Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Role of Bacterial-Fungal Consortium for Enhancement in the Degradation of Industrial Dyes

Author(s): Asmaa M.M. Mawad, Abd El-Latif Hesham*, Naiema M.H. Yousef, Ahmed A.M. Shoreit*, Nicholas Gathergood and Vijai Kumar Gupta*

Volume 21, Issue 4, 2020

Page: [283 - 294] Pages: 12

DOI: 10.2174/1389202921999200505082901

Price: $65

Abstract

Background: The presence of anthraquinone (Disperse blue 64) and azodyes (Acid yellow 17) in a waterbody are considered among the most dangerous pollutants.

Methods: In this study, two different isolated microbes, bacterium and fungus, were individually and as a co-culture applied for the degradation of Disperse Blue 64 (DB 64) and Acid Yellow 17 (AY 17) dyes. The isolates were genetically identified based upon 16S (for bacteria) and ITS/5.8S (for fungus) rRNA genes sequences as Pseudomoans aeruginosa and Aspergillus flavus, respectively.

Results: The fungal/bacterial consortium exhibited a higher percentage of dyes degradation than the individual strains, even at a high concentration of 300 mg/L. Azoreductase could be identified as the main catabolic enzyme and the consortium could induce azoreductase enzyme in the presence of both dyes. However, the specific substrate which achieved the highest azoreductase specific activity was Methyl red (MR) (3.5 U/mg protein). The tentatively proposed metabolites that were detected by HPLC/MS suggested that the reduction process catalyzed the degradation of dyes. The metabolites produced by the action consortium on two dyes were safe on Vicia faba and Triticum vulgaris germination and health of seedlings. Toxicity of the dyes and their degradation products on the plant was different according to the type and chemistry of these compounds as well as the type of irrigated seeds.

Conclusion: We submit that the effective microbial degradation of DB64 and AY17 dyes will lead to safer metabolic products.

Keywords: Aspergillus, disperse blue 64, acid yellow 17, Pseudomonas, HPLC/MS, 16S and ITS/5.8S rRNA genes sequences.

Graphical Abstract
[1]
dos Santos, A.B.; Cervantes, F.J.; van Lier, J.B. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour. Technol., 2007, 98(12), 2369-2385.
[http://dx.doi.org/10.1016/j.biortech.2006.11.013] [PMID: 17204423]
[2]
Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 2001, 77(3), 247-255.
[http://dx.doi.org/10.1016/S0960-8524(00)00080-8] [PMID: 11272011]
[3]
Ogugbue, C.J.; Sawidis, T. Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol. Res. Int., 2011, 2011, 967925
[http://dx.doi.org/10.4061/2011/967925] [PMID: 21808740]
[4]
Sendelbach, L.E. A review of the toxicity and carcinogenicity of anthraquinone derivatives. Toxicology, 1989, 57(3), 227-240.
[http://dx.doi.org/10.1016/0300-483X(89)90113-3] [PMID: 2667196]
[5]
Kurade, M.B.; Waghmode, T.R.; Jadhav, M.U.; Jeon, B.H.; Govindwar, S.P. Bacterial-yeast consortium as an effective biocatalyst for biodegradation of sulphonated azo dye Reactive Red 198. RSC Advances, 2015, 5, 23046-23056.
[http://dx.doi.org/10.1039/C4RA15834B]
[6]
Yoo, E.; Libra, J.; Wiesmann, U. Reduction of azo dyes by Desulfovibrio desulfuricans. Water Sci. Technol., 2000, 41, 15-22.
[http://dx.doi.org/10.2166/wst.2000.0231]
[7]
Shah, M.P.; Patel, K.A.; Nair, S.S.; Darji, A.; Maharaul, S. Microbial degradation of azo dye by Pseudomonas spp. MPS-2 by an application of sequential microaerophilic & aerobic process. Afr. J. Microbiol. Res., 2013, 1, 105-112.
[8]
Govindwar, S.P.; Kurade, M.B.; Tamboli, D.P.; Kabra, A.N.; Kim, P.J.; Waghmode, T.R. Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by Galactomyces geotrichum. Chemosphere, 2014, 109, 234-238.
[http://dx.doi.org/10.1016/j.chemosphere.2014.02.009] [PMID: 24630455]
[9]
Dafale, N.; Rao, N.N.; Meshram, S.U.; Wate, S.R. Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium--biostimulation and halo tolerance. Bioresour. Technol., 2008, 99(7), 2552-2558.
[http://dx.doi.org/10.1016/j.biortech.2007.04.044] [PMID: 17566726]
[10]
Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: a review. Environ. Int., 2004, 30(7), 953-971.
[http://dx.doi.org/10.1016/j.envint.2004.02.001] [PMID: 15196844]
[11]
Hesham, A. New safety and rapid method for extraction ofgenomic DNA from bacteria and yeast strains suitable for PCR amplifications. J. Pure Appl. Microbiol., 2014, 8, 383-388.
[12]
Beumer, A.; Robinson, J.B. A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl. Environ. Microbiol., 2005, 71(12), 8301-8304.
[http://dx.doi.org/10.1128/AEM.71.12.8301-8304.2005] [PMID: 16332816]
[13]
White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 1990, 18, 315-322.
[http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1]
[14]
Hesham, A-L.; Khan, S.; Tao, Y.; Li, D.; Zhang, Y.; Yang, M. Biodegradation of high molecular weight PAHs using isolated yeast mixtures: application of meta-genomic methods for community structure analyses. Environ. Sci. Pollut. Res. Int., 2012, 19(8), 3568-3578.
[http://dx.doi.org/10.1007/s11356-012-0919-8] [PMID: 22535224]
[15]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[16]
Zhao, M.; Sun, P.F.; Du, L.N.; Wang, G.; Jia, X.M.; Zhao, Y.H. Biodegradation of methyl red by Bacillus sp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis. Environ. Sci. Pollut. Res. Int., 2014, 21(9), 6136-6145.
[http://dx.doi.org/10.1007/s11356-014-2579-3] [PMID: 24474566]
[17]
Wilkinson, G.N. Statistical estimations in enzyme kinetics. Biochem. J., 1961, 80, 324-332.
[http://dx.doi.org/10.1042/bj0800324] [PMID: 13785321]
[18]
Woo, P.C.; Lau, S.K.; Teng, J.L.; Tse, H.; Yuen, K.Y. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect., 2008, 14(10), 908-934.
[http://dx.doi.org/10.1111/j.1469-0691.2008.02070.x] [PMID: 18828852]
[19]
Leelakriangsak, M. Molecular approaches for bacterial azoreductases. Songklanakarin J. Sci. Technol., 2013, 35, 647-657.
[20]
Hesham, A.; Asmaa, M.M.; Yasser, M.M.; Shoriet, A. Biodegradation ability and catabolic genes of petroleum-degrading Sphingomonas koreensis strain ASU-06 isolated from Egyptian oily soil. BioMed Res. Int., 2014, 2014, 127674
[http://dx.doi.org/10.1155/2014/127674]
[21]
Hesham, A.; Asmaa, M.M.; Yasser, M.; Shoriet, A. study of enhancement and inhibition phenomena and genes relating to degradation of petroleum polycyclic aromatic hydrocarbons in isolated bacteria. Microbiol., 2014b, 83, 599-607.
[http://dx.doi.org/10.1134/S0026261714050129]
[22]
Hoorfar, J.; Cook, N.; Malorny, B.; Wagner, M.; De Medici, D.; Abdulmawjood, A.; Fach, P. Diagnostic PCR: making internal amplification control mandatory. Lett. Appl. Microbiol., 2004, 38(2), 79-80.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01456.x] [PMID: 14746535]
[23]
Borman, A.M.; Linton, C.J.; Miles, S.-J.; Johnson, E.M. Molecular identification of pathogenic fungi. J. Antimicrob. Chemother., 2008, 61(Suppl. 1), i7-i12.
[http://dx.doi.org/10.1093/jac/dkm425] [PMID: 18063605]
[24]
Hesham, A.; Mohamed, E.; Asmaa, M.M.; Elfarash, A.; Abd El-Fattah, B.; El-Rawy, M. Molecular characterization of Fusarium Solani degrades a mixture of low and high molecular weight polycyclic aromatic hydrocarbons. Open Biotechnol. J., 2017, 11, 27-35.
[http://dx.doi.org/10.2174/1874070701711010027]
[25]
Chen, K.C.; Wu, J.Y.; Liou, D.J.; Hwang, S.C.J. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol., 2003, 101(1), 57-68.
[http://dx.doi.org/10.1016/S0168-1656(02)00303-6] [PMID: 12523970]
[26]
Mishra, A.; Malik, A. Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour. Technol., 2014, 171, 217-226.
[http://dx.doi.org/10.1016/j.biortech.2014.08.047] [PMID: 25203229]
[27]
Stolz, A. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol., 2001, 56(1-2), 69-80.
[http://dx.doi.org/10.1007/s002530100686] [PMID: 11499949]
[28]
Blümel, S.; Knackmuss, H.-J.; Stolz, A. Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl. Environ. Microbiol., 2002, 68(8), 3948-3955.
[http://dx.doi.org/10.1128/AEM.68.8.3948-3955.2002] [PMID: 12147495]
[29]
Zimmermann, T.; Kulla, H.G.; Leisinger, T. Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur. J. Biochem., 1982, 129(1), 197-203.
[http://dx.doi.org/10.1111/j.1432-1033.1982.tb07040.x] [PMID: 7160382]
[30]
Valli, N. Biodegradation of acid blue 113 containing textile effluent by constructed aerobic bacterial consortia. Optimization And Mechanism. J. Bioremed. Biodegrad., 2012, 3, 162.
[31]
Pasti-Grigsby, M.B.; Paszczynski, A.; Goszczynski, S.; Crawford, D.L.; Crawford, R.L. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl. Environ. Microbiol., 1992, 58(11), 3605-3613.
[http://dx.doi.org/10.1128/AEM.58.11.3605-3613.1992] [PMID: 1482183]
[32]
Chengalroyen, M.D.; Dabbs, E.R. The microbial degradation of azo dyes: minireview. World J. Microbiol. Biotechnol., 2013, 29(3), 389-399.
[http://dx.doi.org/10.1007/s11274-012-1198-8] [PMID: 23108664]
[33]
Leelakriangsak, M.; Borisut, S. Characterization of the decolorizing activity of azo dyes by Bacillus subtilis azoreductase AzoR1. Songklanakarin J. Sci. Technol., 2012, 34, 509-516.
[34]
Pearce, C.; Lloyd, J.; Guthrie, J. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments, 2003, 58, 179-196.
[http://dx.doi.org/10.1016/S0143-7208(03)00064-0]
[35]
Saratale, R.; Saratale, G.; Chang, J.; Govindwar, S. Bacterial decolorization and degradation of azo dyes: a review. J. Taiwan Institute Chem. Eng., 2011, 42, 138-157.
[http://dx.doi.org/10.1016/j.jtice.2010.06.006]
[36]
Moosvi, S.; Kher, X.; Madamwar, D. Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigments, 2007, 74, 723-729.
[http://dx.doi.org/10.1016/j.dyepig.2006.05.005]
[37]
Supaka, N.; Juntongjin, K.; Damronglerd, S.; Delia, M.L.; Strehaiano, P. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chem. Eng. J., 2004, 99, 169-17.
[http://dx.doi.org/10.1016/j.cej.2003.09.010]
[38]
Yemashova, N.; Kalyuzhnyi, S. Microbial conversion of selected azo dyes and their breakdown products. Water Sci. Technol., 2006, 53(11), 163-171.
[http://dx.doi.org/10.2166/wst.2006.349] [PMID: 16862786]
[39]
Parshetti, G.K.; Telke, A.A.; Kalyani, D.C.; Govindwar, S.P. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J. Hazard. Mater., 2010, 176(1-3), 503-509.
[http://dx.doi.org/10.1016/j.jhazmat.2009.11.058] [PMID: 19969416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy