Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Tanshinones and their Derivatives: Heterocyclic Ring-Fused Diterpenes of Biological Interest

Author(s): Arturo Estolano-Cobián, Mariana Macías Alonso*, Laura Díaz-Rubio, Cecilia Naredo Ponce, Iván Córdova-Guerrero* and Joaquín G. Marrero*

Volume 21, Issue 2, 2021

Published on: 28 April, 2020

Page: [171 - 185] Pages: 15

DOI: 10.2174/1389557520666200429103225

Price: $65

Abstract

The available scientific literature regarding tanshinones is very abundant, and after its review, it is noticeable that most of the articles focus on the properties of tanshinone I, cryptotanshinone, tanshinone IIA, sodium tanshinone IIA sulfonate and the dried root extract of Salvia miltiorrhiza (Tan- Shen). However, although these products have demonstrated important biological properties in both in vitro and in vivo models, their poor solubility and bioavailability have limited their clinical applications. For these reasons, many studies have focused on the search for new pharmaceutical formulations for tanshinones, as well as the synthesis of new derivatives that improve their biological properties. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2015) on tanshinones in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we offer an update on the last five years of new research on these quinones, focusing on their synthesis, biological activity on noncommunicable diseases and drug delivery systems, to support future research on its clinical applications.

Keywords: Tanshinone IIA, Tanshinones, synthesis, biological activities, drug delivery systems, nanoparticles, bioavailability, solubility.

Graphical Abstract
[1]
Wu, Y.B.; Ni, Z.Y.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Constituents from Salvia species and their biological activities. Chem. Rev., 2012, 112(11), 5967-6026.
[http://dx.doi.org/10.1021/cr200058f] [PMID: 22967178]
[2]
Kakisawa, H.; Hayashi, T.; Okazaki, I.; Ohashi, M. Isolation and structures of new tanshinones. Tetrahedron Lett., 1968, 9, 3231-3234.
[http://dx.doi.org/10.1016/S0040-4039(00)89532-5]
[3]
In: Yan, X., Ed.; Biology and Chemistry, 1st ed; Dan Shen (Salvia miltiorrhiza) in Medicine. In: Yan, X., Ed.; Biology and Chemistry, 1st ed; Springer: Netherlands, 2015; 1, ..
[4]
Dong, Y.; Morris-Natschke, S.L.; Lee, K.H. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat. Prod. Rep., 2011, 28(3), 529-542.
[http://dx.doi.org/10.1039/c0np00035c] [PMID: 21225077]
[5]
Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.G.; Mahanani, W.R.; Thiyagarajan, J.A.; Chatterji, S. The World report on ageing and health: A policy framework for healthy ageing. Lancet, 2016, 387(10033), 2145-2154.
[http://dx.doi.org/10.1016/S0140-6736(15)00516-4 ] [PMID: 26520231]
[6]
Cai, Y.; Zhang, W.; Chen, Z.; Shi, Z.; He, C.; Chen, M. Recent insights into the biological activities and drug delivery systems of tanshinones. Int. J. Nanomedicine, 2016, 11, 121-130.
[PMID: 26792989]
[7]
Bonaccini, L.; Karioti, A.; Bergonzi, M.C.; Bilia, A.R. Effects of Salvia miltiorrhiza on CNS neuronal injury and degeneration: A plausible complementary role of tanshinones and depsides. Planta Med., 2015, 81(12-13), 1003-1016.
[http://dx.doi.org/10.1055/s-0035-1546196] [PMID: 26190397]
[8]
Marrero, J.G.; Andrés, L.S.; Luis, J.G. Quinone derivatives by chemical transformations of 16-hydroxycarnosol from Salvia species. Chem. Pharm. Bull. (Tokyo), 2005, 53(12), 1524-1529.
[http://dx.doi.org/10.1248/cpb.53.1524] [PMID: 16327182]
[9]
Jiao, M.; Ding, C.; Zhang, A. Facile construction of 3-hydroxyphenanthrene-1,4-diones: Key intermediates to tanshinone I and its A-ring-modified analogue. Tetrahedron, 2014, 70, 2976-2981.
[http://dx.doi.org/10.1016/j.tet.2014.03.019]
[10]
Wang, F.; Yang, H.; Yu, S.; Xue, Y.; Fan, Z.; Liang, G.; Geng, M.; Zhang, A.; Ding, C. Total synthesis of (±)-tanshinol B, tanshinone I, and (±)-tanshindiol B and C. Org. Biomol. Chem., 2018, 16(18), 3376-3381.
[http://dx.doi.org/10.1039/C8OB00567B] [PMID: 29670981]
[11]
Yang, H.R.; Wang, J.J.; Shao, P.P.; Yuan, S.Y.; Li, X.Q. A facile three-step total synthesis of tanshinone I. J. Asian Nat. Prod. Res., 2016, 18(7), 677-683.
[http://dx.doi.org/10.1080/10286020.2015.1136906 ] [PMID: 26828227]
[12]
Wu, N.; Ma, W.C.; Mao, S.J.; Wu, Y.; Jin, H. Total synthesis of tanshinone I. J. Nat. Prod., 2017, 80(5), 1697-1700.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00238] [PMID: 28443671]
[13]
Bi, Y.F.; Wang, Z.J.; Guan, R.F.; Ye, Y.T.; Chen, Y.Y.; Zhang, Y.B.; Liu, H.M. Design, synthesis and vasodilative activity of tanshinone IIA derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5141-5143.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.014] [PMID: 22765898]
[14]
Ding, C.; Li, J.; Jiao, M.; Zhang, A. Catalyst-free sp3 C-H acyloxylation: regioselective synthesis of 1-acyloxy derivatives of the natural product tanshinone IIA. J. Nat. Prod., 2016, 79(10), 2514-2520.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00370] [PMID: 27672695]
[15]
Liang, B.; Yu, S.; Li, J.; Wang, F.; Liang, G.; Zhang, A.; Ding, C. Site-selective Csp3-H aryloxylation of natural product tanshinone IIA and its analogues. Tetrahedron Lett., 2017, 58, 1822-1825.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.078]
[16]
Wu, Q.; Zheng, K.; Huang, X.; Li, L.; Mei, W. Tanshinone-IIA-based analogues of imidazole alkaloid act as potent inhibitors to block breast cancer invasion and metastasis in vivo. J. Med. Chem., 2018, 61(23), 10488-10501.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01018] [PMID: 30398868]
[17]
Li, M.M.; Xia, F.; Li, C.J.; Xu, G.; Qin, H.B. Design, synthesis and cytotoxicity of nitrogen-containing tanshinone derivatives. Tetrahedron Lett., 2018, 59, 46-48.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.046]
[18]
Liu, X.W.; Chen, Z.Y.; Wang, G.L.; Ma, X.T.; Gong, Y.; Liu, X.L.; Feng, T.T. Zhou, Ying. Diversity-oriented TsOH catalysis-enabled construction of tanshinone-substituted bis(indolyl/pyrrolyl) methanes and their biological evaluation for anticancer activities. Synth. Commun., 2017, 47, 2378-2386.
[http://dx.doi.org/10.1080/00397911.2017.1378359]
[19]
Li, J.; Xue, Y.; Fan, Z.; Ding, C.; Zhang, A. Difluorination of Furonaphthoquinones. J. Org. Chem., 2017, 82(14), 7388-7393.
[http://dx.doi.org/10.1021/acs.joc.7b01064] [PMID: 28653529]
[20]
Marrero, J.G.; San Andres, L. Luis. J.G. Oxidative C-ring opening of abietane diterpenes with ammonium cerium (IV) nitrate. Synlett, 2007, 1127-1129.
[21]
Zhang, D.L.; Zhou, L.Y.; Quan, J.M.; Zhang, W.; Gu, L.Q.; Huang, Z.S.; An, L.K. Oxygen insertion of o-quinone under catalytic hydrogenation conditions. Org. Lett., 2013, 15(6), 1162-1165.
[http://dx.doi.org/10.1021/ol400164e] [PMID: 23452325]
[22]
Li, X.B.; Cheng, X.; Zhang, D.L.; Wu, H.Q.; Ye, J.T.; Du, J.; Huang, Z.S.; Gu, L.Q.; An, L.K. Syntheses of tanshinone anhydrides and their suppression on oxidized LDL uptake in macrophages and foam cell formation. Pharmazie, 2014, 69(3), 163-167.
[PMID: 24716403]
[23]
Chen, S.; Zhao, X.; Li, Y.; Yang, D.; Zhou, T.; Fan, G. Impurities preparation of sodium tanshinone IIA sulfonate by high-speed counter-current chromatography and identification by liquid chromatography/multistage tandem mass spectrometry. J. Chromatogr. A, 2013, 1288, 28-34.
[http://dx.doi.org/10.1016/j.chroma.2013.02.055] [PMID: 23522260]
[24]
Bi, Y.F.; Xu, H.W.; Liu, X.Q.; Zhang, X.J.; Wang, Z.J.; Liu, H.M. Synthesis and vasodilative activity of tanshinone IIA derivatives. Bioorg. Med. Chem. Lett., 2010, 20(16), 4892-4894.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.076] [PMID: 20637608]
[25]
Wang, D.; Lu, C.; Sun, F.; Cui, M.; Mu, H.; Duan, J.; Geng, H. A tanshinone I derivative enhances the activities of antibiotics against Staphylococcus aureus in vitro and in vivo. Res. Microbiol., 2017, 168(1), 46-54.
[http://dx.doi.org/10.1016/j.resmic.2016.08.002] [PMID: 27545500]
[26]
Jiao, M.; Ding, C.; Zhang, A. Preparation of 2-aryl derivatives of tanshinone I through a palladium-catalyzed Csp2–H activation/arylation approach. Tetrahedron Lett., 2015, 56, 2799-2802.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.040]
[27]
Rico-Martínez, M.; Medina, F.G.; Marrero, J.G.; Osegueda-Robles, S. Biotransformation of diterpenes. RSC Advances, 2014, 4, 10627-10647.
[http://dx.doi.org/10.1039/C3RA45146A]
[28]
He, W.; Liu, M.; Li, X.; Zhang, X.; Abdel-Mageed, W.M.; Li, L.; Wang, W.; Zhang, J.; Han, J.; Dai, H.; Quinn, R.J.; Liu, H.W.; Luo, H.; Zhang, L.; Liu, X. Fungal biotransformation of tanshinone results in [4+2] cycloaddition with sorbicillinol: evidence for enzyme catalysis and increased antibacterial activity. Appl. Microbiol. Biotechnol., 2016, 100(19), 8349-8357.
[http://dx.doi.org/10.1007/s00253-016-7488-6] [PMID: 27198724]
[29]
Wu, L.; Yang, X. Synthesis and cytotoxic activity of tanshinone I derivatives having azacyclo moiety. J. Chem. Pharm. Res., 2014, 6, 442-445.
[30]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[31]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[32]
Xue, J.; Jin, X.; Wan, X.; Yin, X.; Fang, M.; Liu, T.; Zhao, S. Effects and mechanism of Tanshinone IIA in proliferation, apoptosis, and migration of human colon cancer cells. Med. Sci. Monit., 2019, 25, 4793-4800.
[http://dx.doi.org/10.12659/MSM.914446] [PMID: 31250836]
[33]
Liao, X.Z.; Gao, Y.; Huang, S.; Chen, Z.Z.; Sun, L.L.; Liu, J.H.; Chen, H.R.; Yu, L.; Zhang, J.X.; Lin, L.Z. Tanshinone IIA combined with cisplatin synergistically inhibits non-small-cell lung cancer in vitro and in vivo via down-regulating the phosphatidylinositol 3-kinase/Akt signalling pathway. Phytother. Res., 2019, 33(9), 2298-2309.
[http://dx.doi.org/10.1002/ptr.6392] [PMID: 31268205]
[34]
He, S.; Wang, M.; Zhang, Y.; Luo, J.; Zhang, Y. Monitoring the early response of fulvestrant plus tanshinone IIA combination therapy to estrogen receptor-positive breast cancer by longitudinal 18F-FES PET/CT. Contrast Media Mol. Imaging, 2019.20192374565
[http://dx.doi.org/10.1155/2019/2374565] [PMID: 31281233]
[35]
Cao, Y.F.; Wang, S.F.; Li, X.; Zhang, Y.L.; Qiao, Y.J. The anticancer mechanism investigation of Tanshinone IIA by pharmacological clustering in protein network. BMC Syst. Biol., 2018, 12(1), 90.
[http://dx.doi.org/10.1186/s12918-018-0606-6] [PMID: 30373594]
[36]
Qin, J.; Shi, H.; Xu, Y.; Zhao, F.; Wang, Q. Tanshinone IIA inhibits cervix carcinoma stem cells migration and invasion via inhibiting YAP transcriptional activity. Biomed. Pharmacother., 2018, 105, 758-765.
[http://dx.doi.org/10.1016/j.biopha.2018.06.028] [PMID: 29909343]
[37]
Lv, C.; Zeng, H.W.; Wang, J.X.; Yuan, X.; Zhang, C.; Fang, T.; Yang, P.M.; Wu, T.; Zhou, Y.D.; Nagle, D.G.; Zhang, W.D. The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG. Cell Death Dis., 2018, 9(2), 165.
[http://dx.doi.org/10.1038/s41419-017-0247-5] [PMID: 29416003]
[38]
Xie, J.; Liu, J.H.; Liu, H.; Liao, X.Z.; Chen, Y.; Lin, M.G.; Gu, Y.Y.; Liu, T.L.; Wang, D.M.; Ge, H.; Mo, S.L. Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way. BMC Cancer, 2016, 16(1), 899.
[http://dx.doi.org/10.1186/s12885-016-2921-x] [PMID: 27863471]
[39]
Chiu, C.M.; Huang, S.Y.; Chang, S.F.; Liao, K.F.; Chiu, S.C. Synergistic antitumor effects of tanshinone IIA and sorafenib or its derivative SC-1 in hepatocellular carcinoma cells. OncoTargets Ther., 2018, 11, 1777-1785.
[http://dx.doi.org/10.2147/OTT.S161534] [PMID: 29636623]
[40]
Kan, S.; Cheung, W.M.; Zhou, Y.; Ho, W.S. Enhancement of doxorubicin cytotoxicity by tanshinone IIA in HepG2 human hepatoma cells. Planta Med., 2014, 80(1), 70-76.
[http://dx.doi.org/10.1055/s-0033-1360126] [PMID: 24414309]
[41]
Li, K.; Liu, W.; Zhao, Q.; Wu, C.; Fan, C.; Lai, H.; Li, S. Combination of tanshinone IIA and doxorubicin possesses synergism and attenuation effects on doxorubicin in the treatment of breast cancer. Phytother. Res., 2019, 33(6), 1658-1669.
[http://dx.doi.org/10.1002/ptr.6353] [PMID: 30945389]
[42]
Bai, Y.; Zhang, L.; Fang, X.; Yang, Y. Tanshinone IIA enhances chemosensitivity of colon cancer cells by suppressing nuclear factor-κB. Exp. Ther. Med., 2016, 11(3), 1085-1089.
[http://dx.doi.org/10.3892/etm.2016.2984] [PMID: 26998041]
[43]
Li, Q.; Hu, K.; Tang, S.; Xu, L.F.; Luo, Y.C. Anti-tumor activity of tanshinone IIA in combined with cyclophosphamide against Lewis mice with lung cancer. Asian Pac. J. Trop. Med., 2016, 9(11), 1084-1088.
[http://dx.doi.org/10.1016/j.apjtm.2016.09.003] [PMID: 27890369]
[44]
Liu, S.; Han, Z.; Trivett, A.L.; Lin, H.; Hannifin, S.; Yang, D.; Oppenheim, J.J. Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma. Cancer Immunol. Immunother., 2019, 68(7), 1059-1071.
[http://dx.doi.org/10.1007/s00262-019-02326-8] [PMID: 30972427]
[45]
Wong, C.K.; Tse, P.S.; Wong, E.L.; Leung, P.C.; Fung, K.P.; Lam, C.W. Immunomodulatory effects of yun zhi and danshen capsules in health subjects--a randomized, double-blind, placebo-controlled, crossover study. Int. Immunopharmacol., 2004, 4(2), 201-211.
[http://dx.doi.org/10.1016/j.intimp.2003.12.003] [PMID: 14996412]
[46]
Wong, C.K.; Bao, Y.X.; Wong, E.L.; Leung, P.C.; Fung, K.P.; Lam, C.W. Immunomodulatory activities of Yunzhi and Danshen in post-treatment breast cancer patients. Am. J. Chin. Med., 2005, 33(3), 381-395.
[http://dx.doi.org/10.1142/S0192415X05002990] [PMID: 16047556]
[47]
Jing, X.; Xu, Y.; Cheng, W.; Guo, S.; Zou, Y.; He, L. Tanshinone I induces apoptosis and pro-survival autophagy in gastric cancers. Cancer Chemother. Pharmacol., 2016, 77(6), 1171-1181.
[http://dx.doi.org/10.1007/s00280-016-3034-6] [PMID: 27100736]
[48]
Zhang, L.; Chen, C.; Duanmu, J.; Wu, Y.; Tao, J.; Yang, A.; Yin, X.; Xiong, B.; Gu, J.; Li, C.; Liu, Z. Cryptotanshinone inhibits the growth and invasion of colon cancer by suppressing inflammation and tumor angiogenesis through modulating MMP/TIMP system, PI3K/Akt/mTOR signaling and HIF-1α nuclear translocation. Int. Immunopharmacol., 2018, 65, 429-437.
[http://dx.doi.org/10.1016/j.intimp.2018.10.035] [PMID: 30388517]
[49]
Jain, R.K. Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell, 2014, 26(5), 605-622.
[http://dx.doi.org/10.1016/j.ccell.2014.10.006] [PMID: 25517747]
[50]
Zuazo-Gaztelu, I.; Casanovas, O. Unraveling the role of angiogenesis in cancer ecosystems. Front. Oncol., 2018, 8, 248.
[http://dx.doi.org/10.3389/fonc.2018.00248] [PMID: 30013950]
[51]
Wang, Y.; Li, J.X.; Wang, Y.Q.; Miao, Z.H. Tanshinone I inhibits tumor angiogenesis by reducing Stat3 phosphorylation at Tyr705 and hypoxia-induced HIF-1α accumulation in both endothelial and tumor cells. Oncotarget, 2015, 6(18), 16031-16042.
[http://dx.doi.org/10.18632/oncotarget.3648] [PMID: 26202747]
[52]
Li, G.; Shan, C.; Liu, L.; Zhou, T.; Zhou, J.; Hu, X.; Chen, Y.; Cui, H.; Gao, N. Tanshinone IIA inhibits HIF-1α and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. PLoS One, 2015, 10(2)e0117440
[http://dx.doi.org/10.1371/journal.pone.0117440] [PMID: 25659153]
[53]
Sui, H.; Zhao, J.; Zhou, L.; Wen, H.; Deng, W.; Li, C.; Ji, Q.; Liu, X.; Feng, Y.; Chai, N.; Zhang, Q.; Cai, J.; Li, Q. Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer. Cancer Lett., 2017, 403, 86-97.
[http://dx.doi.org/10.1016/j.canlet.2017.05.013] [PMID: 28602978]
[54]
Xing, Y.; Tu, J.; Zheng, L.; Guo, L.; Xi, T. Anti-angiogenic effect of tanshinone IIA involves inhibition of the VEGF/VEGFR2 pathway in vascular endothelial cells. Oncol. Rep., 2015, 33(1), 163-170.
[http://dx.doi.org/10.3892/or.2014.3592] [PMID: 25376085]
[55]
Zhang, Z.R.; Li, J.H.; Li, S.; Liu, A.L.; Hoi, P.M.; Tian, H.Y.; Ye, W.C.; Lee, S.M.Y.; Jiang, R.W. In vivo angiogenesis screening and mechanism of action of novel tanshinone derivatives produced by one-pot combinatorial modification of natural tanshinone mixture from Salvia miltiorrhiza. PLoS One, 2014, 9(7)e100416
[http://dx.doi.org/10.1371/journal.pone.0100416] [PMID: 24992590]
[56]
Wu, P.; Du, Y.; Xu, Z.; Zhang, S.; Liu, J.; Aa, N.; Yang, Z. Protective effects of sodium tanshinone IIA sulfonate on cardiac function after myocardial infarction in mice. Am. J. Transl. Res., 2019, 11(1), 351-360.
[PMID: 30787992]
[57]
Chen, L.; He, W.; Peng, B.; Yuan, M.; Wang, N.; Wang, J.; Lu, W.; Wang, T. Sodium Tanshinone IIA sulfonate improves post-ischemic angiogenesis in hyperglycemia. Biochem. Biophys. Res. Commun., 2019, 520(3), 580-585.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.106] [PMID: 31623833]
[58]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5 ] [PMID: 25792098]
[59]
Zhu, J.; Liao, S.; Zhou, L.; Wan, L. Tanshinone IIA attenuates Aβ25-35 -induced spatial memory impairment via upregulating receptors for activated C kinase1 and inhibiting autophagy in hippocampus. J. Pharm. Pharmacol., 2017, 69(2), 191-201.
[http://dx.doi.org/10.1111/jphp.12650] [PMID: 27882565]
[60]
Li, J.; Wen, P.Y.; Li, W.W.; Zhou, J. Upregulation effects of Tanshinone IIA on the expressions of NeuN, Nissl body, and IκB and downregulation effects on the expressions of GFAP and NF-κB in the brain tissues of rat models of Alzheimer’s disease. Neuroreport, 2015, 26(13), 758-766.
[http://dx.doi.org/10.1097/WNR.0000000000000419 ] [PMID: 26164608]
[61]
Kong, D.; Liu, Q.; Xu, G.; Huang, Z.; Luo, N.; Huang, Y.; Cai, K. Synergistic effect of tanshinone IIA and mesenchymal stem cells on preventing learning and memory deficits via anti-apoptosis, attenuating tau phosphorylation and enhancing the activity of central cholinergic system in vascular dementia. Neurosci. Lett., 2017, 637, 175-181.
[http://dx.doi.org/10.1016/j.neulet.2016.11.024] [PMID: 27845241]
[62]
Huang, N.; Li, Y.; Zhou, Y.; Zhou, Y.; Feng, F.; Shi, S.; Ba, Z.; Luo, Y. Neuroprotective effect of tanshinone IIA-incubated mesenchymal stem cells on Aβ25-35-induced neuroinflammation. Behav. Brain Res., 2019, 365, 48-55.
[http://dx.doi.org/10.1016/j.bbr.2019.03.001] [PMID: 30831140]
[63]
Li, M.; Wang, J.; Ding, L.; Meng, H.; Wang, F.; Luo, Z. Tanshinone IIA attenuates nerve transection injury associated with nerve regeneration promotion in rats. Neurosci. Lett., 2017, 659, 18-25.
[http://dx.doi.org/10.1016/j.neulet.2017.08.059] [PMID: 28859867]
[64]
Wang, Z.; Yang, X.; Zhang, W.; Zhang, P.; Jiang, B. Tanshinone IIA attenuates nerve structural and functional damage induced by nerve crush injury in rats. PLoS One, 2018, 13(8)e0202532
[http://dx.doi.org/10.1371/journal.pone.0202532] [PMID: 30138344]
[65]
Cao, G.Y.; Wang, X.H.; Li, K.K.; Zhao, A.H.; Shen, L.; Yua, D.N. Neuroprotective effects of cryptotanshinone and 1,2-dihydrotanshinone I against MPTP induced mouse model of Parkinson’s disease. Phytochem. Lett., 2018, 26, 68-73.
[http://dx.doi.org/10.1016/j.phytol.2018.05.016]
[66]
Wang, S.; Jing, H.; Yang, H.; Liu, Z.; Guo, H.; Chai, L.; Hu, L. Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. J. Ethnopharmacol., 2015, 164, 247-255.
[http://dx.doi.org/10.1016/j.jep.2015.01.042] [PMID: 25666429]
[67]
Dou, K.X.; Tan, M.S.; Tan, C.C.; Cao, X.P.; Hou, X.H.; Guo, Q.H.; Tan, L.; Mok, V.; Yu, J.T. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimers Res. Ther., 2018, 10(1), 126.
[http://dx.doi.org/10.1186/s13195-018-0457-9] [PMID: 30591071]
[68]
Ren, Y.; Houghton, P.J.; Hider, R.C.; Howes, M.J. Novel diterpenoid acetylcholinesterase inhibitors from Salvia miltiorhiza. Planta Med., 2004, 70(3), 201-204.
[http://dx.doi.org/10.1055/s-2004-815535] [PMID: 15114495]
[69]
Wang, Q.; Yu, X.; Patal, K.; Hu, R.; Chuang, S.; Zhang, G.; Zheng, J. Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem. Neurosci., 2013, 4(6), 1004-1015.
[http://dx.doi.org/10.1021/cn400051e] [PMID: 23506133]
[70]
Zhou, Y.; Li, W.; Xu, L.; Chen, L. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ. Toxicol. Pharmacol., 2011, 31(3), 443-452.
[http://dx.doi.org/10.1016/j.etap.2011.02.006] [PMID: 21787715]
[71]
Kim, D.H.; Jeon, S.J.; Jung, J.W.; Lee, S.; Yoon, B.H.; Shin, B.Y.; Son, K.H.; Cheong, J.H.; Kim, Y.S.; Kang, S.S.; Ko, K.H.; Ryu, J.H. Tanshinone congeners improve memory impairments induced by scopolamine on passive avoidance tasks in mice. Eur. J. Pharmacol., 2007, 574(2-3), 140-147.
[http://dx.doi.org/10.1016/j.ejphar.2007.07.042] [PMID: 17714702]
[72]
Wong, K.K.; Ngo, J.C.; Liu, S.; Lin, H.Q.; Hu, C.; Shaw, P.C.; Wan, D.C. Interaction study of two diterpenes, cryptotanshinone and dihydrotanshinone, to human acetylcholinesterase and butyrylcholinesterase by molecular docking and kinetic analysis. Chem. Biol. Interact., 2010, 187(1-3), 335-339.
[http://dx.doi.org/10.1016/j.cbi.2010.03.026] [PMID: 20350537]
[73]
Pejin, B.; Iodice, C.; Tommonaro, G.; De Rosa, S. Synthesis and biological activities of thio-avarol derivatives. J. Nat. Prod., 2008, 71(11), 1850-1853.
[http://dx.doi.org/10.1021/np800318m] [PMID: 19007183]
[74]
Tommonaro, G.; Pejin, B.; Iodice, C.; Tafuto, A.; De Rosa, S. Further in vitro biological activity evaluation of amino-, thio- and ester-derivatives of avarol. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 684-686.
[http://dx.doi.org/10.3109/14756366.2015.1057724 ] [PMID: 26114310]
[75]
Tommonaro, G.; García-Font, N.; Vitale, R.M.; Pejin, B.; Iodice, C.; Cañadas, S.; Marco-Contelles, J.; Oset-Gasque, M.J. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 122, 326-338.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.036] [PMID: 27376495]
[76]
Milani, R.V.; Lavie, C.J. Health care 2020: reengineering health care delivery to combat chronic disease. Am. J. Med., 2015, 128(4), 337-343.
[http://dx.doi.org/10.1016/j.amjmed.2014.10.047] [PMID: 25460529]
[77]
Li, S.; Jiao, Y.; Wang, H.; Shang, Q.; Lu, F.; Huang, L.; Liu, J.; Xu, H.; Chen, K. Sodium tanshinone IIA sulfate adjunct therapy reduces high-sensitivity C-reactive protein level in coronary artery disease patients: A randomized controlled trial. Sci. Rep., 2017, 7(1), 17451.
[http://dx.doi.org/10.1038/s41598-017-16980-4] [PMID: 29234038]
[78]
Feng, J.; Chen, H.W.; Pi, L.J.; Wang, J.; Zhan, D.Q. Protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats through inhibiting the Cys-C/Wnt signaling pathway. Oncotarget, 2017, 8(6), 10161-10170.
[http://dx.doi.org/10.18632/oncotarget.14328] [PMID: 28053285]
[79]
Chan, P.; Liu, I.M.; Li, Y.X.; Yu, W.J.; Cheng, J.T. Antihypertension induced by tanshinone IIA isolated from the roots of Salvia miltiorrhiza. Evid. Based Complement. Alternat. Med., 2011.2011392627
[http://dx.doi.org/10.1093/ecam/nep056] [PMID: 19542183]
[80]
Qin, Y.L.; Chen, L.; He, W.; Su, M.; Jin, Q.; Fang, Z.; Ouyang, P.K.; Guo, K. Continuous synthesis and anti-myocardial injury of tanshinone IIA derivatives. J. Asian Nat. Prod. Res., 2018, 20(2), 139-147.
[http://dx.doi.org/10.1080/10286020.2017.1337751 ] [PMID: 28595458]
[81]
Wang, W.; Chen, J.; Li, M.; Jia, H.; Han, X.; Zhang, J.; Zou, Y.; Tan, B.; Liang, W.; Shang, Y.; Xu, Q.A.S.; Wang, W.; Mao, J.; Gao, X.; Fan, G.; Liu, W. Rebuilding postinfarcted cardiac functions by injecting TIIA@PDA nanoparticle-cross-linked ROS-sensitive hydrogels. ACS Appl. Mater. Interfaces, 2019, 11(3), 2880-2890.
[http://dx.doi.org/10.1021/acsami.8b20158] [PMID: 30592403]
[82]
Gao, S.; Li, L.; Li, L.; Ni, J.; Guo, R.; Mao, J.; Fan, G. Effects of the combination of tanshinone IIA and puerarin on cardiac function and inflammatory response in myocardial ischemia mice. J. Mol. Cell. Cardiol., 2019, 137, 59-70.
[http://dx.doi.org/10.1016/j.yjmcc.2019.09.012] [PMID: 31629735]
[83]
Zhang, H.; Long, M.; Wu, Z.; Han, X.; Yu, Y. Sodium tanshinone IIA silate as an add-on therapy in patients with unstable angina pectoris. J. Thorac. Dis., 2014, 6(12), 1794-1799.
[PMID: 25589975]
[84]
Zhang, S.; Li, J.; Hu, S.; Wu, F.; Zhang, X. Triphenylphosphonium and D-α-tocopheryl polyethylene glycol 1000 succinate-modified, tanshinone IIA-loaded lipid-polymeric nanocarriers for the targeted therapy of myocardial infarction. Int. J. Nanomedicine, 2018, 13, 4045-4057.
[http://dx.doi.org/10.2147/IJN.S165590] [PMID: 30022826]
[85]
Feng, J.; Li, S.; Chen, H. Tanshinone IIA inhibits myocardial remodeling induced by pressure overload via suppressing oxidative stress and inflammation: Possible role of silent information regulator 1. Eur. J. Pharmacol., 2016, 791, 632-639.
[http://dx.doi.org/10.1016/j.ejphar.2016.09.041] [PMID: 27693799]
[86]
Li, Y.; An, C.; Han, D.; Dang, Y.; Liu, X.; Zhang, F.; Xu, Y.; Zhongd, H.; Sun, X. Neutrophil affinity for PGP and HAIYPRH (T7) peptide dual-ligand functionalized nanoformulation enhances the brain delivery of tanshinone IIA and exerts neuroprotective effects against ischemic stroke by inhibiting proinflammatory signaling pathways. New J. Chem., 2018, 42, 19043-19061.
[http://dx.doi.org/10.1039/C8NJ04819C]
[87]
Wernig, G.; Chen, S.Y.; Cui, L.; Van Neste, C.; Tsai, J.M.; Kambham, N.; Vogel, H.; Natkunam, Y.; Gilliland, D.G.; Nolan, G.; Weissman, I.L. Unifying mechanism for different fibrotic diseases. Proc. Natl. Acad. Sci. USA, 2017, 114(18), 4757-4762.
[http://dx.doi.org/10.1073/pnas.1621375114] [PMID: 28424250]
[88]
Li, L.C.; Kan, L.D. Traditional Chinese medicine for pulmonary fibrosis therapy: Progress and future prospects. J. Ethnopharmacol., 2017, 198, 45-63.
[http://dx.doi.org/10.1016/j.jep.2016.12.042] [PMID: 28038955]
[89]
Jiang, X.; Chen, Y.; Zhu, H.; Wang, B.; Qu, P.; Chen, R.; Sun, X. Sodium tanshinone IIA sulfonate ameliorates bladder fibrosis in a rat model of partial bladder outlet obstruction by inhibiting the TGF-β/Smad pathway activation. PLoS One, 2015, 10(6)e0129655
[http://dx.doi.org/10.1371/journal.pone.0129655] [PMID: 26061047]
[90]
Wang, D.T.; Huang, R.H.; Cheng, X.; Zhang, Z.H.; Yang, Y.J.; Lin, X. Tanshinone IIA attenuates renal fibrosis and inflammation via altering expression of TGF-β/Smad and NF-κB signaling pathway in 5/6 nephrectomized rats. Int. Immunopharmacol., 2015, 26(1), 4-12.
[http://dx.doi.org/10.1016/j.intimp.2015.02.027] [PMID: 25744602]
[91]
Jiang, C.; Shao, Q.; Jin, B.; Gong, R.; Zhang, M.; Xu, B. Tanshinone IIA attenuates renal fibrosis after acute kidney injury in a mouse model through inhibition of fibrocytes recruitment. BioMed Res. Int., 2015.2015867140
[http://dx.doi.org/10.1155/2015/867140] [PMID: 26885500]
[92]
Shao, Q.; Jiang, C.; Sun, C.; Zhu, W.; Cao, D.; Feng, Y.; Zhang, M. Tanshinone IIA mitigates peritoneal fibrosis by inhibiting EMT via regulation of TGF-β/smad pathway. Trop. J. Pharm. Res., 2017, 16, 2857-2864.
[http://dx.doi.org/10.4314/tjpr.v16i12.9]
[93]
Feng, F.; Li, N.; Cheng, P.; Zhang, H.; Wang, H.; Wang, Y.; Wang, W. Tanshinone IIA attenuates silica-induced pulmonary fibrosis via inhibition of TGF-β1-Smad signaling pathway. Biomed. Pharmacother., 2020.121109586
[http://dx.doi.org/10.1016/j.biopha.2019.109586] [PMID: 31706104]
[94]
He, H.; Tang, H.; Gao, L.; Wu, Y.; Feng, Z.; Lin, H.; Wu, T. Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis in rats. Mol. Med. Rep., 2015, 11(6), 4190-4196.
[http://dx.doi.org/10.3892/mmr.2015.3333] [PMID: 25672255]
[95]
Chen, T.; Li, M.; Fan, X.; Cheng, J.; Wang, L. Sodium tanshinone IIA sulfonate prevents angiotensin II-Induced differentiation of human atrial fibroblasts into myofibroblasts. Oxid. Med. Cell. Longev., 2018.20186712585
[http://dx.doi.org/10.1155/2018/6712585] [PMID: 30140368]
[96]
Jiang, Q.; Li, K.; Lu, W.J.; Li, S.; Chen, X.; Liu, X.J.; Yuan, J.; Ding, Q.; Lan, F.; Cai, S.Q. Identification of small-molecule ion channel modulators in C. elegans channelopathy models. Nat. Commun., 2018, 9(1), 3941.
[http://dx.doi.org/10.1038/s41467-018-06514-5] [PMID: 30258187]
[97]
Zheng, L.; Liu, M.; Wei, M.; Liu, Y.; Dong, M.; Luo, Y.; Zhao, P.; Dong, H.; Niu, W.; Yan, Z.; Li, Z. Tanshinone IIA attenuates hypoxic pulmonary hypertension via modulating KV currents. Respir. Physiol. Neurobiol., 2015, 205, 120-128.
[http://dx.doi.org/10.1016/j.resp.2014.09.025] [PMID: 25305099]
[98]
Zhu, J.; Xu, Y.; Ren, G.; Hu, X.; Wang, C.; Yang, Z.; Li, Z.; Mao, W.; Lu, D.; Tanshinone, I.I.A. Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur. J. Pharmacol., 2017, 815, 427-436.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.047] [PMID: 28970012]
[99]
Chen, P.X.; Zhang, Y.L.; Xu, J.W.; Yu, M.H.; Huang, J.H.; Zhao, L.; Zhou, W.L. Sodium tanshinone IIA sulfonate stimulated Cl- secretion in mouse trachea. PLoS One, 2017, 12(5)e0178226
[http://dx.doi.org/10.1371/journal.pone.0178226] [PMID: 28542554]
[100]
Zhang, X.D.; He, C.X.; Cheng, J.; Wen, J.; Li, P.Y.; Wang, N.; Li, G.; Zeng, X.R.; Cao, J.M.; Yang, Y. Sodium tanshinone II-A sulfonate (DS-201) induces vasorelaxation of rat mesenteric arteries via inhibition of L-type Ca2+ channel. Front. Pharmacol., 2018, 9, 62.
[http://dx.doi.org/10.3389/fphar.2018.00062] [PMID: 29456510]
[101]
Zhou, Y.; Liu, X.; Zhang, X.; Wen, J.; Cheng, J.; Li, P.; Wang, N.; Zhou, X.; Xia, D.; Yang, Q.; Yang, Y. Decreased vasodilatory effect of Tanshinone IIA Sodium Sulfonate on mesenteric artery in hypertension. Eur. J. Pharmacol., 2019, 854, 365-371.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.049] [PMID: 31051158]
[102]
Zhang, Y.L.; Xu, J.W.; Wu, X.H.; Chen, P.X.; Wei, F.; Gao, D.D.; Chen, X.W.; Luo, Y.L.; Zhu, Y.X.; Huang, J.; Tan, Y.X.; Zhao, L.; Zhou, W.L. Relaxant effect of sodium tanshinone IIA sulphonate on mouse tracheal smooth muscle. Planta Med., 2017, 83(7), 624-630.
[PMID: 27936472]
[103]
Lin, T.Y.; Lu, C.W.; Huang, S.K.; Wang, S.J. Tanshinone IIA, a constituent of Danshen, inhibits the release of glutamate in rat cerebrocortical nerve terminals. J. Ethnopharmacol., 2013, 147(2), 488-496.
[http://dx.doi.org/10.1016/j.jep.2013.03.045] [PMID: 23542145]
[104]
Tang, L.; He, S.; Wang, X.; Liu, H.; Zhu, Y.; Feng, B.; Su, Z.; Zhu, W.; Liu, B.; Xu, F.; Li, C.; Zhao, J.; Zheng, X.; Lu, C.; Zheng, G. Cryptotanshinone reduces psoriatic epidermal hyperplasia via inhibiting the activation of STAT3. Exp. Dermatol., 2018, 27(3), 268-275.
[http://dx.doi.org/10.1111/exd.13511] [PMID: 29427477]
[105]
Xu, P.; Ji, L.; Tian, S.; Li, F. Clinical effects of tanshinone IIA sodium sulfonate combined with trimetazidine and levocarnitine in the treatment of AVMC and its effects on serum TNF-α, IL-18 and IL-35. Exp. Ther. Med., 2018, 16(5), 4070-4074.
[PMID: 30344684]
[106]
Zeng, L.W.; Zhou, C.X.; Liu, J.D.; Liu, C.H.; Mo, J.X.; Hou, A.F.; Yao, W.; Wang, Z.Z.; Gan, L.S. Design, synthesis, and antimicrobial activities of new tanshinone IIA esters. Nat. Prod. Res., 2016, 30(23), 2662-2668.
[http://dx.doi.org/10.1080/14786419.2016.1138302 ] [PMID: 26829106]
[107]
Kim, E.J.; Jung, S.N.; Son, K.H.; Kim, S.R.; Ha, T.Y.; Park, M.G.; Jo, I.G.; Park, J.G.; Choe, W.; Kim, S.S.; Ha, J. Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase. Mol. Pharmacol., 2007, 72(1), 62-72.
[http://dx.doi.org/10.1124/mol.107.034447] [PMID: 17429005]
[108]
Rahman, N.; Jeon, M.; Song, H.Y.; Kim, Y.S. Cryptotanshinone, a compound of Salvia miltiorrhiza inhibits pre-adipocytes differentiation by regulation of adipogenesis-related genes expression via STAT3 signaling. Phytomedicine, 2016, 23(1), 58-67.
[http://dx.doi.org/10.1016/j.phymed.2015.12.004] [PMID: 26902408]
[109]
Marrelli, M.; Grande, F.; Occhiuzzi, M.A.; Maione, F.; Mascolo, N.; Conforti, F. Cryptotanshinone and tanshinone IIA from Salvia milthorrhiza Bunge (Danshen) as a new class of potential pancreatic lipase inhibitors. Nat. Prod. Res., 2019, 1-4.
[http://dx.doi.org/10.1080/14786419.2019.1607337] [PMID: 31104489]
[110]
Zhang, J.; Huang, M.; Guan, S.; Bi, H.C.; Pan, Y.; Duan, W.; Chan, S.Y.; Chen, X.; Hong, Y.H.; Bian, J.S.; Yang, H.Y.; Zhou, S. A mechanistic study of the intestinal absorption of cryptotanshinone, the major active constituent of Salvia miltiorrhiza. J. Pharmacol. Exp. Ther., 2006, 317(3), 1285-1294.
[http://dx.doi.org/10.1124/jpet.105.100701] [PMID: 16497784]
[111]
Ma, H.; Fan, Q.; Yu, J.; Xin, J.; Zhang, C. Novel microemulsion of tanshinone IIA, isolated from Salvia miltiorrhiza Bunge, exerts anticancer activity through inducing apoptosis in hepatoma cells. Am. J. Chin. Med., 2013, 41(1), 197-210.
[http://dx.doi.org/10.1142/S0192415X13500146] [PMID: 23336516]
[112]
Chen, F.; Zhang, J.; He, Y.; Fang, X.; Wang, Y.; Chen, M. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater. Sci., 2016, 4(1), 167-182.
[http://dx.doi.org/10.1039/C5BM00224A] [PMID: 26484363]
[113]
Lee, W.D.; Liang, Y.J.; Chen, B.H. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549. Nanotechnology, 2016, 27(49)495101
[http://dx.doi.org/10.1088/0957-4484/27/49/495101 ] [PMID: 27834307]
[114]
Yu, L.; Cheng, J.; Huang, W.J.; Tan, X.Q.; Mao, L.; Liu, Z.F.; Zeng, X.R.; Yang, Y. Liposome intracellular delivery of Salvia miltiorrhiza Bge. deprivative DS-201 improves its BKCa channel-activating and vasorelaxing effects. Sci. Bull. (Beijing), 2016, 61, 622-631.
[http://dx.doi.org/10.1007/s11434-016-1046-6]
[115]
Shu, C.; Li, T.; Li, D.; Zhu, Y.; Tang, Y.; Kong, Y.; Yang, Z. liu, M.; Gu, M.; Ding, L. Anticancer activity and pharmacokinetics of TanshinoneIIA derivative supramolecular hydrogels. J. Drug Deliv. Sci. Technol., 2018, 48, 509-515.
[http://dx.doi.org/10.1016/j.jddst.2018.10.024]
[116]
Yin, Y.; Wu, C.; Wang, J.; Song, F.; Yue, W.; Zhong, W. A simply triggered peptide-based hydrogel as an injectable nanocarrier of tanshinone IIA and tanshinones. Chem. Commun. (Camb.), 2017, 53(3), 529-532.
[http://dx.doi.org/10.1039/C6CC08502D] [PMID: 27966687]
[117]
Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie, 2016, 128-129, 99-112.
[http://dx.doi.org/10.1016/j.biochi.2016.07.008] [PMID: 27436182]
[118]
Qiu, S.; Granet, R.; Mbakidi, J.P.; Brégier, F.; Pouget, C.; Micallef, L.; Sothea-Ouk, T.; Leger, D.Y.; Liagre, B.; Chaleix, V.; Sol, V. Delivery of tanshinone IIA and α-mangostin from gold/PEI/cyclodextrin nanoparticle platform designed for prostate cancer chemotherapy. Bioorg. Med. Chem. Lett., 2016, 26(10), 2503-2506.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.097] [PMID: 27040657]
[119]
Zhang, W.L.; Liu, J.P.; Liu, X.X.; Chen, Z.Q. Stealth tanshinone IIA-loaded solid lipid nanoparticles: effects of poloxamer 188 coating on in vitro phagocytosis and in vivo pharmacokinetics in rats. Yao Xue Xue Bao, 2009, 44(12), 1421-1428.
[PMID: 21348419]
[120]
Hu, L.; Xing, Q.; Meng, J.; Shang, C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2010, 11(2), 582-587.
[http://dx.doi.org/10.1208/s12249-010-9410-3] [PMID: 20352534]
[121]
Mao, S.; Wang, L.; Chen, P.; Lan, Y.; Guo, R.; Zhang, M. Nanoparticle- mediated delivery of Tanshinone IIA reduces adverse cardiac remodeling following myocardial infarctions in a mice model: Role of NF-κB pathway. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), S707-S716..
[http://dx.doi.org/10.1080/21691401.2018.1508028] [PMID: 30284484]
[122]
Meng, Z.; Meng, L.; Wang, K.; Li, J.; Cao, X.; Wu, J.; Hu, Y. Enhanced hepatic targeting, biodistribution and antifibrotic efficacy of tanshinone IIA loaded globin nanoparticles. Eur. J. Pharm. Sci., 2015, 73, 35-43.
[http://dx.doi.org/10.1016/j.ejps.2015.03.002] [PMID: 25769523]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy