Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Oxidative Halogenation of Arenes, Olefins and Alkynes Mediated by Iodine(III) Reagents

Author(s): Luis A. Segura-Quezada, Karina R. Torres-Carbajal, Yuvraj Satkar, Kevin A. Juárez Ornelas, Narendra Mali, Dipak B. Patil, Rocío Gámez-Montaño, Juan R. Zapata-Morales, Selene Lagunas-Rivera*, Rafael Ortíz-Alvarado* and César R. Solorio-Alvarado*

Volume 18, Issue 2, 2021

Published on: 04 May, 2020

Page: [159 - 172] Pages: 14

DOI: 10.2174/1570193X17999200504095803

Price: $65

Abstract

Iodine(III)-based reagents have been broadly used in oxidative reactions for structural functionalization with several functional groups. Among the more relevant and useful synthetic transformations using these hypervalent λ3-reagents, the fluorination, chlorination, bromination, as well as the iodination protocols, can be found. Herein, we present some of the most representative oxidative halogenation procedures of arenes, olefins and alkynes dating from the oldest to the more recent advances in the area, highlighting the discovery and application of new iodine(III)-based halogenating species.

Keywords: Bromination, chlorination, fluorination, iodination, iodine(III)-based reagent, oxidative halogenation.

Graphical Abstract
[1]
Lee, J.H.; Choi, S.; Hong, K.B. Alkene difunctionalization using hypervalent iodine reagents: Progress and developments in the past ten years. Molecules, 2019, 24(14), 2634.
[http://dx.doi.org/10.3390/molecules24142634] [PMID: 31331092]
[2]
Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J. Org. Chem., 2018, 14, 1813-1825.
[http://dx.doi.org/10.3762/bjoc.14.154] [PMID: 30112085]
[3]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, i, 1-62.
[4]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[5]
Peilleron, L.; Grayfer, T.D.; Dubois, J.; Dodd, R.H.; Cariou, K. Iodine(III)-mediated halogenations of acyclic monoterpenoids. Beilstein J. Org. Chem., 2018, 14, 1103-1111.
[http://dx.doi.org/10.3762/bjoc.14.96] [PMID: 29977382]
[6]
Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D.M.; Santi, C.; Ruzziconi, R.; Soloshonok, V.A. Fluorine-containing drugs approved by the FDA in 2018. Chemistry, 2019, 25(51), 11797-11819.
[http://dx.doi.org/10.1002/chem.201901840] [PMID: 31099931]
[7]
Balz, G.; Schiemann, G. About aromatic fluorine compounds, I.: A new method for their preparation. Eur. J. Inorg. Chem., 1927, 60, 1186-1190.
[8]
Tellitu, I. Explorando nuevas aplicaciones del reactive de yodo hipervalentes PIFA [bis(trifluoroacetoxi)yodobenceno] en la construcción de heterocíclos pirrolidínicos. An. Quim., 2013, 109, 5-10.
[9]
Kohlhepp, S.V.; Gulder, T. Hypervalent iodine(III) fluorinations of alkenes and diazo compounds: New opportunities in fluorination chemistry. Chem. Soc. Rev., 2016, 45(22), 6270-6288.
[http://dx.doi.org/10.1039/C6CS00361C] [PMID: 27417189]
[10]
Carpenter, W. Aryliodosodifluorides. J. Org. Chem., 1966, 31, 2688-2689.
[http://dx.doi.org/10.1021/jo01346a512]
[11]
Karam, O.; Jacquesy, J.C.; Jouannetaud, M.P. Nucleophilic para-fluorination of 4-alkylphenols by hypervalent iodine reagent and pyridinium polyhydrogen fluoride (PPHF), a novel route to 4-fluorocyclohexa-2,5-dienones. Tetrahedron Lett., 1994, 35, 2541-2544.
[http://dx.doi.org/10.1016/S0040-4039(00)77165-6]
[12]
Olah, G.A.; Shih, J.G.; Prakash, G.K.S. Fluorine-containing reagents in organic synthesis. J. Fluor. Chem., 1986, 33, 377-396.
[http://dx.doi.org/10.1016/S0022-1139(00)85282-3]
[13]
Karam, O.; Martin-Mingot, A.; Jouannetaud, M.P.; Jacquesy, J.C.; Cousson, A. Efficient oxidative ipso-fluorination of para-substituted phenols using pyridinium polyhydrogen fluoride in combination with hypervalent iodine(III) reagents. Tetrahedron, 2004, 60, 6629-6638.
[http://dx.doi.org/10.1016/j.tet.2004.05.083]
[14]
Suzuki, S.; Kamo, T.; Fukushi, K.; Hiramatsu, K.; Tokunaga, E.; Dohi, T.; Kita, Y.; Shibata, N. Iodoarene-catalyzed fluorination and aminofluorination by an Ar-I/HF·Pyridine/mCPBA system. Chem. Sci. (Camb.), 2014, 2754-2760.
[http://dx.doi.org/10.1039/C3SC53107D]
[15]
Basset, L.; Martin-Mingot, A.; Jouannetaud, M.P.; Jacquesy, J.C. Access to new 4-fluorocyclohexa-2,5-dienimines using hypervalent iodine and pyridinium polyhydrogen fluoride. Tetrahedron Lett., 2008, 49, 1551-1554.
[http://dx.doi.org/10.1016/j.tetlet.2007.12.082]
[16]
McMurtrey, K.B.; Racowski, J.M.; Sanford, M.S. Pd-catalyzed C-H fluorination with nucleophilic fluoride. Org. Lett., 2012, 14(16), 4094-4097.
[http://dx.doi.org/10.1021/ol301739f] [PMID: 22844875]
[17]
Tian, T.; Zhong, W.H.; Meng, S.; Meng, X.B.; Li, Z.J. Hypervalent iodine mediated para-selective fluorination of anilides. J. Org. Chem., 2013, 78(2), 728-732.
[http://dx.doi.org/10.1021/jo302099d] [PMID: 23228030]
[18]
Xing, B.; Ni, C.; Hu, J. Hypervalent iodine(III)-catalyzed Balz-Schiemann fluorination under mild conditions. Angew. Chem. Int. Ed. Engl., 2018, 57(31), 9896-9900.
[http://dx.doi.org/10.1002/anie.201802466] [PMID: 29932480]
[19]
Zhao, Z.; To, A.J.; Murphy, G.K. Difluorinative ring expansions of benzo-fused carbocycles and heterocycles are achieved with p-(difluoroiodo)toluene. Chem. Commun. (Camb.), 2019, 55(98), 14821-14824.
[http://dx.doi.org/10.1039/C9CC08310C] [PMID: 31763650]
[20]
Evans, P.A.; Brandt, T.A. Novel Haloacetoxylation of 1,4-dimethoxynaphthalenes using hypervalent iodine chemistry. Tetrahedron Lett., 1996, 37, 6443-6446.
[http://dx.doi.org/10.1016/0040-4039(96)01427-X]
[21]
Zanka, A.; Takeuchi, H.; Kubota, A. Large-Scale Preparation of iodobenzene dichloride and efficient monochlorination of 4-aminoacetophenone. Org. Process Res. Dev., 1998, 2, 270-273.
[http://dx.doi.org/10.1021/op980024e]
[22]
Thorat, P.B.; Bhong, B.Y.; Karade, N.Y. 2,4,6-Tris[(4-dichloro-iodo)phenoxy)]-1,3,5-triazine as a new recyclable hypervalent iodine(III) reagent for chlorination and oxidation reactions. Synlett, 2013, 24, 2061-2066.
[http://dx.doi.org/10.1055/s-0033-1339495]
[23]
Galligan, M.J.; Akula, R.; Ibrahim, H. Unified strategy for iodine(III)-mediated halogenation and azidation of 1,3-dicarbonyl compounds. Org. Lett., 2014, 16(2), 600-603.
[http://dx.doi.org/10.1021/ol403504z] [PMID: 24372311]
[24]
Min, Z.; Ying-Guo, F. An efficient monochlorination of electron-rich aromatic compounds catalyzed by ammonium iodide. J. Chem. Res., 2014, 38, 197-199.
[http://dx.doi.org/10.3184/174751914X13929076043809]
[25]
Kang, K.; Lee, S.; Kim, H. Radical chlorination with hypervalent iodine(III) generated by ligand exchange: Revisiting palladium(II)-catalyzed directed C-H chlorination. Asian J. Org. Chem., 2015, 4, 137-140.
[http://dx.doi.org/10.1002/ajoc.201402284]
[26]
Wang, M.; Zhang, Y.; Wang, T.; Wang, C.; Xue, D.; Xiao, J. Story of an age-old reagent: an electrophilic chlorination of arenes and heterocycles by 1-chloro-1,2-benziodoxol-3-one. Org. Lett., 2016, 18(9), 1976-1979.
[http://dx.doi.org/10.1021/acs.orglett.6b00547] [PMID: 27074528]
[27]
Parvathaneni, S.P.; Perumgani, P.C. Regioselective chlorination of aryl C−H bonds with the hypervalent iodine(III) reagent 1-chloro-1,2-benziodoxol-3-one. Asian J. Org. Chem., 2018, 7, 324-327.
[http://dx.doi.org/10.1002/ajoc.201700620]
[28]
Perumgani, P.C.; Parvathaneni, S.P.; Surendra Babu, G.V.; Srinivas, K.; Mandapati, M.R. Copper(I) halide for regioselective ortho-halogenation of directed arenes. Catal. Lett., 2018, 148, 1067-1072.
[http://dx.doi.org/10.1007/s10562-018-2324-5]
[29]
Zhao, Z.; Murphy, G.K. Chlorination of phenylallene derivatives with 1-chloro-1,2-benziodoxol-3-one: Synthesis of vicinal-dichlorides and chlorodienes. Beilstein J. Org. Chem., 2018, 14, 796-802.
[http://dx.doi.org/10.3762/bjoc.14.67] [PMID: 29719576]
[30]
Jiang, X.; Yang, L.; Yang, W.; Zhu, Y.; Fang, L.; Yu, C. Controllable synthesis of 3-chloro- and 3,3-dichloro-2-oxindoles via hypervalent iodine-mediated chlorooxidation. Org. Biomol. Chem., 2019, 17(28), 6920-6924.
[http://dx.doi.org/10.1039/C9OB01173K] [PMID: 31282524]
[31]
Granados, A.; Jia, Z.; del Olmo, M.; Vallribera, A. In-situ generation of hypervalent iodine reagents for the electrophilic chlorination of arenes. Eur. J. Org. Chem., 2019, 2812-2818.
[http://dx.doi.org/10.1002/ejoc.201900237]
[32]
Nahide, P.D.; Ramadoss, V.; Juárez-Ornelas, K.A.; Satkar, Y.; Ortiz-Alvarado, R.; Cervera-Villanueva, J.M.J.; Alonso-Castro, A.J.; Zapata-Morales, J.R.; Ramírez-Morales, M.A.; Ruiz-Padilla, A.J.; Deveze-Álvarez, M.A.; Solorio-Alvarado, C.R. In Situ formed IIII-based reagent for electrophilic ortho-chlorination of phenols and phenol-ethers: The use of PIFA/AlCl3 system. Eur. J. Org. Chem., 2018, 485-493.
[http://dx.doi.org/10.1002/ejoc.201701399]
[33]
Cheng, D.; Chen, Z.; Zheng, Q. Hypervalent iodine in synthesis 91: a mild and efficient method for the halogenation of 6-methyluracil derivatives. J. Chem. Res., 2002, 624-625
[http://dx.doi.org/10.3184/030823402103171032]
[34]
Wu, X-L.; Xia, J-J.; Wang, G-W. Aminobromination of olefins with TsNH2 and NBS as the nitrogen and bromine sources mediated by hypervalent iodine in a ball mill. Org. Biomol. Chem., 2008, 6(3), 548-553.
[http://dx.doi.org/10.1039/B717333D] [PMID: 18219426]
[35]
Xia, J-J.; Wu, X-L.; Wang, G-W. Hypervalent iodine-promoted aminobromination of electron-deficient olefins with bromamine-T. ARKIVOC, 2008, 16, 22-28.
[36]
Zhou, Z.; He, X. An Efficient and Regioselective Monobromination of electron-rich aromatic compounds using catalytic hypervalent iodine(III) reagent. Synthesis, 2011, 2, 207-209.
[http://dx.doi.org/10.1055/s-0030-1258350]
[37]
Shirodkar, S.G.; Hangirgekar, S.P. A Regioselective and stereoselective methoxy bromination of olefins using diacetoxyiodobenzene and phenyltrimethyl ammoniumtribromide. Orient. J. Chem., 2011, 27, 179-184.
[38]
Moriyama, K.; Ishida, K.; Togo, H. Regioselective C(sp2)-H dual functionalization of indoles using hypervalent iodine(III): bromo-amination via 1,3-migration of imides on indolyl(phenyl)iodonium imides. Chem. Commun. (Camb.), 2015, 51(12), 2273-2276.
[http://dx.doi.org/10.1039/C4CC09077B] [PMID: 25556519]
[39]
Patzelt, C.; Pöthig, A.; Gulder, T. Iodine(III)-catalyzed cascade reactions enabling a direct access to β-lactams and α-hydroxy-β-amino acids. Org. Lett., 2016, 18(14), 3466-3469.
[http://dx.doi.org/10.1021/acs.orglett.6b01658] [PMID: 27380445]
[40]
Shibata, A.; Kitamoto, S.; Fujimura, K.; Hirose, Y.; Hamamoto, H.; Nakamura, A.; Miki, Y.; Maegawa, T. Dehydroxymethyl bromination of alkoxybenzyl alcohols by using a hypervalent iodine reagent and lithium bromide. Synlett, 2018, 29, 2275-2278.
[http://dx.doi.org/10.1055/s-0037-1610980]
[41]
Satkar, Y.; Ramadoss, V.; Nahide, P.D.; García-Medina, E.; Juárez-Ornelas, K.A.; Alonso-Castro, A.J.; Chávez-Rivera, R.; Jiménez-Halla, J.O.C.; Solorio-Alvarado, C.R. Practical, mild and efficient electrophilic bromination of phenols by a new I(III)-based reagent: The PIDA–AlBr3 system. RSC Advances, 2018, 8, 17806-17812.
[http://dx.doi.org/10.1039/C8RA02982B]
[42]
Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C.R. Iodine (III)/AlX3-mediate electrophilic chlorination and brominating of arenes. The dual role of AlX3 (X=Cl, Br) in the (PhIO)n depolymerization and halogen Source. Tetrahedron Lett.,2019, 60, 1551-1555. Other relevant functional groups introduced using iodine(III) and aluminums salts. (a) For nitration of arenes using (PhIO)n/Al(NO3)3 see: Juárez-Ornelas, K. A.; Jiménez-Halla, J. O. C.; Kato, T.; Solorio-Alvarado, C.R.; Maruoka, K. Iodine(III)-catalyzed electrophilic nitration of phenols via non-brönsted acidic NO2+ generation. Org. Lett.,2019, 21, 315-1319. (b) For benzylic oxidation (PhIO)n/Al(NO3)3 see: Yahuaca-Juárez, B.; González, G.; Ramírez-Morales, M. A.; Alba-Betancourt, C.; Deveze-Álvarez, M. A.; Mendoza-Macías, C.L.; Ortiz-Alvarado, R.; Juárez-Ornelas, K.A.; Solorio-Alvarado, C.R.; Maruoka, K. Iodine(III)-catalyzed benzylic oxidation by using the (PhIO)n/Al(NO3) system. Synth. Commun., 2020, 50, 539-548.
[43]
Ogata, Y.; Aoki, K. Iodination of aromatic compounds with a mixture of iodine and peracetic acid. 111. Autocatalysis and relative rates. J. Am. Chem. Soc., 1968, 90, 6187-6191.
[http://dx.doi.org/10.1021/ja01024a043]
[44]
Merkushev, E.B.; Simakhina, N.D.; Koveshnikova, G.M. A new convenient iodination method of aromatic compunds. Syntheis, 1980, 80, 486-487.
[http://dx.doi.org/10.1055/s-1980-29066]
[45]
Moriarty, R.M.; Khosrowshahi, J.S.; Dalecki, T.M. Hypervalent iodine iodinative decarboxylation of cubyl and homocubyl carboxylic acids. J. Chem. Soc. Chem. Commun., 1987, 9, 675-676.
[http://dx.doi.org/10.1039/c39870000675]
[46]
Barluenga, J.; González-Bobes, F.; González, J.M. Activation of alkanes upon reaction with PhI(OAc)2-I2. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2556-2558.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2556:AID-ANIE2556>3.0.CO;2-C] [PMID: 12203532]
[47]
Panunzi, B.; Rotiroti, L.; Tingoli, M. Solvent directed electrophilic iodination and phenylselenenylation of activated alkyl aryl ketones. Tetrahedron Lett., 2003, 44, 8753-8756.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.037]
[48]
Cheng, D-P.; Chen, Z-C.; Zheng, Q-G. Hypervalent iodine in synthesis. 90. A mild and efficient method for the iodination of pyrazoles. Synth. Commun., 2003, 33, 2671-2676.
[http://dx.doi.org/10.1081/SCC-120021987]
[49]
Karade, N.N.; Tiwari, G.B.; Huple, D.B.; Siddiqui, T.A.J. Grindstone chemistry: (Diacetoxyiodo)benzene-mediated oxidative nuclear halogenation of arenes using NaCl, NaBr or I2. J. Chem. Res., 2006, 366-368
[http://dx.doi.org/10.3184/030823406777946761]
[50]
Díaz-Sánchez, B.R.; Iglesias-Arteaga, M.A.; Melgar-Fernández, R.; Juaristi, E. Synthesis of 2-substituted-5-halo-2,3-dihydro-4(H)-pyrimidin-4-ones and their derivatization utilizing the Sonogashira coupling reaction in the enantioselective synthesis of α-substituted β-amino acids. J. Org. Chem., 2007, 72(13), 4822-4825.
[http://dx.doi.org/10.1021/jo0705115] [PMID: 17523668]
[51]
Kirschning, A.; Yusubov, M.S.; Yusubova, R.Y.; Chi, K-W.; Park, J.Y. m-Iodosylbenzoic acid - a convenient recyclable reagent for highly efficient aromatic iodinations. Beilstein J. Org. Chem., 2007, 3(19), 19.
[http://dx.doi.org/10.1186/1860-5397-3-19] [PMID: 17543133]
[52]
Li, J.; Cheng, D.; Yan, J. Novel and efficient synthesis of 1-iodoalkynes. Synlett, 2007, 15, 2442-2444.
[53]
Yusubov, M.S.; Yusubova, R.Y.; Kirschning, A.; Park, J.Y.; Chi, K-W. m-Iodosylbenzoic acid, a tagged hypervalent iodine reagent for the iodo-functionalization of alkenes and alkynes. Tetrahedron Lett., 2008, 49, 1506-1509.
[http://dx.doi.org/10.1016/j.tetlet.2007.12.120]
[54]
Iskra, J.; Murphree, S.S. Rapid aerobic iodination of arenes mediated by hypervalent iodine in fluorinated solvents. Tetrahedron Lett., 2017, 58, 645-648.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.003]
[55]
Liu, Y.; Huang, D.; Huang, J.; Maruoka, K. Hypervalent iodine mediated chemoselective iodination of alkynes. J. Org. Chem., 2017, 82(22), 11865-11871.
[http://dx.doi.org/10.1021/acs.joc.7b01555] [PMID: 28803465]
[56]
Kotagiri, R.; Adepu, R. Alkoxylation followed by iodination of oxindole with alcohols mediated by hypervalent iodine reagent in the presence of iodine. Eur. J. Org. Chem., 2018, 33, 4556-4564.
[http://dx.doi.org/10.1002/ejoc.201800723]
[57]
Satkar, Y.; Yera-Ledesma, L.F.; Mali, N.; Patil, D.; Navarro-Santos, P.; Segura-Quezada, L.A.; Ramírez-Morales, P.I.; Solorio-Alvarado, C.R. Iodine (III)-mediated, controlled di- or monoiodination of Phenols. J. Org. Chem., 2019, 84(7), 4149-4164.
[http://dx.doi.org/10.1021/acs.joc.9b00161] [PMID: 30888169]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy