Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications

Author(s): Ayushi Sethiya, Dinesh Kr. Agarwal and Shikha Agarwal*

Volume 20, Issue 13, 2020

Page: [1190 - 1232] Pages: 43

DOI: 10.2174/1389557520666200429103647

Price: $65

Abstract

Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.

Keywords: Curcumin, anti-cancer, anti-bacterial, drug delivery system, nano-formulations, combination therapy.

Graphical Abstract
[1]
Machairiotis, N.; Vasilakaki, S.; Kouroutou, P. Natural products: Potential lead compounds for the treatment of endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 245, 7-12.
[http://dx.doi.org/10.1016/j.ejogrb.2019.11.019] [PMID: 31835203]
[2]
Liu, W.; Li, Q.; Hu, J.; Wang, H.; Xu, F.; Bian, Q. Application of natural products derivatization method in the design of targeted anticancer agents from 2000 to 2018. Bioorg. Med. Chem., 2019, 27(23) 115150
[http://dx.doi.org/10.1016/j.bmc.2019.115150] [PMID: 31635893]
[3]
Liang, X.; Luo, D.; Luesch, H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol. Res., 2019, 147, 104373
[http://dx.doi.org/10.1016/j.phrs.2019.104373] [PMID: 31351913]
[4]
Stanić, Z. Curcumin, a compound from natural sources, a true scientific challenge –A review. Plant Foods Hum. Nutr., 2017, 72(1), 1-12.
[http://dx.doi.org/10.1007/s11130-016-0590-1] [PMID: 27995378]
[5]
Rao, T.; Tan, Z.; Peng, J.; Guo, Y.; Chen, Y.; Zhou, H.; Ouyang, D. The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective. Pharmacol. Res., 2019, 146, 104283
[http://dx.doi.org/10.1016/j.phrs.2019.104283] [PMID: 31129178]
[6]
Tang, S.M.; Deng, X-T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121 109604
[http://dx.doi.org/10.1016/j.biopha.2019.109604] [PMID: 31733570]
[7]
Ahmad, I.; Hoda, M. Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci., 2020, 245 117350
[http://dx.doi.org/10.1016/j.lfs.2020.117350] [PMID: 31982401]
[8]
Al-Daihan, S.; Al-Faham, M.; Al-shawi, N.; Rawan Almayman, R.; Brnawi, A.; Zargar, S.; Bhat, R.S. Antibacterial activity and phytochemical screening of some medicinal plants commonly used in Saudi Arabia against selected pathogenic microorganisms. J. King Saud Univ. Sci., 2013, 25(2), 115-120.
[http://dx.doi.org/10.1016/j.jksus.2012.11.003]
[9]
Ahmed, M.; Qadir, M.A.; Hameed, A.; Arshad, M.N.; Asiri, A.M.; Muddassar, M. Sulfonamides containing curcumin scaffold: Synthesis, characterization, carbonic anhydrase inhibition and molecular docking studies. Bioorg. Chem., 2018, 76, 218-227.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.015] [PMID: 29190478]
[10]
Astinfeshan, M.; Rasmi, Y.; Kheradmand, F.; Karimpour, M.; Rahbarghazi, R.; Aramwit, P.; Nasirzadeh, M.; Daeihassani, B.; Shirpoor, A.; Golineghad, Z.; Saboory, E. Curcumin inhibits angiogenesis in endothelial cells using downregulation of the PI3K/Akt signaling pathway. Food Biosci., 2019, 29, 86-93.
[http://dx.doi.org/10.1016/j.fbio.2019.04.005]
[11]
Zhao, J.; Wang, J.; Zhou, M.; Li, M.; Li, M.; Tan, H. Curcumin attenuates murine lupus via inhibiting NLRP3 inflammasome. Int. Immunopharmacol., 2019, 69, 213-216.
[http://dx.doi.org/10.1016/j.intimp.2019.01.046] [PMID: 30738291]
[12]
Kalashnikova, I.; Mazar, J.; Neal, C.J.; Rosado, A.L.; Das, S.; Westmoreland, T.J.; Seal, S. Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma. Nanoscale, 2017, 9(29), 10375-10387.
[http://dx.doi.org/10.1039/C7NR02770B] [PMID: 28702620]
[13]
Nath, C.; Badavath, V.N.; Thakur, A.; Ucar, G.; Acevedo, O.; Mohd Siddique, M.U.; Jayaprakash, V.; Jayaprakash, V. Curcuminbased pyrazoline analogues as selective inhibitors of human monoamine oxidase A. Med. Chem. Comm, 2018, 9(7), 1164-1171.
[http://dx.doi.org/10.1039/C8MD00196K] [PMID: 30109004]
[14]
Srivastava, N.S.; Srivastava, R.A.K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine, 2019, 52, 117-128.
[http://dx.doi.org/10.1016/j.phymed.2018.09.224] [PMID: 30599890]
[15]
Kuo, C.J.; Huang, C.C.; Chou, S.Y.; Lo, Y.C.; Kao, T.J.; Huang, N.K.; Lin, C.; Lin, H.C.; Lin, H.C.; Lee, Y.C. Potential therapeutic effect of curcumin, a natural mTOR inhibitor, in tuberous sclerosis complex. Phytomedicine, 2019, 54, 132-139.
[http://dx.doi.org/10.1016/j.phymed.2018.09.203] [PMID: 30668362]
[16]
Zhang, Y.; Zeng, Y. Curcumin reduces inflammation in knee osteoarthritis rats through blocking TLR4/MyD88/NF-κB signal pathway. Drug Dev. Res., 2019, 80(3), 353-359.
[http://dx.doi.org/10.1002/ddr.21509] [PMID: 30663793]
[17]
Zhu, M.; Zheng, Z.; Huang, J.; Ma, X.; Huang, C.; Wu, R.; Li, X.; Liang, Z.; Deng, F.; Wu, J.; Geng, S.; Xie, C.; Zhong, C. Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells. J. Cell. Biochem., 2019, 120(9), 15616-15624.
[http://dx.doi.org/10.1002/jcb.28828] [PMID: 31042325]
[18]
Sharma, A.; Yadav, A.; Gupta, N.; Sharma, S.; Kakkar, R.; Cwiklinski, K.; Quaye, E.; Mahajan, S.D.; Schwartz, S.A.; Kumar Sharma, R. Multifunctional mesoporous curcumin encapsulated iron-phenanthroline nanocluster: A new Anti-HIV agent. Colloids Surf. B Biointerfaces, 2019, 180, 289-297.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.057] [PMID: 31071568]
[19]
da Silva, T.A.L.; Medeiros, R.M.V.; de Medeiros, D.C.; Medeiros, R.C.S.C.; de Medeiros, J.A.; de Medeiros, G.C.B.S.; de Andrade, R.D.; Lais, L.L.; Silva Dantas, P.M. Impact of curcumin on energy metabolism in HIV infection: A case study. Phytother. Res., 2019, 33(3), 856-858.
[http://dx.doi.org/10.1002/ptr.6258] [PMID: 30648299]
[20]
Liu, J.; Yu, M.; Zeng, G.; Cao, J.; Wang, Y.; Ding, T.; Yang, X.; Sun, K.; Parvizi, J.; Tian, S. Dual antibacterial behavior of a curcumin-upconversion photodynamic nanosystem for efficient eradication of drug-resistant bacteria in a deep joint infection. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(47), 7854-7861.
[http://dx.doi.org/10.1039/C8TB02493F] [PMID: 32255030]
[21]
Varaprasad, K.; Yallapu, M.M.; Núñez, D.; Oyarzún, P.; López, M.; Jayaramudu, T.; Karthikeyan, C. Generation of engineered core-shell antibiotic nanoparticles. RSC Advances, 2019, 9(15), 8326-8332.
[http://dx.doi.org/10.1039/C9RA00536F] [PMID: 31131098]
[22]
Liu, C.H.; Lee, W.S.; Wu, W.C. Photodynamic inactivation against Pseudomonas aeruginosa by curcumin microemulsions. RSC Advances, 2016, 6, 63013-63022.
[http://dx.doi.org/10.1039/C6RA10193C]
[23]
Song, Z.; Wu, Y.; Wang, H.; Han, H. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROSmediated pathways. Mater. Sci. Eng. C, 2019, 99, 255-263.
[http://dx.doi.org/10.1016/j.msec.2018.12.053] [PMID: 30889699]
[24]
Kheirandish, S.; Ghaedi, M.; Dashtian, K.; Pourebrahim, F.; Jannesar, R.; Pezeshkpour, V. In vitro curcumin delivery and antibacterial activity of RuS2 and RuO2 nanoparticles loaded chitosan biopolymer. Appl. Organomet. Chem., 2017, 32(2), 4035-4046.
[25]
Potter, P.E. Curcumin offers potential efficacy for treating alzheimer’s disease. Curcumin for neurological and psychiatric disorders; Elsevier B.V. Amsterdam, 2019, pp. 191-209.
[http://dx.doi.org/10.1016/B978-0-12-815461-8.00010-4]
[26]
Farooqui, A.A.; Farooqui, T. Usefulness of curcumin analogs for the diagnosis and treatment of alzheimer Disease. Curcumin for neurological and psychiatric disorders; Elsevier B.V. Amsterdam, 2019, pp. 231-245.
[27]
Bicer, N.; Yildiza, E.; Yegani, A.A.; Aksu, F. Synthesis of curcumin complexes with iron(III) and manganese(II) and curcuminiron(III) effects on alzheimer’s disease. New J. Chem., 2018, 42(10), 8098-8104.
[http://dx.doi.org/10.1039/C7NJ04223J]
[28]
Farkhondeh, T.; Samarghandian, S.; Pourbagher-Shahri, A.M.; Sedaghat, M. The impact of curcumin and its modified formulations on Alzheimer’s disease. J. Cell. Physiol., 2019, 234(10), 16953-16965.
[http://dx.doi.org/10.1002/jcp.28411] [PMID: 30847942]
[29]
Yang, H.; Du, Z.; Wang, W.; Song, M.; Sanidad, K.; Sukamtoh, E.; Zheng, J.; Tian, L.; Xiao, H.; Liu, Z.; Zhang, G. Structure and activity relationship of curcumin: Role of methoxy group in anti- inflammatory and anti-colitis effects of curcumin. J. Agric. Food Chem., 2017, 65(22), 4509-4515.
[http://dx.doi.org/10.1021/acs.jafc.7b01792] [PMID: 28513174]
[30]
Joseph, A.I.; Edwards, R.L.; Luis, P.B.; Presley, S.H.; Porter, N.A.; Schneider, C. Stability and anti-inflammatory activity of the reduction-resistant curcumin analog, 2,6-dimethyl-curcumin. Org. Biomol. Chem., 2018, 16(17), 3273-3281.
[http://dx.doi.org/10.1039/C8OB00639C] [PMID: 29664496]
[31]
Silva, A.C.D.; Santos, P.D.F.; Palazzi, N.C.; Leimann, F.V.; Fuchs, R.H.B.; Bracht, L.; Gonçalves, O.H. Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots. Food Funct., 2017, 8(5), 1851-1858.
[http://dx.doi.org/10.1039/C7FO00452D] [PMID: 28406506]
[32]
Agarwal, S.; Agarwal, D.; Gandhi, D.; Goyal, K.; Goyal, P. Multicomponent one- pot synthesis of substituted 4H-pyrimido [2,1-b][1,3] benzothiazole curcumin derivatives and their anti-microbial evaluation. Lett. Org. Chem., 2018, 15(10), 863-869.
[http://dx.doi.org/10.2174/1570178615666180326161710]
[33]
Adam, M.S.S.; Youssef, M.M.; Aboelghar, M.F.; Hafez, A.M.; El‐Ayaan, U. Synthesis and characterization of binary and ternary oxovanadium complexes of N, N′‐(2‐pyridyl)thiourea and curcumin: Catalytic oxidation potential, antibacterial, antimicrobial, antioxidant and DNA interaction studies. Appl. Organomet. Chem., 2016, 31(7), 3650-3660.
[http://dx.doi.org/10.1002/aoc.3650]
[34]
Zhao, F.; Dong, H.H.; Wang, Y.H.; Wang, T.Y.; Yan, Z.H.; Yan, F.; Zhang, D.Z.; Cao, Y.Y.; Jin, Y.S. Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. MedChemComm, 2017, 8(5), 1093-1102.
[http://dx.doi.org/10.1039/C6MD00649C] [PMID: 30108820]
[35]
Khan, H.; Ullah, H.; Nabavi, S.M. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem. Toxicol., 2019, 124, 182-191.
[http://dx.doi.org/10.1016/j.fct.2018.12.002] [PMID: 30529260]
[36]
Ca˘ linescu, M.; Fiastru, M.; Bala, D.; Mihailciuc, C.; Negreanu-Pı^rjol, T.; Jurca, B. Synthesis, characterization, electrochemical behavior and antioxidant activity of new copper(II) coordination compounds with curcumin derivatives. J. Saudi Chem. Soc., 2019, 23(7), 817-827.
[http://dx.doi.org/10.1016/j.jscs.2019.02.006]
[37]
Zhou, F.Z.; Zeng, T.; Yin, S.W.; Tang, C.H.; Yuan, D.B.; Yang, X.Q. Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the in vitro digestion fate. Food Funct., 2018, 9(2), 959-970.
[http://dx.doi.org/10.1039/C7FO01400G] [PMID: 29322140]
[38]
Kareem, A.; Khan, M.S.; Nami, S.A.A.; Bhat, S.A.; Mirza, A.U.; Nishat, N. Curcumin derived schiff base ligand and their transition metal complexes: Synthesis spectral characterization, catalytic potential and biological activity. J. Mol. Struct., 2018, 1167, 261-273.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.001]
[39]
Khanji, A.N.; Michaux, F.; Petit, J.; Salameh, D.; Rizk, T.; Jasniewski, J.; Banon, S. Structure, gelation, and antioxidant properties of curcumin-doped casein micelle powder produced by spray-drying. Food Funct., 2018, 9(2), 971-981.
[http://dx.doi.org/10.1039/C7FO01923H] [PMID: 29322144]
[40]
Li, C.; Miao, X.; Li, F.; Adhikari, B.K.; Liu, Y.; Sun, J.; Zhang, R.; Cai, L.; Liu, Q.; Wang, Y. Curcuminoids: Implication for inflammation and oxidative stress in cardiovascular diseases. Phytother. Res., 2019, 33(5), 1302-1317.
[http://dx.doi.org/10.1002/ptr.6324] [PMID: 30834628]
[41]
Bavarsad, K.; Riahi, M.M.; Saadat, S.; Barreto, G.; Atkin, S.L.; Sahebkar, A. Protective effects of curcumin against ischemia-reperfusion injury in the liver. Pharmacol. Res., 2019, 141(2), 53-62.
[http://dx.doi.org/10.1016/j.phrs.2018.12.014] [PMID: 30562571]
[42]
Mohan, R.; Jose, S.; Sukumaran, S. S, A.; S, S.; John, G.; i M, K. Curcumin-galactomannosides mitigate alcohol-induced liver damage by inhibiting oxidative stress, hepatic inflammation, and enhance bioavailability on TLR4/MMP events compared to curcumin. J. Biochem. Mol. Toxicol., 2019, 33(6) e22315
[http://dx.doi.org/10.1002/jbt.22315] [PMID: 30793463]
[43]
Ganeshkumar, M.; Ponrasu, T.; Subamekal, M.K.; Janani, M.; Suguna, L. Curcumin loaded on pullulan acetate nanoparticles protects the liver from damage induced by DEN. RSC Advances, 2016, 6, 5599-5610.
[http://dx.doi.org/10.1039/C5RA18989F]
[44]
Manzoni, A.G.; Passos, D.F.; da Silva, J.L.G.; Bernardes, V.M.; Bremm, J.M.; Jantsch, M.H.; de Oliveira, J.S.; Mann, T.R.; de Andrade, C.M.; Leal, D.B.R. Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia. Blood Cells Mol. Dis., 2019, 76, 13-21.
[http://dx.doi.org/10.1016/j.bcmd.2018.12.005] [PMID: 30679022]
[45]
Liang, J.; Dong, X.; Yang, A.; Zhu, D.; Kong, D.; Lv, F. A dual fluorescent reverse targeting drug delivery system based on curcumin-loaded ovalbumin nanoparticles for allergy treatment. Nanomedicine (Lond.), 2019, 16, 56-68.
[http://dx.doi.org/10.1016/j.nano.2018.11.010] [PMID: 30529561]
[46]
Nguyen, M.H.; Lee, S.E.; Tran, T.T.; Bui, C.B.; Nguyen, T.H.N.; Vu, N.B.D.; Tran, T.T.; Nguyen, T.H.P.; Nguyen, T.T.; Hadinoto, K. A simple strategy to enhance the in vivo wound-healing activity of curcumin in the form of self-assembled nanoparticle complex of curcumin and oligochitosan. Mater. Sci. Eng. C, 2019, 98, 54-64.
[http://dx.doi.org/10.1016/j.msec.2018.12.091] [PMID: 30813056]
[47]
Liu, J.; Chen, Z.; Wang, J.; Li, R.; Li, T.; Chang, M.; Yan, F.; Wang, Y. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Appl. Mater. Interfaces, 2018, 10(19), 16315-16326.
[http://dx.doi.org/10.1021/acsami.8b03868] [PMID: 29687718]
[48]
Wang, X.P.; Wang, Q.X.; Lin, H.P.; Chang, N. Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma. Food Funct., 2017, 8(9), 3319-3326.
[http://dx.doi.org/10.1039/C7FO00555E] [PMID: 28848967]
[49]
Barati, N.; Momtazi-Borojeni, A.A.; Majeed, M.; Sahebkar, A. Potential therapeutic effects of curcumin in gastric cancer. J. Cell. Physiol., 2019, 234(3), 2317-2328.
[http://dx.doi.org/10.1002/jcp.27229] [PMID: 30191991]
[50]
Yoshida, T.; Maruyama, T.; Miura, M.; Inoue, M.; Fukuda, K.; Shimazu, K.; Taguchi, D.; Kanda, H.; Oshima, M.; Iwabuchi, Y.; Shibata, H. Dietary intake of pyrolyzed deketene curcumin inhibits gastric carcinogenesis. J. Funct. Foods, 2018, 50, 192-200.
[http://dx.doi.org/10.1016/j.jff.2018.09.033]
[51]
Raj, P.M.; Raj, R.; Kaul, A.; Mishra, A.K.; Rama, A. Biodistribution and targeting potential assessment of mucoadhesive chitosan nanoparticles designed for ulcerative colitis via scintigraphy. RSC Advances, 2018, 8, 20809-20821.
[http://dx.doi.org/10.1039/C8RA01898G]
[52]
Mei, L.; Fan, R.; Li, X.; Wang, Y.; Han, B.; Gu, Y.; Zhou, L.; Zheng, Y.; Tong, A.; Guo, G. Nanofibers for improving wound repair process: The combination of grafted chitosan and antioxidant agent. Polym. Chem., 2017, 8, 1664-1671.
[http://dx.doi.org/10.1039/C7PY00038C]
[53]
Fereydouni, N.; Darroudi, M.; Movaffagh, J.; Shahroodi, A.; Butler, A.E.; Ganjali, S.; Sahebkar, A. Curcumin nanofibers for the purpose of wound healing. J. Cell. Physiol., 2019, 234(5), 5537-5554.
[PMID: 30370528]
[54]
Baghdan, E.; Duse, L.; Schüer, J.J.; Pinnapireddy, S.R.; Pourasghar, M.; Schäfer, J.; Schneider, M.; Bakowsky, U. Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. Eur. J. Pharm. Sci., 2019, 132, 63-71.
[http://dx.doi.org/10.1016/j.ejps.2019.02.025] [PMID: 30797026]
[55]
Rezaee, R.; Momtazi, A.A.; Monemi, A.; Sahebkar, A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol. Res., 2017, 117, 218-227.
[http://dx.doi.org/10.1016/j.phrs.2016.12.037] [PMID: 28042086]
[56]
Cruz, T.L.; Go’mez, R.; De la Mata, F.J.; Ortega, P. New bow-tie cationic carbosilane dendritic system with a curcumin core as an anti-breast cancer agent. New J. Chem., 2018, 42, 11732-11738.
[http://dx.doi.org/10.1039/C8NJ01713A]
[57]
Karimpour, M.; Feizi, M.A.H.; Mahdavi, M.; Krammer, B.; Verwanger, T.; Najafi, F.; Babaei, E.; Babaei, E. Development of curcumin-loaded gemini surfactant nanoparticles: Synthesis, characterization and evaluation of anticancer activity against human breast cancer cell lines. Phytomedicine, 2019, 57, 183-190.
[http://dx.doi.org/10.1016/j.phymed.2018.11.017] [PMID: 30776589]
[58]
Amanlou, N.; Parsa, M.; Rostamizadeh, K.; Sadighian, S.; Moghaddam, F. Enhanced cytotoxic activity of curcumin on cancer cell lines by incorporating into gold/chitosan nanogels. Mater. Chem. Phys., 2019, 226, 151-157.
[http://dx.doi.org/10.1016/j.matchemphys.2018.12.089]
[59]
Liu, T.; Chi, H.; Chen, J.; Chen, C.; Huang, Y.; Xi, H.; Xue, J.; Si, Y. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene, 2017, 631, 29-38.
[http://dx.doi.org/10.1016/j.gene.2017.08.008] [PMID: 28843521]
[60]
Kumar, V.; Prakash, C.; Singh, R.; Sharma, D. Curcumin’s antiepileptic effect, and alterations in Nav1.1 and Nav1.6 expression in iron-induced epilepsy. Epilepsy Res., 2019, 150, 7-16.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.12.007] [PMID: 30605865]
[61]
Hashemian, M.; Anissian, D.; Ghasemi-Kasman, M.; Akbari, A.; Khalili-Fomeshi, M.; Ghasemi, S.; Ahmadi, F.; Moghadamnia, A.A.; Ebrahimpour, A. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy. Prog. Neuropsychopharmacol Biol. Psychiatry, 2017, 79(Pt B), 462-471.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.025 ] [PMID: 28778407]
[62]
Sandhir, R.; Kaur, H. Potential therapeutic impacts of curcumin in treating epilepsy; Curcumin for Neurological and Psychiatric Disorder; Elsevier B.V. Amsterdam, 2019, pp. 381-399.
[http://dx.doi.org/10.1016/B978-0-12-815461-8.00021-9]
[63]
Forouzanfar, F.; Barreto, G.; Majeed, M.; Sahebkar, A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. Biofactors, 2019, 45(5), 631-640.
[http://dx.doi.org/10.1002/biof.1522] [PMID: 31136038]
[64]
Kunihiro, A.G.; Brickey, J.A.; Frye, J.B.; Luis, P.B.; Schneider, C.; Funk, J.L. Curcumin, but not curcumin-glucuronide, inhibits Smad signaling in TGFβ-dependent bone metastatic breast cancer cells and is enriched in bone compared to other tissues. J. Nutr. Biochem., 2019, 63, 150-156.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.021] [PMID: 30393127]
[65]
Fan, Z.; Li, J.; Liu, J.; Jiao, H.; Liu, B. Anti-inflammation and joint lubrication dual effects of a novel hyaluronic acid/curcumin nanomicelle improve the efficacy of rheumatoid arthritis therapy. ACS Appl. Mater. Interfaces, 2018, 10(28), 23595-23604.
[http://dx.doi.org/10.1021/acsami.8b06236] [PMID: 29920067]
[66]
Tan, X.; Kim, G.; Lee, D.; Oh, J.; Kim, M.; Piao, C.; Lee, J.; Lee, M.S.; Jeong, J.H.; Lee, M. A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model. Biomater. Sci., 2018, 6(2), 407-417.
[http://dx.doi.org/10.1039/C7BM01088E] [PMID: 29340361]
[67]
Kanga, X.; Zhao, C.; Yan, L.; Qi, R.; Jing, X.; Wang, Z. Sensitizing nanoparticle based platinum(IV) drugs by curcumin for better chemotherapy. Colloids Surf. B Biointerface, 2016, 145, 812-819.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.084]
[68]
Tan, R.Z.; Liu, J.; Zhang, Y.Y.; Wang, H.L.; Li, J.C.; Liu, Y.H.; Zhong, X.; Zhang, Y.W.; Yan, Y.; Lan, H.Y.; Wang, L. Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine, 2019, 52, 284-294.
[http://dx.doi.org/10.1016/j.phymed.2018.09.210] [PMID: 30599909]
[69]
Su, W.; Wei, T.; Lu, M.; Meng, Z.; Chen, X.; Jing, J.; Li, J.; Yao, W.; Zhu, H.; Fu, T. Treatment of metastatic lung cancer via inhalation administration of curcumin composite particles based on mesoporous silica. Eur. J. Pharm. Sci., 2019, 134, 246-255.
[http://dx.doi.org/10.1016/j.ejps.2019.04.025] [PMID: 31034984]
[70]
Lachowicz, D.; Karabasz, A.; Bzowska, M.; Szuwarzyński, M.; Karewicz, A.; Nowakowska, M. Blood-compatible, stable micelles of sodium alginate – curcumin bioconjugate for anti-cancer applications. Eur. Polym. J., 2019, 113, 208-219.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.01.058]
[71]
Hesari, A.; Azizian, M.; Sheikhi, A.; Nesaei, A.; Sanaei, S.; Mahinparvar, N.; Derakhshani, M.; Hedayt, P.; Ghasemi, F.; Mirzaei, H. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int. J. Cancer, 2019, 144(6), 1215-1226.
[http://dx.doi.org/10.1002/ijc.31947] [PMID: 30362511]
[72]
Jia, W.; Deng, F.; Fu, W.; Hu, J.; Chen, G.; Gao, X.; Tan, X.; Li, G.; Liu, G.; Zhu, S. Curcumin suppresses wilms’ tumor metastasis by inhibiting RECK methylation. Biomed. Pharmacother., 2019, 111, 1204-1212.
[http://dx.doi.org/10.1016/j.biopha.2018.12.111] [PMID: 30841433]
[73]
Kouhpeikar, H.; Butler, A.E.; Bamian, F.; Barreto, G.E.; Majeed, M.; Sahebkar, A. Curcumin as a therapeutic agent in leukemia. J. Cell. Physiol., 2019, 234(8), 12404-12414.
[http://dx.doi.org/10.1002/jcp.28072] [PMID: 30609023]
[74]
Liu, X.; You, L.; Tarafder, S.; Zou, L.; Fang, Z.; Chen, J.; Lee, C.H.; Zhang, Q. Curcumin- releasing chitosan/aloe membrane for skin regeneration. Chem. Eng. J., 2019, 359, 1111-1119.
[http://dx.doi.org/10.1016/j.cej.2018.11.073]
[75]
Indermun, S.; Govender, M.; Kumar, P.; Choonara, Y.E.; Pillay, V. Current and combinative curcumin therapeutics for treating spinal cord injury; Curcumin for neurological and psychiatric disorders; Elsevier B.V. Amsterdam, 2019, pp. 419-435.
[http://dx.doi.org/10.1016/B978-0-12-815461-8.00023-2]
[76]
Sun, J.; Chen, F.; Braun, C.; Zhou, Y.Q.; Rittner, H.; Tian, Y.K.; Cai, X.Y.; Ye, D.W. Role of curcumin in the management of pathological pain. Phytomedicine, 2018, 48, 129-140.
[http://dx.doi.org/10.1016/j.phymed.2018.04.045] [PMID: 30195871]
[77]
Rahnavard, M.; Hassanpour, M.; Ahmadi, M.; Heidarzadeh, M.; Amini, H.; Javanmard, M.Z.; Nouri, M.; Rahbarghazi, R.; Safaie, N. Curcumin ameliorated myocardial infarction by inhibition of cardiotoxicity in the rat model. J. Cell. Biochem., 2019, 120(7), 11965-11972.
[http://dx.doi.org/10.1002/jcb.28480] [PMID: 30775806]
[78]
Feng, D.; Zou, J.; Zhang, S.; Li, X.; Lu, M. Hypocholesterolemic activity of curcumin is mediated by down-regulating the expression of niemann-pick C1-like 1 in hamsters. J. Agric. Food Chem., 2017, 65(2), 276-280.
[http://dx.doi.org/10.1021/acs.jafc.6b04102] [PMID: 28000447]
[79]
Ghisleni, G.; Bastos, C.R.; Kaufmann, F.N.; Kaster, M.P. Curcumin in depressive disorders; Curcumin for Neurological and Psychiatric Disorders; Elsevier B.V. Amsterdam, 2019, pp. 459-477.
[80]
Shehzad, A.; Islam, S.U.; Lee, Y.S. Curcumin and inflammatory brain diseases; curcumin for neurological and psychiatric disorders; Elsevier B.V. Amsterdam, 2019, pp. 437-458.
[81]
Farooqui, A.; Farooqui, T. Potential therapeutic impacts of curcumin for improving memory impairment; Curcumin for neurological and psychiatric disorders; Elsevier B.V. Amsterdam, 2019, pp. 231-245.
[http://dx.doi.org/10.1016/B978-0-12-815461-8.00014-1]
[82]
Bhat, A.; Mahalakshmi, A.M.; Ray, B.; Tuladhar, S.; Hediyal, T.A.; Manthiannem, E.; Padamati, J.; Chandra, R.; Chidambaram, S.B.; Sakharkar, M.K. Benefits of curcumin in brain disorders. Biofactors, 2019, 45(5), 666-689.
[http://dx.doi.org/10.1002/biof.1533] [PMID: 31185140]
[83]
Farooqui, A.; Farooqui, T. Therapeutic potentials of curcumin in parkinson’s disease; curcumin for neurological and psychiatric disorders, 2019, pp. 333-344.
[84]
Hosseini, A.; Rasmi, Y.; Rahbarghazi, R.; Aramwit, P.; Daeihassani, B.; Saboory, E. Curcumin modulates the angiogenic potential of human endothelial cells via FAK/P-38 MAPK signaling pathway. Gene, 2019, 688, 7-12.
[http://dx.doi.org/10.1016/j.gene.2018.11.062] [PMID: 30472378]
[85]
Ghanaatian, N.; Lashgari, N.A.; Abdolghaffari, A.H.; Rajaee, S.M.; Panahi, Y.; Barreto, G.E.; Butler, A.E.; Sahebkar, A. Curcumin as a therapeutic candidate for multiple sclerosis: Molecular mechanisms and targets. J. Cell. Physiol., 2019, 234(8), 12237-12248.
[http://dx.doi.org/10.1002/jcp.27965] [PMID: 30536381]
[86]
Li, Y.; Tian, L.; Sun, D.; Yin, D. Curcumin ameliorates atherosclerosis through upregulation of miR-126. J. Cell. Physiol., 2019, 234(11), 21049-21059.
[http://dx.doi.org/10.1002/jcp.28708] [PMID: 31016760]
[87]
Motaharinia, J.; Panahi, Y.; Barreto, G.E.; Beiraghdar, F.; Sahebkar, A. Efficacy of curcumin on prevention of drug-induced nephrotoxicity: A review of animal studies. Biofactors, 2019, 45(5), 690-702.
[http://dx.doi.org/10.1002/biof.1538] [PMID: 31246346]
[88]
Lim, J.; Bokare, A.D.; Choi, W. Visible light sensitization of TiO2 nanoparticles by a dietary pigment, curcumin, for environmental photochemical transformations. RSC Advances, 2017, 7, 32488-32495.
[http://dx.doi.org/10.1039/C7RA05276F]
[89]
Nosrati, H.; Charmi, J.; Abedini, S.; Rashidi, N.; Attari, E.; Davaran, S.; Danafar, H.; Manjili, H.K. Preparation and characterization of magnetic theranostic nanoparticles for curcumin delivery and evaluation as MRI contrast agent. Appl. Organomet. Chem., 2018, 33(12) e4588
[http://dx.doi.org/10.1002/aoc.4588]
[90]
Ghorbaane, M.; Salarian, A.A.; Saba, V. Curcumin loaded Fe3O4 nanoparticles: An MRI contrast agent to investigate the impact of curcumin on maximizing negative contrast and r2 relaxation rate. J. Inorg. Organomet. Polym., 2018, 28, 2169-2178.
[http://dx.doi.org/10.1007/s10904-018-0868-x]
[91]
Abou-Gamra, Z.M.; Ahmed, M.A. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B, 2016, 160, 134-141.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.054] [PMID: 27107333]
[92]
Jaguezeski, A.M.; Perin, G.; Bottari, N.B.; Wagner, R.; Fagundes, M.B.; Schetinger, M.R.C.; Morsch, V.M.; Stein, C.S.; Moresco, R.N.; Barreta, D.A.; Danieli, B.; Defiltro, R.C.; Schogor, A.L.B.; Da Silva, A.S. Addition of curcumin to the diet of dairy sheep improves health, performance and milk quality. Anim. Feed Sci. Technol., 2018, 246, 144-157.
[http://dx.doi.org/10.1016/j.anifeedsci.2018.10.010]
[93]
Molosse, V.; Souza, C.F.; Baldissera, M.D.; Glombowsky, P.; Campigotto, G.; Cazaratto, C.J.; Stefani, L.M.; Da Silva, A.S. Diet supplemented with curcumin for nursing lambs improves animal growth, energetic metabolism, and performance of the antioxidant and immune systems. Small Rumin. Res., 2019, 170, 74-81.
[http://dx.doi.org/10.1016/j.smallrumres.2018.11.014]
[94]
Bahadir Koca, S.; Ongun, O.; Ozmen, O.; Yigit, N.O. Subfertility effects of turmeric (Curcuma longa) on reproductive performance of Pseudotropheus acei. Anim. Reprod. Sci., 2019, 202, 35-41.
[http://dx.doi.org/10.1016/j.anireprosci.2019.01.005] [PMID: 30642582]
[95]
Lade, H.; Song, W.J.; Yu, Y.J.; Ryu, J.H.; Arthanareeswaran, G.; Kweon, J.H. Exploring the potential of curcumin for control of N-acyl homoserine lactone-mediated biofouling in membrane bioreactors for wastewater treatment. RSC Advances, 2017, 7, 16392-16400.
[http://dx.doi.org/10.1039/C6RA28032C]
[96]
Saltos, J.A.; Shi, W.; Mancuso, A.; Sun, C.; Parka, T.; Averick, N.; Punia, K.; Fata, J.; Raja, K. Curcumin-derived green plasticizers for Poly(vinyl) chloride. RSC Advances, 2014, 4, 54725-54728.
[http://dx.doi.org/10.1039/C4RA10581H]
[97]
Pourreza, N.; Golmohammadi, H.; Rastegarzadeh, S. Highly selective and portable chemosensor for mercury determination in water samples using curcumin nanoparticles in a paper based analytical device. RSC Advances, 2016, 6, 69060-69066.
[http://dx.doi.org/10.1039/C6RA08879A]
[98]
Bellinger, S.; Hatamimoslehabadi, M.; Borg, R.E.; La, J.; Catsoulis, P.; Mithila, F.; Yelleswarapu, C.; Rochford, J. Characterization of a NIR absorbing thienyl curcumin contrast agent for photoacoustic imaging. Chem. Commun. (Camb.), 2018, 54(49), 6352-6355.
[http://dx.doi.org/10.1039/C8CC03727B] [PMID: 29868656]
[99]
Kalaycıoğlu, Z.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; Erim, F.B. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int. J. Biol. Macromol., 2017, 101, 882-888.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.174] [PMID: 28366856]
[100]
Alehosseini, A.; Gómez-Mascaraque, L.G.; Martínez-Sanz, M.; López-Rubio, A. Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocoll., 2019, 87, 758-771.
[http://dx.doi.org/10.1016/j.foodhyd.2018.08.056]
[101]
Mahmood, K.; Zia, K.M.; Aftab, W.; Zuber, M.; Tabasum, S.; Noreen, A.; Zia, F. Synthesis and characterization of chitin/curcumin blended polyurethane elastomers. Int. J. Biol. Macromol., 2018, 113, 150-158.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.031] [PMID: 29337098]
[102]
Sadeq Al-Namil, D.; Patra, D. Green solid-state based curcumin mediated rhamnolipids stabilized silver nanoparticles: Interaction of silver nanoparticles with cystine and albumins towards fluorescence sensing. Colloids Surf. B Biointerfaces, 2019, 173, 647-653.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.033] [PMID: 30368212]
[103]
Tao, R.; Zhang, F.; Tang, Q.J.; Xu, C.S.; Ni, Z.J.; Meng, X.H. Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples. Food Chem., 2019, 274, 415-421.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.042] [PMID: 30372959]
[104]
Liu, M.; Zhao, H.; Wu, J.; Xiong, X.; Zheng, L. Eco-friendly curcumin-based dyes for supercritical carbon dioxide natural fabric dyeing. J. Clean. Prod., 2018, 197, 1262-1267.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.202]
[105]
Tsuchikawa, M.; Takao, A.; Funaki, T.; Sugihara, H.; Ono, K. Multifunctional organic dyes: Anion-sensing and light-harvesting properties of curcumin boron complexes. RSC Advances, 2017, 7, 36612-36616.
[http://dx.doi.org/10.1039/C7RA06778J]
[106]
Duan, Y.; Li, K.; Wang, H.; Wu, T.T.; Yang, W. Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydr. Polym., 2020, 238 116195
[http://dx.doi.org/10.1016/j.carbpol.2020.116195]
[107]
Yuan, X.; Dong, S.; Zheng, Q.; Yang, W.; Huang, T. Novel and efficient curcumin based fluorescent polymer for scale and corrosion inhibition. Chem. Eng. J., 2020, 3891 124296
[http://dx.doi.org/10.1016/j.cej.2020.124296]
[108]
Li, H.; Sureda, A.; Devkota, H.P.; Pittalà, V.; Barreca, D.; Silva, A.S.; Tewari, D.; Xu, S.; Nabavi, S.M. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol. Adv., 2020, 38 107343
[http://dx.doi.org/10.1016/j.biotechadv.2019.01.010] [PMID: 30716389]
[109]
Rodrigues, F.C.; Anil Kumar, N.V.; Thakur, G. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. Eur. J. Med. Chem., 2019, 177, 76-104.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.058] [PMID: 31129455]
[110]
Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress. A review Neurosci., 2019, 406, 1-21.
[http://dx.doi.org/10.1016/j.neuroscience.2019.02.020] [PMID: 30825584]
[111]
Karimi, A.; Ghodsi, R.; Kooshki, F.; Karimi, M.; Asghariazar, V.; Tarighat-Esfanjani, A. Therapeutic effects of curcumin on sepsis and mechanisms of action: A systematic review of preclinical studies. Phytother. Res., 2019, 33(11), 2798-2820.
[http://dx.doi.org/10.1002/ptr.6467] [PMID: 31429161]
[112]
Tsuda, T. Curcumin as a functional food-derived factor: Degradation products, metabolites, bioactivity, and future perspectives. Food Funct., 2018, 9(2), 705-714.
[http://dx.doi.org/10.1039/C7FO01242J] [PMID: 29206254]
[113]
Batra, H.; Pawar, S.; Bahl, D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol. Res., 2019, 139, 91-105.
[http://dx.doi.org/10.1016/j.phrs.2018.11.005] [PMID: 30408575]
[114]
Liu, H.T.; Ho, Y.S. Anticancer effect of curcumin on breast cancer and stem Cells. Food Sci. Hum. Wellness, 2018, 7(2), 134-137.
[http://dx.doi.org/10.1016/j.fshw.2018.06.001]
[115]
Arablou, T.; Kolahdouz-Mohammadi, R. Curcumin and endometriosis: Review on potential roles and molecular mechanisms. Biomed. Pharmacother., 2018, 97, 91-97.
[http://dx.doi.org/10.1016/j.biopha.2017.10.119] [PMID: 29080464]
[116]
Farajipour, H.; Rahimian, S.; Taghizadeh, M. Curcumin: A new candidate for retinal disease therapy? J. Cell. Biochem., 2018, 120(5), 6886-6893.
[http://dx.doi.org/10.1002/jcb.28068] [PMID: 30548307]
[117]
Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med., 2016, 7(3), 339-346.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]
[118]
Sanphui, P.; Bolla, G. Curcumin - a biological wonder molecule: A crystal engineering point of review. Cryst. Growth Des., 2018, 18(9), 5690-5711.
[http://dx.doi.org/10.1021/acs.cgd.8b00646]
[119]
Mathew, D.; Hsu, W.L. Antiviral potential of curcumin. J. Funct. Foods, 2018, 40, 692-699.
[http://dx.doi.org/10.1016/j.jff.2017.12.017]
[120]
Sanei, M.; Saberi-Demneh, A. Effect of curcumin on memory impairment: A systematic review. Phytomedicine, 2019, 52, 98-106.
[http://dx.doi.org/10.1016/j.phymed.2018.06.016] [PMID: 30599917]
[121]
Pagano, E.; Romano, B.; Izzo, A.A.; Borrelli, F. The clinical efficacy of curcumin-containing nutraceuticals: An overview of systematic reviews. Pharmacol. Res., 2018, 134, 79-91.
[http://dx.doi.org/10.1016/j.phrs.2018.06.007] [PMID: 29890252]
[122]
Mancía, S.R.; Trujillo, J.; Chaverri, J.P. Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies. J. Nutr. Intermed. Metab., 2018, 14, 29-41.
[http://dx.doi.org/10.1016/j.jnim.2018.05.001]
[123]
Jamwal, R. Bioavailable curcumin formulations: A review of pharmacokinetic studies in healthy volunteers. J. Integr. Med., 2018, 16(6), 367-374.
[http://dx.doi.org/10.1016/j.joim.2018.07.001] [PMID: 30006023]
[124]
Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Butler, A.E.; Sahebkar, A. Therapeutic potential of curcumin in diabetic complications. Pharmacol. Res., 2018, 136, 181-193.
[http://dx.doi.org/10.1016/j.phrs.2018.09.012] [PMID: 30219581]
[125]
Alvarenga, L.D.A.; Leal, V.D.O.; Borges, N.A.; Aguiar, A.S.D.; Irvinge, G.F.; Stenvinkel, P.; Lindholm, B.; Mafra, D. Curcumin - A promising nutritional strategy for chronic kidney disease patients. J. Funct. Foods, 2018, 40, 715-721.
[http://dx.doi.org/10.1016/j.jff.2017.12.015]
[126]
Saeidinia, A.; Keihanian, F.; Butler, A.E.; Bagheri, R.K.; Atkin, S.L.; Sahebkar, A. Curcumin in heart failure: A choice for complementary therapy? Pharmacol. Res., 2018, 131, 112-119.
[http://dx.doi.org/10.1016/j.phrs.2018.03.009] [PMID: 29550354]
[127]
Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumar, N.V.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of curcumin: A review of clinical trials. Eur. J. Med. Chem., 2019, 163, 527-545.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.016] [PMID: 30553144]
[128]
Shen, L.; Ji, H.F. Bidirectional interactions between dietary curcumin and gut microbiota. Crit. Rev. Food Sci. Nutr., 2019, 59(18), 2896-2902.
[http://dx.doi.org/10.1080/10408398.2018.1478388] [PMID: 29781709]
[129]
Raufa, A.; Imran, M.; Orhan, I.E.; Bawazeer, S. Health perspectives of a bioactive compound curcumin. A review. Trends Food Sci. Technol., 2018, 74, 33-45.
[http://dx.doi.org/10.1016/j.tifs.2018.01.016]
[130]
Huang, Y.; Cao, S.; Zhang, Q.; Zhang, H.; Fan, Y.; Qiu, F.; Kang, N. Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Arch. Biochem. Biophys., 2018, 646, 31-37.
[http://dx.doi.org/10.1016/j.abb.2018.03.030] [PMID: 29596797]
[131]
Suresh, K.; Nangia, A. Curcumin: Pharmaceutical solids as a platform to improve solubility and bioavailability. Cryst.Eng.Comm, 2018, 20, 3277-3296.
[http://dx.doi.org/10.1039/C8CE00469B]
[132]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[133]
Cooksey, C.J. Turmeric: Old spice, new spice. Biotech. Histochem., 2017, 92(5), 309-314.
[http://dx.doi.org/10.1080/10520295.2017.1310924] [PMID: 28506084]
[134]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[135]
Farkhondeh, T.; Samarghandian, S. The hepatoprotective effects of curcumin against drugs and toxic agents: An updated review. Toxin Rev., 2016, 35, 133-140.
[http://dx.doi.org/10.1080/15569543.2016.1215333]
[136]
Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: Problems and advancements. J. Drug Target., 2016, 24(8), 694-702.
[http://dx.doi.org/10.3109/1061186X.2016.1157883] [PMID: 26942997]
[137]
Sahebkar, A.; Cicero, A.F.G.; Simental-Mendía, L.E.; Aggarwal, B.B.; Gupta, S.C. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol. Res., 2016, 107, 234-242.
[http://dx.doi.org/10.1016/j.phrs.2016.03.026] [PMID: 27025786]
[138]
Martino, R.M.C.D.; Luppi, B.; Bisi, A.; Gobbi, S.; Rampa, A.; Abruzzo, A.; Bellutia, F. Recent progress on curcumin-based therapeutics: A patent review (2012-2016). Part I: Curcumin. Expert Opin. Ther. Pat., 2017, 27(8), 953-965.
[139]
Derosa, G.; Maffioli, P.; Simental-Mendía, L.E.; Bo, S.; Sahebkar, A. Effect of curcumin on circulating interleukin-6 concentrations: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2016, 111, 394-404.
[http://dx.doi.org/10.1016/j.phrs.2016.07.004] [PMID: 27392742]
[140]
Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res., 2017, 115, 133-148.
[http://dx.doi.org/10.1016/j.phrs.2016.11.017] [PMID: 27888157]
[141]
Allegra, A.; Innao, V.; Russo, S.; Gerace, D.; Alonci, A.; Musolino, C. Anticancer activity of curcumin and its analogues: Preclinical and clinical studies. Cancer Invest., 2017, 35(1), 1-22.
[http://dx.doi.org/10.1080/07357907.2016.1247166] [PMID: 27996308]
[142]
Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 2018, 109, 273-286.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[143]
Huang, W.; Wang, L.; Wei, Y.; Cao, M.; Xie, H.; Wu, D. Fabrication of lysozyme/κ-carrageenan complex nanoparticles as a novel carrier to enhance the stability and in vitro release of curcumin. Int. J. Biol. Macromol., 2020, 146, 444-452.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.004] [PMID: 31923486]
[144]
Musavvir Mahmud, M.M.; Zaman, S.; Perveen, A.; Jahand, R.A.; Islame, M.F.; Arafat, M.T. Controlled release of curcumin from electrospun fiber mats with antibacterial activity. J. Drug Deliv. Sci. Technol., 2020. 55101386
[http://dx.doi.org/10.1016/j.jddst.2019.101386]
[145]
Alizadeh, N.; Malakzadeh, S. Antioxidant, antibacterial and anti-cancer activities of β-and γ-CDs/curcumin loaded in chitosan nanoparticles. Int. J. Biol. Macromol., 2020, 147, 778-791.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.206] [PMID: 31982535]
[146]
Abu Lila, A.S.; Ishida, T.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[147]
Li, T.; Cipolla, D.; Rades, T.; Boyd, B.J. Drug nanocrystallisation within liposomes. J. Control. Release, 2018, 288, 96-110.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.001] [PMID: 30184465]
[148]
Ng, Z.Y.; Wong, J.Y.; Panneerselvam, J.; Madheswaran, T.; Kumar, P.; Pillay, V.; Hsu, A.; Hansbro, N.; Bebawy, M.; Wark, P.; Hansbro, P.; Dua, K.; Chellappan, D.K. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf. B Biointerfaces, 2018, 172(1), 51-59.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.027] [PMID: 30134219]
[149]
Li, R.; Deng, L.; Cai, Z.; Zhang, S.; Wang, K.; Li, L.; Ding, S.; Zhou, C. Liposomes coated with thiolated chitosan as drug carriers of curcumin. Mater. Sci. Eng. C, 2017, 80, 156-164.
[http://dx.doi.org/10.1016/j.msec.2017.05.136] [PMID: 28866151]
[150]
Cuomoa, F.; Cofelicea, M.; Vendittia, F.; Cegliea, A.; Miguel, M.; Lindmanc, B.; Lopezaa, F. In-vitro digestion of curcumin loaded chitosan-coated liposomes. Colloids Surf. B Biointerface, 2018, 168, 29-34.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.047]
[151]
Fanun, M. Microemulsions as delivery systems. ‎. Curr. Opin. Colloid Interface Sci., 2012, 17, 306-313.
[http://dx.doi.org/10.1016/j.cocis.2012.06.001]
[152]
Jha, S.K.; Dey, S.; Karki, R. Microemulsions- potential carrier for improved drug delivery. Asian J. Biomed. Pharma. Sci., 2011, 1(1), 5-9.
[153]
Cuomo, F.; Perugini, L.; Marconi, E.; Messia, M.C.; Lopez, F. Enhanced curcumin bioavailability through nonionic surfactant/caseinate mixed nanoemulsions. J. Food Sci., 2019, 84(9), 2584-2591.
[http://dx.doi.org/10.1111/1750-3841.14759] [PMID: 31436860]
[154]
Xu, G.; Wang, C.; Yao, P. Stable emulsion produced from casein and soy polysaccharide compacted complex for protection and oral delivery of curcumin. Food Hydrocoll., 2017, 71, 108-117.
[http://dx.doi.org/10.1016/j.foodhyd.2017.05.010]
[155]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf.), 2008, 49, 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[156]
Mishra, B.; Upadhyay, M.; Reddy Adena, S.K.; Vasant, B.G.; Muthu, M.S. Hydrogels: An introduction to a controlled drug delivery device, synthesis and application in drug delivery and tissue engineering. Austin J. Biomed. Eng., 2017, 4(1), 1037-1050.
[157]
Zhang, M.; Zhuang, B.; Du, G.; Han, G.; Jin, Y. Curcumin solid dispersion-loaded in situ hydrogels for local treatment of injured vaginal bacterial infection and improvement of vaginal wound healing. J. Pharm. Pharmacol., 2019, 71(7), 1044-1054.
[http://dx.doi.org/10.1111/jphp.13088] [PMID: 30887519]
[158]
Gelareh Rezvan, G.; Pircheraghi, G.; Bagheri, R. Curcumin incorporated PVA-borax dual delivery hydrogels as potential wound dressing materials—Correlation between viscoelastic properties and curcumin release rate. J. Appl. Polym. Sci., 2018, 135(45), 46734.
[http://dx.doi.org/10.1002/app.46734]
[159]
Xu, W.; Ling, P.; Zhang, T. Polymeric Micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, Article ID 340315, 15.
[160]
Mohamed, S.; Parayath, N.N.; Taurin, S.; Greish, K. Polymeric nano-micelles: Versatile platform for targeted delivery in cancer. Ther. Deliv., 2014, 5(10), 1101-1121.
[http://dx.doi.org/10.4155/tde.14.69] [PMID: 25418269]
[161]
Vaidya, F.U.; Sharma, R.; Shaikh, S.; Ray, D.; Aswal, V.K.; Pathak, C. Pluronic micelles encapsulated curcumin manifests apoptotic cell death and inhibits proinflammatory cytokines in human breast adenocarcinoma cells. Cancer Reports., 2018, 2(1), 1133-1150.
[http://dx.doi.org/10.1002/cnr2.1133]
[162]
Chen, C-H.; Lin, Y-S.; Wu, S-J.; Mi, F-L. Mutlifunctional nanoparticles prepared from arginine-modified chitosan and thiolated fucoidan for oral delivery of hydrophobic and hydrophilic drugs. Carbohydr. Polym., 2018, 193, 163-172.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.080] [PMID: 29773368]
[163]
Acevedo-Guevara, L.; Nieto-Suaza, L.; Sanchez, L.T.; Pinzon, M.I.; Villa, C.C. Development of native and modified banana starch nanoparticles as vehicles for curcumin. Int. J. Biol. Macromol., 2018, 111, 498-504.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.063] [PMID: 29337095]
[164]
Liu, J.; Lei, L.; Ye, F.; Zhou, Y.; Younis, H.G.R.; Zhao, G. Aggregates of octenylsuccinate oat β-glucan as novel capsules to stabilize curcumin over food processing, storage and digestive fluids and to enhance its bioavailability. Food Funct., 2018, 9(1), 491-501.
[http://dx.doi.org/10.1039/C7FO01569K] [PMID: 29243747]
[165]
Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C.; McClements, D.J. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct., 2018, 9(3), 1829-1839.
[http://dx.doi.org/10.1039/C7FO01814B] [PMID: 29517797]
[166]
Li, H.; Zhu, J.; Chen, S.; Jia, L.; Ma, Y. Fabrication of aqueousbased dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release. RSC Adv., 2017, 7, 56550-56558.
[http://dx.doi.org/10.1039/C7RA12394A]
[167]
Sauraj, Kumar, S.U.; Kumar, V.; Priyadarshi, R.; Gopinath, P.; Negi, Y.S. pH-responsive prodrug nanoparticles based on xylancurcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr. Polym., 2018, 188, 252-259.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.006] [PMID: 29525163]
[168]
Xie, H.; Xiang, C.; Li, Y.; Wang, L.; Zhang, Y.; Song, Z.; Ma, X.; Lu, X.; Lei, Q.; Fang, W. Fabrication of ovalbumin/κ-carrageenan complex nanoparticles as a novel carrier for curcumin delivery. Food Hydrocoll., 2019, 89, 111-121.
[http://dx.doi.org/10.1016/j.foodhyd.2018.10.027]
[169]
Zhu, F.; Tan, G.; Jiang, Y.; Yu, Z.; Ren, F. Rational design of multi-stimuli-responsive gold nanorod-curcumin conjugates for chemo-photothermal synergistic cancer therapy. Biomater. Sci., 2018, 6(11), 2905-2917.
[http://dx.doi.org/10.1039/C8BM00691A] [PMID: 30209445]
[170]
Szegedi, A.; Shestakova, P.; Trendafilova, I.; Mihayi, J.; Tsacheva, I.; Mitova, V.; Kyulavska, M.; Koseva, N.; Momekova, D.; Konstantinov, S.; Aleksandrov, H.A.; St Petkov, P.; Koleva, I.Z.; Vayssilov, G.N.; Popova, M. Modified mesoporous silica nanoparticles coated by polymer complex as novel curcumin delivery carriers. J. Drug Deliv. Sci. Technol., 2019, 49, 700-712.
[http://dx.doi.org/10.1016/j.jddst.2018.12.016]
[171]
Liu, C.; Yang, X.; Wu, W.; Long, Z.; Xiao, H.H.; Luo, F.; Shen, Y.; Lin, Q. Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocoll., 2018, 77, 834-842.
[http://dx.doi.org/10.1016/j.foodhyd.2017.11.027]
[172]
Chaurasia, S.; Patel, R.R.; Chaubey, P.; Kumar, N.; Khan, G.; Mishra, B. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin. Carbohydr. Polym., 2015, 130, 9-17.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.062] [PMID: 26076595]
[173]
Faralli, A.; Shekarforoush, E.; Ajalloueian, F.; Mendes, A.C.; Chronakis, I.S. In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers. Carbohydr. Polym., 2019, 206, 38-47.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.073] [PMID: 30553335]
[174]
Huang, Y-C.; Kuo, T-H. O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocoll., 2016, 53, 261-269.
[http://dx.doi.org/10.1016/j.foodhyd.2015.02.006]
[175]
Salehiabar, M.; Nosrati, H.; Javani, E.; Aliakbarzadeh, F.; Manjili, H.K.; Davaran, S.; Danafar, H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol., 2017, 101, 882-888.
[PMID: 29653171]
[176]
Sarika, P.R.; James, N.R. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydr. Polym., 2016, 148, 354-361.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.073] [PMID: 27185149]
[177]
Yadav, P.; Bandyopadhyay, A.; Chakraborty, A.; Sarkar, K. Enhancement of anticancer activity and drug delivery of chitosancurcumin nanoparticle via molecular docking and simulation analysis. Carbohydr. Polym., 2018, 182, 188-198.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.102] [PMID: 29279114]
[178]
Esfandiarpour-Boroujeni, S.; Bagheri-Khoulenjani, S.; Mirzadeh, H.; Amanpour, S. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr. Polym., 2017, 168, 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.031] [PMID: 28457434]
[179]
Raveendran, R.; Bhuvaneshwar, G.S.; Sharma, C.P. Hemocompatible curcumin-dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells. Carbohydr. Polym., 2016, 137, 497-507.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.017] [PMID: 26686156]
[180]
Laghezza Masci, V.; Taddei, A.R.; Courant, T.; Tezgel, O.; Navarro, F.; Giorgi, F.; Mariolle, D.; Fausto, A.M.; Texier, I. Characterization of collagen/lipid nanoparticle–curcumin cryostructurates for wound healing applications. Macromol. Biosci., 2019, 19(5) e1800446
[http://dx.doi.org/10.1002/mabi.201800446] [PMID: 30768756]
[181]
Sneharani, A.H. Curcumin-sunflower protein nanoparticles-A potential antiinflammatory agent. J. Food Biochem., 2019, 43(8) e12909
[http://dx.doi.org/10.1111/jfbc.12909] [PMID: 31368579]
[182]
Du, T.; Dong, N.; Fang, L.; Lu, J.; Bi, J.; Xiao, S.; Han, H.H. Multi-site inhibitors for enteric coronavirus: Antiviral cationic carbon dots based on curcumin. ACS Appl. Nano Mater., 2018, 1(10), 5451-5459.
[http://dx.doi.org/10.1021/acsanm.8b00779]
[183]
Chen, S.; Wu, J.; Tang, Q.; Xu, C.; Huang, Y.; Huang, D.; Luo, F.; Wu, Y.; Yan, F.; Weng, Z.; Wang, S. Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Carbohydr. Polym., 2020, 228 115398
[http://dx.doi.org/10.1016/j.carbpol.2019.115398] [PMID: 31635734]
[184]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[185]
Esposito, T.; Lucariello, A.; Hay, E.; Contieri, M.; Tammaro, P.; Varriale, B.; Guerra, G.; De Luca, A.; Perna, A. Effects of curcumin and its adjuvant on TPC1 thyroid cell line. Chem. Biol. Interact., 2019, 305, 112-118.
[http://dx.doi.org/10.1016/j.cbi.2019.03.031] [PMID: 30935902]
[186]
Liao, F.; Liu, L.; Luo, E.; Hu, J. Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma. Arch. Oral Biol., 2018, 92, 32-37.
[http://dx.doi.org/10.1016/j.archoralbio.2018.04.015] [PMID: 29751146]
[187]
Garrido-Armas, M.; Corona, J.C.; Escobar, M.L.; Torres, L.; Ordóñez-Romero, F.; Hernández-Hernández, A.; Arenas-Huertero, F. Paraptosis in human glioblastoma cell line induced by curcumin. Toxicol. In Vitro, 2018, 51, 63-73.
[http://dx.doi.org/10.1016/j.tiv.2018.04.014] [PMID: 29723631]
[188]
Şueki, F.; Ruhi, M.K.; Gülsoy, M. The effect of curcumin in antitumor photodynamic therapy: In vitro experiments with Caco-2 and PC-3 cancer lines. Photodiagn. Photodyn. Ther., 2019, 27, 95-99.
[http://dx.doi.org/10.1016/j.pdpdt.2019.05.012] [PMID: 31100447]
[189]
Zhang, H.Y.; Sun, C.Y.; Adu-Frimpong, M.; Yu, J.N.; Xu, X.M. Glutathione-sensitive PEGylated curcumin prodrug nanomicelles: Preparation, characterization, cellular uptake and bioavailability evaluation. Int. J. Pharm., 2019, 555, 270-279.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.049] [PMID: 30471374]
[190]
Somu, P.; Paul, S. Bio-conjugation of curcumin with self-assembled casein nanostructure via surface loading enhances its bioactivity: An efficient therapeutic system. Appl. Surf. Sci., 2018, 462, 316-329.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.094]
[191]
Nadaf, S.J.; Killedar, S.G. Curcumin nanocochleates: Use of design of experiments, solid state characterization, in vitro apoptosis and cytotoxicity against breast cancer MCF-7 cells. J. Drug Deliv. Sci. Technol., 2018, 47, 337-350.
[http://dx.doi.org/10.1016/j.jddst.2018.06.026]
[192]
Saleh, T.; Soudi, T.; Shojaosadati, S.A. Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells. Int. J. Biol. Macromol., 2019, 130, 109-116.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.129] [PMID: 30802519]
[193]
Cao, Y.; Yang, X.; Wu, Y.; Yi, J.; Wu, Y.; Yu, C.; Huang, Y.; Bao, Y.; Sun, L.; Li, Y. Dual release of angiostatin and curcumin from biodegradable PLGA microspheres inhibit Lewis lung cancer in a mice model. RSC Advances, 2016, 6, 111440-111446.
[http://dx.doi.org/10.1039/C6RA23627H]
[194]
Baspinar, Y.; Üstündas, M.; Bayraktar, O.; Sezgin, C. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterisation. Saudi Pharm. J., 2018, 26(3), 323-334.
[http://dx.doi.org/10.1016/j.jsps.2018.01.010] [PMID: 29556123]
[195]
Ahlgren, S.; Fondell, A.; Gedd, L.; Edwards, K. EGF-targeting lipodisks for specific delivery of poorly water-soluble anticancer agents to tumor Cells. RSC Advances, 2017, 7, 22178-22186.
[http://dx.doi.org/10.1039/C7RA04059H]
[196]
Chen, Y.C.; Chen, B.H. Preparation of curcuminoid microemulsions from Curcuma longa L. to enhance inhibition effects on growth of colon cancer cells HT-29. RSC Advances, 2018, 8, 2323-2337.
[http://dx.doi.org/10.1039/C7RA12297G]
[197]
Zhang, L.; Man, S.; Qiu, H.; Liu, Z.; Zhang, M.; Ma, L.; Gao, W. Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ. Toxicol. Pharmacol., 2016, 48, 31-38.
[http://dx.doi.org/10.1016/j.etap.2016.09.021] [PMID: 27716533]
[198]
Fan, Y.; Yi, J.; Zhang, Y.; Yokoyama, W. Improved chemical stability and anti-proliferative activities of curcumin-loaded nanoparticles with chitosan-chlorogenic acid conjugate. J. Agric. Food Chem., 2017, 65(49), 10812-10819.
[http://dx.doi.org/10.1021/acs.jafc.7b04451] [PMID: 29155582]
[199]
Alibolandi, M.; Hoseini, F.; Mohammadi, M.; Ramezani, P.; Einafshar, E.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int. J. Pharm., 2018, 549(1-2), 67-75.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.052] [PMID: 30048777]
[200]
Machado, F.C.; Adum de Matos, R.P.; Primo, F.L.; Tedesco, A.C.; Rahal, P.; Calmon, M.F. Effect of curcumin-nanoemulsion associated with photodynamic therapy in breast adenocarcinoma cell line. Bioorg. Med. Chem., 2019, 27(9), 1882-1890.
[http://dx.doi.org/10.1016/j.bmc.2019.03.044] [PMID: 30926313]
[201]
Asabuwa Ngwabebhoh, F.; Ilkar Erdagi, S.; Yildiz, U. Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Carbohydr. Polym., 2018, 201, 317-328.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.079] [PMID: 30241825]
[202]
Wang, J.; Wang, Y.; Liu, Q.; Yang, L.; Zhu, R.; Yu, C.; Wang, S. Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(40), 26511-26523.
[http://dx.doi.org/10.1021/acsami.6b08400] [PMID: 27619078]
[203]
Pal, K.; Roy, S.; Parida, P.K.; Dutta, A.; Bardhan, S.; Das, S.; Jana, K.; Karmakar, P. Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in invitro and invivo model. Mater. Sci. Eng. C, 2019, 95, 204-216.
[http://dx.doi.org/10.1016/j.msec.2018.10.071] [PMID: 30573243]
[204]
Das, R.P.; Gandhi, V.V.; Singh, B.G.; Kunwar, A.; Kumar, N.N.; Priyadarsini, K.I. Preparation of albumin nanoparticles: Optimum size for cellular uptake of entrapped drug Curcumin. Colloids Surf. A Physicochem. Eng. Asp., 2019, 567, 86-95.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.043]
[205]
Sorasitthiyanukarn, F.N.; Muangnoi, C.; Ratnatilaka Na Bhuket, P.; Rojsitthisak, P.; Rojsitthisak, P. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater. Sci. Eng. C, 2018, 93, 178-190.
[http://dx.doi.org/10.1016/j.msec.2018.07.069] [PMID: 30274050]
[206]
Bai, F.; Diao, J.; Wang, Y.; Sun, S.; Zhang, H.; Liu, Y.; Wang, Y.; Cao, J. A new water-soluble nano-micelle through self-assembly pectin-curcumin conjugates: Preparation, characterization and anti-cancer activity evaluation. J. Agric. Food Chem., 2017, 65(32), 6840-6847.
[http://dx.doi.org/10.1021/acs.jafc.7b02250] [PMID: 28721737]
[207]
Chaharband, F.; Kamalinia, G.; Atyabi, F.; Mortazavi, S.A.; Mirzaie, Z.H.; Dinarvand, R. Formulation and in vitro evaluation of curcumin-lactoferrin conjugated nanostructures for cancerous cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 626-636.
[http://dx.doi.org/10.1080/21691401.2017.1337020] [PMID: 28622061]
[208]
Xie, J.; Yong, Y.; Dong, X.; Du, J.; Guo, Z.; Gong, L.; Zhu, S.; Tian, G.; Yu, S.; Gu, Z.; Zhao, Y. Therapeutic nanoparticles based on curcumin and bamboo charcoal nanoparticles for chemo-photothermal synergistic treatment of cancer and radioprotection of normal cells. ACS Appl. Mater. Interfaces, 2017, 9(16), 14281-14291.
[http://dx.doi.org/10.1021/acsami.7b02622] [PMID: 28381089]
[209]
Dhivya, R.; Ranjani, J.; Bowen, P.K.; Rajendhran, J.; Mayandi, J.; Annaraj, J. Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells. Mater. Sci. Eng. C, 2017, 80, 59-68.
[http://dx.doi.org/10.1016/j.msec.2017.05.128] [PMID: 28866205]
[210]
Gong, F.; Chen, D.; Teng, X.; Ge, J.; Ning, X.; Shen, Y.L.; Li, J.; Wang, S. Curcumin-loaded blood- stable polymeric micelles for enhancing therapeutic effect on erythroleukemia. Mol. Pharm., 2017, 14(8), 2585-2594.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01171] [PMID: 28199114]
[211]
Govindaraju, S.; Rengaraj, A.; Arivazhagan, R.; Huh, Y.S.; Yun, K. Curcumin-conjugated gold clusters for bioimaging and anticancer applications. Bioconjug. Chem., 2018, 29(2), 363-370.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00683] [PMID: 29323877]
[212]
Khandelwal, P.; Alam, A.; Choksi, A.; Chattopadhyay, S.; Poddar, P. Retention of anticancer activity of curcumin after conjugation with fluorescent gold quantum clusters: An in vitro and in vivo xenograft study. ACS Omega, 2018, 3(5), 4776-4785.
[http://dx.doi.org/10.1021/acsomega.8b00113] [PMID: 30023902]
[213]
Singh, S.P.; Alvi, S.B.; Pemmaraju, D.B.; Singh, A.D.; Manda, S.V.; Srivastava, R.; Rengan, A.K. NIR triggered liposome gold nanoparticles entrapping curcumin as in situ adjuvant for photothermal treatment of skin cancer. Int. J. Biol. Macromol., 2018, 110, 375-382.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.163] [PMID: 29195800]
[214]
Guorgui, J.; Wang, R.; Mattheolabakis, G.; Mackenzie, G.G. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch. Biochem. Biophys., 2018, 648, 12-19.
[http://dx.doi.org/10.1016/j.abb.2018.04.012] [PMID: 29679536]
[215]
Montalbán, M.G.; Coburn, J.M.; Lozano-Pérez, A.A.; Cenis, J.L.; Víllora, G.; Kaplan, D.L. Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials (Basel), 2018, 8(2), 126-144.
[http://dx.doi.org/10.3390/nano8020126] [PMID: 29495296]
[216]
Cui, Y.; Zhang, M.; Zeng, F.; Jin, H.; Xu, Q.; Huang, Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl. Mater. Interfaces, 2016, 8(47), 32159-32169.
[http://dx.doi.org/10.1021/acsami.6b10175] [PMID: 27808492]
[217]
Bani, F.; Adeli, M.; Movahedi, S.; Sadeghizadeh, M. Graphene-polyglycerol-curcumin hybrid as a near-infrared (NIR) laser stimuli-responsive system for chemo-photothermal cancer therapy. RSC Advances, 2016, 6, 61141-61149.
[http://dx.doi.org/10.1039/C6RA05917A]
[218]
Sawant, V.J.; Bamane, S.R.; Kanase, D.G.; Patil, S.B.; Ghosh, J. Encapsulation of curcumin over carbon dot coated TiO2 nanoparticles for pH sensitive enhancement of anticancer and anti-psoriatic potential. RSC Advances, 2016, 6, 66745-66755.
[http://dx.doi.org/10.1039/C6RA13851A]
[219]
Zhang, L.; Zhang, L.; Cheng, X.; Gao, Y.; Bao, J.; Yu, H.; Guan, H.; Sun, Y.; Lu, R. Curcumin induces cell death of human papillary thyroid carcinoma BCPAP cells through endoplasmic reticulum stress. RSC Advances, 2016, 6, 52905-52912.
[http://dx.doi.org/10.1039/C6RA01515H]
[220]
Medel, S.; Syrova, Z.; Kovacik, L.; Hrdy, J.; Hornacek, M.; Jager, E.; Hruby, M.; Lund, R.; Cmarko, D.; Stepanek, P.; Raska, I.; Nyström, B. Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy. Eur. Polym. J., 2017, 93, 116-131.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.05.036]
[221]
Maghsoudi, A.; Yazdian, F.; Shahmoradi, S.; Ghaderi, L.; Hemati, M.; Amoabediny, G. Curcumin-loaded polysaccharide nanoparticles: Optimization and anticariogenic activity against Streptococcus mutans. Mater. Sci. Eng. C, 2017, 75, 1259-1267.
[http://dx.doi.org/10.1016/j.msec.2017.03.032] [PMID: 28415415]
[222]
Markovi´, Z.M.; Kepi´, D.P. Matijaˇsevi´, D.M.; Pavlovi´, V.B.; Jovanovi´, S.P.; Stankovi´, N.K.; Milivojevi´, D.D.; Spitalsky, Z.; Holclajtner-Antunovi´, I.D.; Bajuk-Bogdanovi´, D.V.; Nikˇsi´, M.P.; Markovi´, B.M.T. Ambient light induced antibacterial action of curcumin/graphene nanomesh hybrids. RSC Advances, 2017, 7, 36081-36092.
[223]
Pettinari, R.; Condello, F.; Marchetti, F.; Pettinari, C.; Bautista-Toledo, M.I.; Morales-Torres, S.; Dyson, P.J.; Maldonado-Hodar, F.J. Composite materials based on (cymene)Ru(II) curcumin additives loaded on porous carbon adsorbents from agricultural residues display efficient antibacterial activity. ACS Appl. Bio Mater., 2018, 1(1), 153-159.
[http://dx.doi.org/10.1021/acsabm.8b00035]
[224]
Esmaeelzadeh, M.; Salehi, P.; Bararjanian, M.; Gharaghani, S. Synthesis of new triazole tethered derivatives of curcumin and their antibacterial and antifungal properties. J. Iran. Chem. Soc., 2019, 16(3), 465-477.
[http://dx.doi.org/10.1007/s13738-018-1524-7]
[225]
Khaldi-Khellafi, N.; Makhloufi-Chebli, M.; Oukacha-Hikem, D.; Bouaziz, S.T.; Lamara, K.O.; Idir, T.; Benazzouz-Touami, A.; Dumas, F. Green synthesis, antioxidant and antibacterial activities of 4-aryl-3,4- dihydropyrimidinones/thiones derivatives of curcumin. Theoretical calculations and mechanism study. J. Mol. Struct., 2019, 1181, 261-269.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.104]
[226]
Yu, X.; Yuan, L.; Zhu, N.; Wang, K.; Xia, Y. Fabrication of antimicrobial curcumin stabilized platinum nanoparticles and their anti-liver fibrosis activity for potential use in nursing care. J. Photochem. Photobiol. B, 2019, 195, 27-32.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.03.023] [PMID: 31051327]
[227]
Liu, Y.; Cai, Y.; Jiang, X.; Wu, J.; Le, X. Molecular interactions, characterization and antimicrobial activity of curcumin-chitosan blend films. Food Hydrocoll., 2016, 52, 564-572.
[http://dx.doi.org/10.1016/j.foodhyd.2015.08.005]
[228]
Castro, E.; Cerón, M.R.; Garcia, A.H.; Kim, Q.; Etcheverry-Berríos, A.; Morel, M.; Díaz-Torres, R.; Qian, W.; Martinez, Z.; Mendez, L.; Perez, F.; Santoyo, C.A.; Gimeno-Muñoz, R.; Esper, R.; Gutierrez, D.A.; Varela-Ramirez, A.; Aguilera, R.J.; Llano, M.; Soler, M.; Aliaga-Alcalde, N.; Echegoyen, L. A new family of fullerene derivatives: Fullerene-curcumin conjugates for biological and photovoltaic applications. RSC Advances, 2018, 8(73), 41692-41698.
[http://dx.doi.org/10.1039/C8RA08334G] [PMID: 31543960]
[229]
Patil, P.B.; Parit, S.B.; Waifalkar, P.P.; Patil, S.P.; Dongale, T.D.; Sahoo, S.C.; Kollu, P.; Nimbalkar, M.S.; Patil, P.S.; Chougale, A.D. pH triggered curcumin release and antioxidant activity of curcumin loaded γ-Fe2O3 magnetic nanoparticles. Mater. Lett., 2018, 223, 178-181.
[http://dx.doi.org/10.1016/j.matlet.2018.04.008]
[230]
Chang, C.; Meikle, T.G.; Su, Y.; Wang, X.; Dekiwadia, C.; Drummond, C.J.; Conn, C.E.; Yang, Y. Encapsulation in egg white protein nanoparticles protects anti-oxidant activity of curcumin. Food Chem., 2019, 280, 65-72.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.124] [PMID: 30642508]
[231]
Mohammadian, M.; Salami, M.; Momen, S.; Alavi, F. Emam- Djomeh, Z. Fabrication of curcumin-loaded whey protein microgels: Structural properties, antioxidant activity, and in vitro release behavior. Lebensm. Wiss. Technol., 2019, 103, 94-100.
[http://dx.doi.org/10.1016/j.lwt.2018.12.076]
[232]
Yang, Y.N.; Lu, K-Y.; Wang, P.; Ho, Y-C.; Tsai, M-L.; Mi, F.L. Development of bacterial cellulose/chitin multi-nanofibers based smart films containing natural active microspheres and nanoparticles formed in situ. Carbohydr. Polym., 2020. 228115370
[http://dx.doi.org/10.1016/j.carbpol.2019.115370] [PMID: 31635728]
[233]
Portes, E.; Gardrat, C.; Castellan, A.; Coma, V. Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydr. Polym., 2009, 76, 578-584.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.031]
[234]
Ma, Q.; Ren, Y.; Wang, L. Investigation of antioxidant activity and release kinetics of curcumin from tara gum/polyvinyl alcohol active film. Food Hydrocoll., 2017, 70, 286-292.
[http://dx.doi.org/10.1016/j.foodhyd.2017.04.018]
[235]
Granata, G.; Paterniti, I.; Geraci, C.; Cunsolo, F.; Esposito, E.; Cordaro, M.; Blanco, A.R.; Cuzzocrea, S.; Consoli, G.M.L. Potential eye drop based on a calix[4]arene nanoassembly for curcumin delivery: Enhanced drug solubility, stability, and anti- inflammatory effect. Mol. Pharm., 2017, 14(5), 1610-1622.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01066] [PMID: 28394618]
[236]
De almeida, M.; Da rocha, B. A.; Francisco, C.R.L.; Miranda, Santos, C.G.D.F.; Pedro P.D.; De Araújo, H.H.; Sayer, C.; Leimann, F.V.; Gonçalves, O.H.; Bersani-amado, C.A. Evaluation of the in vivo acute anti-inflammatory response of curcuminloaded nanoparticles. Food Funct., 2018, 9, 440-449.
[237]
Rezaii, M.; Oryan, S.; Javeri, A. Curcumin nanoparticles incorporated collagen-chitosan scaffold promotes cutaneous wound healing through regulation of TGF-β1/Smad7 gene expression. Mater. Sci. Eng. C, 2019, 98, 347-357.
[http://dx.doi.org/10.1016/j.msec.2018.12.143] [PMID: 30813036]
[238]
Bulbake, U.; Jain, S.; Kumar, N.; Mittal, A. Curcumin loaded biomimetic composite graft for faster regeneration of skin in diabetic wounds. J. Drug Deliv. Sci. Technol., 2018, 47, 12-21.
[http://dx.doi.org/10.1016/j.jddst.2018.06.016]
[239]
Kamar, S.S.; Abdel-Kader, D.H.; Rashed, L.A. Beneficial effect of Curcumin Nanoparticles-Hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies. Ann. Anat., 2019, 222, 94-102.
[http://dx.doi.org/10.1016/j.aanat.2018.11.005] [PMID: 30521949]
[240]
Ahmad, N.; Ahmad, R.; Al-Qudaihi, A.; Alaseel, S.E.; Fita, I.Z.; Khalidd, M.S.; Pottood, F.H. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Advances, 2019, 9, 20192-20206.
[http://dx.doi.org/10.1039/C9RA03102B]
[241]
Alibolandi, M.; Mohammadi, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. Int. J. Pharm., 2017, 532(1), 466-477.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.042] [PMID: 28927842]
[242]
Mutlu, G.; Calamak, S.; Ulubayram, K.; Guven, E. Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J. Drug Deliv. Sci. Technol., 2018, 43, 185-193.
[http://dx.doi.org/10.1016/j.jddst.2017.09.017]
[243]
Khamrai, M.; Banerjee, S.L.; Kundu, P.P. Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application. Carbohydr. Polym., 2017, 174, 580-590.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.094] [PMID: 28821108]
[244]
Qin, J.; Park, J.S.; Jo, D.G.; Cho, M.; Lee, Y. Curcumin-based electrochemical sensor of amyloid- beta oligomer for the early detection of Alzheimer’s disease. Sens. Actuators B Chem., 2018, 273, 1593-1599.
[http://dx.doi.org/10.1016/j.snb.2018.07.078]
[245]
Huo, X.; Zhang, Y.; Jin, X.; Li, Y.; Zhang, L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J. Photochem. Photobiol. B, 2019, 190, 98-102.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.008] [PMID: 30504054]
[246]
Mars, A.; Hamami, M.; Bechnak, L.; Patra, D.; Raouafi, N. Curcumin-graphene quantum dots for dual mode sensing platform: Electrochemical and fluorescence detection of APOe4, responsible of Alzheimer’s disease. Anal. Chim. Acta, 2018, 1036, 141-146.
[http://dx.doi.org/10.1016/j.aca.2018.06.075] [PMID: 30253824]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy