734] [PMID: 23749161]
[133]
Jain, D.; Majumdar, D.K.; Panda, A.K. Insulin loaded eudragit L100 microspheres for oral delivery: preliminary in vitro studies. J. Biomater. Appl., 2006, 21(2), 195-211.
[http://dx.doi.org/10.1177/0885328206060436] [PMID: 16443624]
[134]
Zhang, Y.; Du, X.; Zhang, Y.; Li, G.; Cai, C.; Xu, J.; Tang, X. Thiolated eudragit-based nanoparticles for oral insulin delivery: preparation, characterization, and evaluation using intestinal epithelial cells in vitro. Macromol. Biosci., 2014, 14(6), 842-852.
[http://dx.doi.org/10.1002/mabi.201300515] [PMID: 24740974]
[135]
Zhang, Y.; Wu, X.; Meng, L.; Zhang, Y.; Ai, R.; Qi, N.; He, H.; Xu, H.; Tang, X. Thiolated Eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation. Int. J. Pharm., 2012, 436(1-2), 341-350.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.054] [PMID: 22766443]
[136]
Dewan, I.; Islam, M.M.; Al-Hasan, M.; Nath, J.; Sultana, S.; Rana, M.S. Surface Deposition and coalescence and coacervation phase separation methods: in vitro study and compatibility analysis of Eudragit RS30D, Eudragit RL30D, and carbopol-PLA loaded metronidazole microspheres. J. Pharm. (Cairo), 2015, 2015254930
[137]
Naha, P.C.; Kanchan, V.; Manna, P.K.; Panda, A.K. Improved bioavailability of orally delivered insulin using Eudragit-L30D coated PLGA microparticles. J. Microencapsul., 2008, 25(4), 248-256.
[http://dx.doi.org/10.1080/02652040801903843] [PMID: 18465311]
[138]
Wu, Z.M.; Zhou, L.; Guo, X.D.; Jiang, W.; Ling, L.; Qian, Y.; Luo, K.Q.; Zhang, L.J. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int. J. Pharm., 2012, 425(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.055] [PMID: 22248666]
[139]
Li, M.G.; Lu, W.L.; Wang, J.C.; Zhang, X.; Zhang, H.; Wang, X.Q.; Wu, C.S.; Zhang, Q. Preparation and characterization of insulin nanoparticles employing chitosan and poly(methylmethacrylate/methylmethacrylic acid) copolymer. J. Nanosci. Nanotechnol., 2006, 6(9-10), 2874-2886.
[http://dx.doi.org/10.1166/jnn.2006.411] [PMID: 17048494]
[140]
Jelvehgari, M.; Zakeri-Milani, P.; Siahi-Shadbad, M.R.; Loveymi, B.D.; Nokhodchi, A.; Azari, Z.; Valizadeh, H. Development of pH-sensitive insulin nanoparticles using Eudragit L100-55 and chitosan with different molecular weights. AAPS PharmSciTech, 2010, 11(3), 1237-1242.
[http://dx.doi.org/10.1208/s12249-010-9488-7] [PMID: 20686881]
[141]
Damgé, C.; Socha, M.; Ubrich, N.; Maincent, P. Poly(epsilon-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J. Pharm. Sci., 2010, 99(2), 879-889.
[http://dx.doi.org/10.1002/jps.21874] [PMID: 19691099]
[142]
Machida, Y. Development of topical drug delivery systems utilizing polymeric materials. Yakugaku Zasshi, 1993, 113(5), 356-368.
[http://dx.doi.org/10.1248/yakushi1947.113.5_356] [PMID: 8336278]
[143]
von Halling Laier, C.; Gibson, B.; Moreno, J.A.S.; Rades, T.; Hook, S.; Nielsen, L.H.; Boisen, A. Microcontainers for protection of oral vaccines, in vitro and in vivo evaluation. J. Control. Release, 2019, 294, 91-101.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.030] [PMID: 30550938]
[144]
Año, G.; Esquisabel, A.; Pastor, M.; Talavera, A.; Cedré, B.; Fernández, S.; Sifontes, S.; Aranguren, Y.; Falero, G.; García, L.; Solís, R.L.; Pedraz, J.L. A new oral vaccine candidate based on the microencapsulation by spray-drying of inactivated Vibrio cholerae. Vaccine, 2011, 29(34), 5758-5764.
[http://dx.doi.org/10.1016/j.vaccine.2011.05.098] [PMID: 21683110]
[145]
Ozgunduz, H.I.; Ozturk, A.B.; Kandilci, H.G.; Acarali, N. Characterization study and optimization of swelling behavior for p(HEMA-co-Eudragit L-100) hydrogels by using Taguchi method. Biomed. Mater. Eng., 2018, 29(2), 191-203.
[http://dx.doi.org/10.3233/BME-171722] [PMID: 29457593]
[146]
Senthil Rajan, D.; Mandal, U.K.; Veeran Gowda, K.; Bose, A.; Ganesan, M.; Pal, T.K. Oral delivery system of insulin microspheres: effect on relative hypoglycemia of diabetic albino rats. Boll. Chim. Farm., 2004, 143(8), 315-318.
[PMID: 15884295]
[147]
Silva, C.M.; Ribeiro, A.J.; Ferreira, D.; Veiga, F. Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation. Eur. J. Pharm. Sci., 2006, 29(2), 148-159.
[http://dx.doi.org/10.1016/j.ejps.2006.06.008] [PMID: 16952452]
[148]
Agarwal, V.; Nazzal, S.; Khan, M.A. Optimization and in vivo evaluation of an oral dual controlled-release tablet dosage form of insulin and duck ovomucoid. Pharm. Dev. Technol., 2008, 13(4), 291-298.
[http://dx.doi.org/10.1080/10837450802089123] [PMID: 18618331]
[149]
Agarwal, V.; Khan, M.A.; Nazzal, S. Polymethacrylate based microparticulates of insulin for oral delivery, part II: solid state characterization. Pharmazie, 2008, 63(2), 122-128.
[PMID: 18380398]
[150]
Agarwal, V.; Reddy, I.K.; Khan, M.A. Polymethyacrylate based microparticulates of insulin for oral delivery: preparation and in vitro dissolution stability in the presence of enzyme inhibitors. Int. J. Pharm., 2001, 225(1-2), 31-39.
[http://dx.doi.org/10.1016/S0378-5173(01)00740-2] [PMID: 11489552]
[151]
Mundargi, R.C.; Rangaswamy, V.; Aminabhavi, T.M. pH-Sensitive oral insulin delivery systems using Eudragit microspheres. Drug Dev. Ind. Pharm., 2011, 37(8), 977-985.
[http://dx.doi.org/10.3109/03639045.2011.552908] [PMID: 21417605]
[152]
Paul, W.; Sharma, C.P. Tricalcium phosphate delayed release formulation for oral delivery of insulin: a proof-of-concept study. J. Pharm. Sci., 2008, 97(2), 875-882.
[http://dx.doi.org/10.1002/jps.21012] [PMID: 17497735]
[153]
Jain, D.; Panda, A.K.; Majumdar, D.K. Eudragit S100 entrapped insulin microspheres for oral delivery. AAPS PharmSciTech, 2005, 6(1), E100-E107.
[http://dx.doi.org/10.1208/pt060116] [PMID: 16353953]
[154]
Chen, S.; Guo, F.; Deng, T.; Zhu, S.; Liu, W.; Zhong, H.; Yu, H.; Luo, R.; Deng, Z. Eudragit S100-coated chitosan nanoparticles co-loading tat for enhanced oral colon absorption of insulin. AAPS PharmSciTech, 2017, 18(4), 1277-1287.
[http://dx.doi.org/10.1208/s12249-016-0594-z] [PMID: 27480441]
[155]
Krauland, A.H.; Bernkop-Schnürch, A. Thiomers: development and in vitro evaluation of a peroral microparticulate peptide delivery system. Eur. J. Pharm. Biopharm., 2004, 57(2), 181-187.
[http://dx.doi.org/10.1016/j.ejpb.2003.09.011] [PMID: 15018973]
[156]
Viehof, A.; Javot, L.; Béduneau, A.; Pellequer, Y.; Lamprecht, A. Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents. Int. J. Pharm., 2013, 443(1-2), 169-174.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.017] [PMID: 23328680]
[157]
Sahu, K.K.; Pandey, R.S. Development and characterization of HBsAg-loaded Eudragit nanoparticles for effective colonic immunization. Pharm. Dev. Technol., 2018, 24(2), 166-175.
[PMID: 29468926]
[158]
Halimi, M.; Alishahi, M.; Abbaspour, M.R.; Ghorbanpoor, M.; Tabandeh, M.R. Efficacy of a Eudragit L30D-55 encapsulated oral vaccine containing inactivated bacteria (Lactococcus garvieae/Streptococcus iniae) in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 2018, 81, 430-437.
[http://dx.doi.org/10.1016/j.fsi.2018.07.048] [PMID: 30056210]
[159]
Bhatt, P.; Khatri, N.; Kumar, M.; Baradia, D.; Misra, A. Microbeads mediated oral plasmid DNA delivery using polymethacrylate vectors: an effectual groundwork for colorectal cancer. Drug Deliv., 2015, 22(6), 849-861.
[http://dx.doi.org/10.3109/10717544.2014.898348] [PMID: 24725027]
[160]
Gargouri, M.; Sapin, A.; Bouli, S.; Becuwe, P.; Merlin, J.L.; Maincent, P. Optimization of a new non-viral vector for transfection: Eudragit nanoparticles for the delivery of a DNA plasmid. Technol. Cancer Res. Treat., 2009, 8(6), 433-444.
[http://dx.doi.org/10.1177/153303460900800605] [PMID: 19925027]
[161]
Friedmann, T. Human gene therapy--an immature genie, but certainly out of the bottle. Nat. Med., 1996, 2(2), 144-147.
[http://dx.doi.org/10.1038/nm0296-144] [PMID: 8574951]
[162]
Crystal, R.G. The gene as the drug. Nat. Med., 1995, 1(1), 15-17.
[http://dx.doi.org/10.1038/nm0195-15] [PMID: 7584940]
[163]
Ronzani, C.; Safar, R.; Diab, R.; Chevrier, J.; Paoli, J.; Abdel-Wahhab, M.A.; Le Faou, A.; Rihn, B.H.; Joubert, O. Viability and gene expression responses to polymeric nanoparticles in human and rat cells. Cell Biol. Toxicol., 2014, 30(3), 137-146.
[http://dx.doi.org/10.1007/s10565-014-9275-4] [PMID: 24748055]
[164]
Mischiati, C.; Sereni, A.; Finotti, A.; Breda, L.; Cortesi, R.; Nastruzzi, C.; Romanelli, A.; Saviano, M.; Bianchi, N.; Pedone, C.; Borgatti, M.; Gambari, R. Complexation to cationic microspheres of double-stranded peptide nucleic acid-DNA chimeras exhibiting decoy activity. J. Biomed. Sci., 2004, 11(5), 697-704.
[http://dx.doi.org/10.1007/BF02256136] [PMID: 15316146]
[165]
Esposito, E.; Sebben, S.; Cortesi, R.; Menegatti, E.; Nastruzzi, C. Preparation and characterization of cationic microspheres for gene delivery. Int. J. Pharm., 1999, 189(1), 29-41.
[http://dx.doi.org/10.1016/S0378-5173(99)00231-8] [PMID: 10518683]
[166]
Pignatello, R.; Bucolo, C.; Spedalieri, G.; Maltese, A.; Puglisi, G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials, 2002, 23(15), 3247-3255.
[http://dx.doi.org/10.1016/S0142-9612(02)00080-7] [PMID: 12102196]
[167]
Pignatello, R.; Bucolo, C.; Ferrara, P.; Maltese, A.; Puleo, A.; Puglisi, G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur. J. Pharm. Sci., 2002, 16(1-2), 53-61.
[http://dx.doi.org/10.1016/S0928-0987(02)00057-X] [PMID: 12113891]
[168]
Lütfi, G.; Müzeyyen, D. Preparation and characterization of polymeric and lipid nanoparticles of pilocarpine HCl for ocular application. Pharm. Dev. Technol., 2013, 18(3), 701-709.
[http://dx.doi.org/10.3109/10837450.2012.705298] [PMID: 22813238]
[169]
Zhang, W.; Li, X.; Ye, T.; Chen, F.; Yu, S.; Chen, J.; Yang, X.; Yang, N.; Zhang, J.; Liu, J.; Pan, W.; Kong, J. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int. J. Nanomedicine, 2014, 9, 4305-4315.
[PMID: 25246787]
[170]
Das, S.; Suresh, P.K. Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomedicine (Lond.), 2011, 7(2), 242-247.
[http://dx.doi.org/10.1016/j.nano.2010.07.003] [PMID: 20692375]
[171]
Adibkia, K.; Siahi Shadbad, M.R.; Nokhodchi, A.; Javadzedeh, A.; Barzegar-Jalali, M.; Barar, J.; Mohammadi, G.; Omidi, Y. Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis. J. Drug Target., 2007, 15(6), 407-416.
[http://dx.doi.org/10.1080/10611860701453125] [PMID: 17613659]
[172]
Vyas, S.P.; Ramchandraiah, S.; Jain, C.P.; Jain, S.K. Polymeric pseudolatices bearing pilocarpine for controlled ocular delivery. J. Microencapsul., 1992, 9(3), 347-355.
[http://dx.doi.org/10.3109/02652049209021249] [PMID: 1403485]
[173]
Khan, M.S.; Vishakante, G.D.; Bathool, A. Development and characterization of pilocarpine loaded Eudragit nanosuspensions for ocular drug delivery. J. Biomed. Nanotechnol., 2013, 9(1), 124-131.
[http://dx.doi.org/10.1166/jbn.2013.1475] [PMID: 23627075]
[174]
Verma, P.; Gupta, R.N.; Jha, A.K.; Pandey, R. Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide. Drug Deliv., 2013, 20(7), 269-276.
[http://dx.doi.org/10.3109/10717544.2013.834417] [PMID: 24044644]
[175]
Mandal, B.; Alexander, K.S.; Riga, A.T. Sulfacetamide loaded Eudragit® RL100 nanosuspension with potential for ocular delivery. J. Pharm. Pharm. Sci., 2010, 13(4), 510-523.
[http://dx.doi.org/10.18433/J3SW2T] [PMID: 21486528]
[176]
Das, S.; Suresh, P.K.; Desmukh, R. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine (Lond.), 2010, 6(2), 318-323.
[http://dx.doi.org/10.1016/j.nano.2009.09.002] [PMID: 19800990]
[177]
Aksungur, P.; Demirbilek, M.; Denkbaş, E.B.; Vandervoort, J.; Ludwig, A.; Unlü, N. Development and characterization of cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J. Control. Release, 2011, 151(3), 286-294.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.010] [PMID: 21241752]
[178]
Pignatello, R.; Ferro, M.; De Guidi, G.; Salemi, G.; Vandelli, M.A.; Guccione, S.; Geppi, M.; Forte, C.; Puglisi, G. Preparation, characterisation and photosensitivity studies of solid dispersions of diflunisal and Eudragit RS100 and RL100. Int. J. Pharm., 2001, 218(1-2), 27-42.
[http://dx.doi.org/10.1016/S0378-5173(01)00597-X] [PMID: 11337147]
[179]
Ibrahim, H.K.; El-Leithy, I.S.; Makky, A.A. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol. Pharm., 2010, 7(2), 576-585.
[http://dx.doi.org/10.1021/mp900279c] [PMID: 20163167]
[180]
Duarte, A.R.; Roy, C.; Vega-González, A.; Duarte, C.M.; Subra-Paternault, P. Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques. Int. J. Pharm., 2007, 332(1-2), 132-139.
[http://dx.doi.org/10.1016/j.ijpharm.2006.09.041] [PMID: 17055198]
[181]
Pignatello, R.; Ricupero, N.; Bucolo, C.; Maugeri, F.; Maltese, A.; Puglisi, G. Preparation and characterization of eudragit retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech, 2006, 7(1), E1-E7.
[http://dx.doi.org/10.1208/pt070127] [PMID: 16584139]
[182]
Al-Kassas, R. Design and in vitro evaluation of gentamicin-Eudragit microspheres intended for intra-ocular administration. J. Microencapsul., 2004, 21(1), 71-81.
[http://dx.doi.org/10.1080/02652040310001619992] [PMID: 14718187]
[183]
Ahuja, M.; Dhake, A.S.; Sharma, S.K.; Majumdar, D.K. Diclofenac-loaded Eudragit S100 nanosuspension for ophthalmic delivery. J. Microencapsul., 2011, 28(1), 37-45.
[http://dx.doi.org/10.3109/02652048.2010.523794] [PMID: 21171815]
[184]
Quinteros, D.A.; Tártara, L.I.; Palma, S.D.; Manzo, R.H.; Allemandi, D.A. Ocular delivery of flurbiprofen based on Eudragit(®) E-flurbiprofen complex dispersed in aqueous solution: preparation, characterization, in vitro corneal penetration, and ocular irritation. J. Pharm. Sci., 2014, 103(12), 3859-3868.
[http://dx.doi.org/10.1002/jps.24153] [PMID: 25294798]
[185]
Paliwal, S.K.; Chauhan, R.; Sharma, V.; Majumdar, D.K.; Paliwal, S. Entrapment of ketorolac tromethamine in polymeric vehicle for controlled drug delivery. Indian J. Pharm. Sci., 2009, 71(6), 687-691.
[http://dx.doi.org/10.4103/0250-474X.59555] [PMID: 20376226]
[186]
Cortesi, R.; Ajanji, S.C.; Sivieri, E.; Manservigi, M.; Fundueanu, G.; Menegatti, E.; Esposito, E. Eudragit microparticles as a possible tool for ophthalmic administration of acyclovir. J. Microencapsul., 2007, 24(5), 445-456.
[http://dx.doi.org/10.1080/02652040701374889] [PMID: 17578734]
[187]
Khopade, A.J.; Jain, N.K. Self assembling nanostructures for sustained ophthalmic drug delivery. Pharmazie, 1995, 50(12), 812-814.
[PMID: 8584558]
[188]
Bhagav, P.; Upadhyay, H.; Chandran, S. Brimonidine tartrate-eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech, 2011, 12(4), 1087-1101.
[http://dx.doi.org/10.1208/s12249-011-9675-1] [PMID: 21879393]
[189]
Bucolo, C.; Maltese, A.; Maugeri, F.; Busà, B.; Puglisi, G.; Pignatello, R. Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromene. J. Pharm. Pharmacol., 2004, 56(7), 841-846.
[http://dx.doi.org/10.1211/0022357023835] [PMID: 15233861]
[190]
Tian, S.; Li, J.; Tao, Q.; Zhao, Y.; Lv, Z.; Yang, F.; Duan, H.; Chen, Y.; Zhou, Q.; Hou, D. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier. Int. J. Nanomedicine, 2018, 13, 415-428.
[http://dx.doi.org/10.2147/IJN.S146346] [PMID: 29391798]
[191]
Katara, R.; Sachdeva, S.; Majumdar, D.K. Design, characterization, and evaluation of aceclofenac-loaded Eudragit RS 100 nanoparticulate system for ocular delivery. Pharm. Dev. Technol., 2019, 24(3), 368-379.
[192]
Bucolo, C.; Maltese, A.; Puglisi, G.; Pignatello, R. Enhanced ocular anti-inflammatory activity of ibuprofen carried by an Eudragit RS100 nanoparticle suspension. Ophthalmic Res., 2002, 34(5), 319-323.
[http://dx.doi.org/10.1159/000065608] [PMID: 12381895]
[193]
Contri, R.V.; Kulkamp-Guerreiro, I.C.; da Silva, S.J.; Frank, L.A.; Pohlmann, A.R.; Guterres, S.S. Nanoencapsulation of rose-hip oil prevents oil oxidation and allows obtainment of gel and film topical formulations. AAPS PharmSciTech, 2016, 17(4), 863-871.
[http://dx.doi.org/10.1208/s12249-015-0379-9] [PMID: 26381915]
[194]
Frederiksen, K.; Guy, R.H.; Petersson, K. Formulation considerations in the design of topical, polymeric film-forming systems for sustained drug delivery to the skin. Eur. J. Pharm. Biopharm., 2015, 91, 9-15.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.002] [PMID: 25595740]
[195]
Lusina Kregar, M.; Dürrigl, M.; Rožman, A.; Jelčić, Ž.; Cetina-Čižmek, B.; Filipović-Grčić, J. Development and validation of an in vitro release method for topical particulate delivery systems. Int. J. Pharm., 2015, 485(1-2), 202-214.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.018] [PMID: 25772416]
[196]
Pande, V.V.; Kadnor, N.A.; Kadam, R.N.; Upadhye, S.A. Fabrication and characterization of sertaconazole nitrate microsponge as a topical drug delivery system. Indian J. Pharm. Sci., 2015, 77(6), 675-680.
[http://dx.doi.org/10.4103/0250-474X.174986] [PMID: 26997694]
[197]
Guo, C.; Khengar, R.H.; Sun, M.; Wang, Z.; Fan, A.; Zhao, Y. Acid-responsive polymeric nanocarriers for topical adapalene delivery. Pharm. Res., 2014, 31(11), 3051-3059.
[http://dx.doi.org/10.1007/s11095-014-1398-z] [PMID: 24805280]
[198]
Loira-Pastoriza, C.; Sapin-Minet, A.; Diab, R.; Grossiord, J.L.; Maincent, P. Low molecular weight heparin gels, based on nanoparticles, for topical delivery. Int. J. Pharm., 2012, 426(1-2), 256-262.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.044] [PMID: 22310458]
[199]
Bautzová, T.; Rabišková, M.; Béduneau, A.; Pellequer, Y.; Lamprecht, A. Bioadhesive pellets increase local 5-aminosalicylic acid concentration in experimental colitis. Eur. J. Pharm. Biopharm., 2012, 81(2), 379-385.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.011] [PMID: 22386911]
[200]
Zaki Rizkalla, C.M. latif Aziz, R.; Soliman, I.I. In vitro and in vivo evaluation of hydroxyzine hydrochloride microsponges for topical delivery. AAPS PharmSciTech, 2011, 12(3), 989-1001.
[http://dx.doi.org/10.1208/s12249-011-9663-5] [PMID: 21800216]
[201]
Hans, M.; Dua, J.S.; Prasad, D.; Monika, D.; Sharma, D. Formulation and evaluation of fluconazole microsponge using Eudragit L 100 by quasi emulsion solvent diffusion method. J. Drug Deliv. Ther., 2019, 9, 366-373.
[202]
Rizi, K.; Green, R.J.; Donaldson, M.X.; Williams, A.C. Using pH abnormalities in diseased skin to trigger and target topical therapy. Pharm. Res., 2011, 28(10), 2589-2598.
[http://dx.doi.org/10.1007/s11095-011-0488-4] [PMID: 21614633]
[203]
Labouta, H.I.; El-Khordagui, L.K. Polymethacrylate microparticles gel for topical drug delivery. Pharm. Res., 2010, 27(10), 2106-2118.
[http://dx.doi.org/10.1007/s11095-010-0212-9] [PMID: 20652728]
[204]
Chantasart, D.; Tocanitchart, P.; Wongrakpanich, A.; Teeranachaideekul, V.; Junyaprasert, V.B. Fabrication and evaluation of Eudragit® polymeric films for transdermal delivery of piroxicam. Pharm. Dev. Technol., 2018, 23(8), 771-779.
[PMID: 28406344]
[205]
Bodmeier, R.; Guo, X.; Sarabia, R.E.; Skultety, P.F. The influence of buffer species and strength on diltiazem HCl release from beads coated with the aqueous cationic polymer dispersions, Eudragit RS, RL 30D. Pharm. Res., 1996, 13(1), 52-56.
[http://dx.doi.org/10.1023/A:1016021115481] [PMID: 8668678]
[206]
Rizi, K.; Green, R.J.; Donaldson, M.; Williams, A.C. Production of pH-responsive microparticles by spray drying: investigation of experimental parameter effects on morphological and release properties. J. Pharm. Sci., 2011, 100(2), 566-579.
[http://dx.doi.org/10.1002/jps.22291] [PMID: 20799364]
[207]
Rizi, K.; Green, R.J.; Khutoryanskaya, O.; Donaldson, M.; Williams, A.C. Mechanisms of burst release from pH-responsive polymeric microparticles. J. Pharm. Pharmacol., 2011, 63(9), 1141-1155.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01322.x] [PMID: 21827486]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy