Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Current Status of Drug Targets and Emerging Therapeutic Strategies in the Management of Alzheimer's Disease

Author(s): Shampa Ghosh, Shantanu Durgvanshi, Shreya Agarwal, Manchala Raghunath and Jitendra Kumar Sinha*

Volume 18, Issue 9, 2020

Page: [883 - 903] Pages: 21

DOI: 10.2174/1570159X18666200429011823

Price: $65

Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disease affecting the elderly. AD is associated with a progressive decline in memory and cognitive abilities, drastic changes in behavioural patterns and other psychiatric manifestations. It leads to a significant decline in the quality of life at personal, household as well as national level. Although AD was described about hundred years back and multiple theories have been proposed, its exact pathophysiology is unknown. There is no cure for AD and the life expectancy of AD patients remains low at 3-9 years. An accurate understanding of the molecular mechanism(s) involved in the pathogenesis of AD is imperative to devise a successful treatment strategy. This review explains and summarises the current understanding of different therapeutic strategies based on various molecular pathways known to date. Different strategies based on anti-amyloid pathology, glutamatergic pathway, anti-tau, neuroprotection through neurotrophic factors and cholinergic neurotransmission have been discussed. Further, the use of anti-inflammatory drugs, nutraceuticals, and dietary interventions has also been explained in the management of AD. It further describes different pharmacological and dietary interventions being used in treating and/or managing AD. Additionally, this article provides a thorough review of the literature for improving the therapeutic paradigm of AD.

Keywords: Beta-amyloid, cholinergic neurotransmission, dietary interventions, drug discovery, glutamatergic pathway, neurofibrillary tangles, neuroprotection, nutraceuticals.

« Previous
Graphical Abstract
[1]
Tomaszewski, S.; Gauthier, S.; Wimo, A.; Rosa-Neto, P. Combination therapy of anti-tau and anti-amyloid drugs for disease modification in early-stage alzheimer’s disease: socio-economic considerations modeled on treatments for tuberculosis, hiv/aids and breast cancer. J. Prev. Alzheimers Dis., 2016, 3(3), 164-172.
[PMID: 29205255]
[2]
McGleenon, B.M.; Dynan, K.B.; Passmore, A.P. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br. J. Clin. Pharmacol., 1999, 48(4), 471-480.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00026.x] [PMID: 10583015]
[3]
Khan, U.A.; Liu, L.; Provenzano, F.A.; Berman, D.E.; Profaci, C.P.; Sloan, R.; Mayeux, R.; Duff, K.E.; Small, S.A. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci., 2014, 17(2), 304-311.
[http://dx.doi.org/10.1038/nn.3606] [PMID: 24362760]
[4]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[5]
Müller, U.C.; Deller, T.; Korte, M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci., 2017, 18(5), 281-298.
[http://dx.doi.org/10.1038/nrn.2017.29] [PMID: 28360418]
[6]
Xia, W. γ-Secretase and its modulators: Twenty years and beyond. Neurosci. Lett., 2019, 701, 162-169.
[http://dx.doi.org/10.1016/j.neulet.2019.02.011] [PMID: 30763650]
[7]
Zhang, H.; Ma, Q.; Zhang, Y.W.; Xu, H. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J. Neurochem., 2012, 120(Suppl. 1), 9-21.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07519.x] [PMID: 22122372]
[8]
van Dyck, C.H. Anti-Amyloid-β Monoclonal Antibodies for Alzheimer’s Disease: Pitfalls and Promise. Biol. Psychiatry, 2018, 83(4), 311-319.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.010] [PMID: 28967385]
[9]
Budd Haeberlein, S.; O’Gorman, J.; Chiao, P.; Bussière, T.; von Rosenstiel, P.; Tian, Y.; Zhu, Y.; von Hehn, C.; Gheuens, S.; Skordos, L.; Chen, T.; Sandrock, A. Clinical development of aducanumab, an anti-aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s Disease. J. Prev. Alzheimers Dis., 2017, 4(4), 255-263.
[PMID: 29181491]
[10]
Ferrero, J.; Williams, L.; Stella, H.; Leitermann, K.; Mikulskis, A.; O’Gorman, J.; Sevigny, J. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2016, 2(3), 169-176.
[http://dx.doi.org/10.1016/j.trci.2016.06.002] [PMID: 29067304]
[11]
Schneider, L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol., 2020, 19(2), 111-112.
[http://dx.doi.org/10.1016/S1474-4422(19)30480-6] [PMID: 31978357]
[12]
Vandenberghe, R.; Rinne, J.O.; Boada, M.; Katayama, S.; Scheltens, P.; Vellas, B.; Tuchman, M.; Gass, A.; Fiebach, J.B.; Hill, D.; Lobello, K.; Li, D.; McRae, T.; Lucas, P.; Evans, I.; Booth, K.; Luscan, G.; Wyman, B.T.; Hua, L.; Yang, L.; Brashear, H.R.; Black, R.S. Bapineuzumab 3000 and 3001 Clinical Study Investigators. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res. Ther., 2016, 8(1), 18.
[http://dx.doi.org/10.1186/s13195-016-0189-7] [PMID: 27176461]
[13]
Salloway, S.; Sperling, R.; Fox, N.C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L.S.; Porsteinsson, A.P.; Ferris, S.; Reichert, M.; Ketter, N.; Nejadnik, B.; Guenzler, V.; Miloslavsky, M.; Wang, D.; Lu, Y.; Lull, J.; Tudor, I.C.; Liu, E.; Grundman, M.; Yuen, E.; Black, R.; Brashear, H.R. Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med., 2014, 370(4), 322-333.
[http://dx.doi.org/10.1056/NEJMoa1304839] [PMID: 24450891]
[14]
Klein, G.; Delmar, P.; Voyle, N.; Rehal, S.; Hofmann, C.; Abi-Saab, D.; Andjelkovic, M.; Ristic, S.; Wang, G.; Bateman, R.; Kerchner, G.A.; Baudler, M.; Fontoura, P.; Doody, R. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: a PET substudy interim analysis. Alzheimers Res. Ther., 2019, 11(1), 101.
[http://dx.doi.org/10.1186/s13195-019-0559-z] [PMID: 31831056]
[15]
Yang, T.; Dang, Y.; Ostaszewski, B.; Mengel, D.; Steffen, V.; Rabe, C.; Bittner, T.; Walsh, D.M.; Selkoe, D.J. Target engagement in an alzheimer trial: Crenezumab lowers amyloid β oligomers in cerebrospinal fluid. Ann. Neurol., 2019, 86(2), 215-224.
[http://dx.doi.org/10.1002/ana.25513] [PMID: 31168802]
[16]
Salloway, S.; Honigberg, L.A.; Cho, W.; Ward, M.; Friesenhahn, M.; Brunstein, F.; Quartino, A.; Clayton, D.; Mortensen, D.; Bittner, T.; Ho, C.; Rabe, C.; Schauer, S.P.; Wildsmith, K.R.; Fuji, R.N.; Suliman, S.; Reiman, E.M.; Chen, K.; Paul, R. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE). Alzheimers Res. Ther., 2018, 10(1), 96.
[http://dx.doi.org/10.1186/s13195-018-0424-5] [PMID: 30231896]
[17]
Tariot, P.N.; Lopera, F.; Langbaum, J.B.; Thomas, R.G.; Hendrix, S.; Schneider, L.S.; Rios-Romenets, S.; Giraldo, M.; Acosta, N.; Tobon, C.; Ramos, C.; Espinosa, A.; Cho, W.; Ward, M.; Clayton, D.; Friesenhahn, M.; Mackey, H.; Honigberg, L.; Sanabria Bohorquez, S.; Chen, K.; Walsh, T.; Langlois, C.; Reiman, E.M. Alzheimer’s Prevention Initiative. The Alzheimer’s Prevention Initiative Autosomal-Dominant Alzheimer’s Disease Trial: A study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer’s disease, including a placebo-treated noncarrier cohort. Alzheimers Dement. (N. Y.), 2018, 4, 150-160.
[http://dx.doi.org/10.1016/j.trci.2018.02.002] [PMID: 29955659]
[18]
Huijbers, W.; Mormino, E.C.; Schultz, A.P.; Wigman, S.; Ward, A.M.; Larvie, M.; Amariglio, R.E.; Marshall, G.A.; Rentz, D.M.; Johnson, K.A.; Sperling, R.A. Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain, 2015, 138(Pt 4), 1023-1035.
[http://dx.doi.org/10.1093/brain/awv007] [PMID: 25678559]
[19]
Bakker, A.; Krauss, G.L.; Albert, M.S.; Speck, C.L.; Jones, L.R.; Stark, C.E.; Yassa, M.A.; Bassett, S.S.; Shelton, A.L.; Gallagher, M. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron, 2012, 74(3), 467-474.
[http://dx.doi.org/10.1016/j.neuron.2012.03.023] [PMID: 22578498]
[20]
O’Brien, J.L.; O’Keefe, K.M.; LaViolette, P.S.; DeLuca, A.N.; Blacker, D.; Dickerson, B.C.; Sperling, R.A. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology, 2010, 74(24), 1969-1976.
[http://dx.doi.org/10.1212/WNL.0b013e3181e3966e] [PMID: 20463288]
[21]
Findley, C.A.; Bartke, A.; Hascup, K.N.; Hascup, E.R. Amyloid beta-related alterations to glutamate signaling dynamics during Alzheimer’s Disease progression. ASN Neuro, 2019, 111759091419855541
[http://dx.doi.org/10.1177/1759091419855541] [PMID: 31213067]
[22]
Ovsepian, S.V.; O’Leary, V.B.; Zaborszky, L.; Ntziachristos, V.; Dolly, J.O. Amyloid Plaques of Alzheimer’s Disease as Hotspots of Glutamatergic Activity. Neuroscientist, 2019, 25(4), 288-297.
[http://dx.doi.org/10.1177/1073858418791128] [PMID: 30051750]
[23]
Zott, B.; Simon, M.M.; Hong, W.; Unger, F.; Chen-Engerer, H.J.; Frosch, M.P.; Sakmann, B.; Walsh, D.M.; Konnerth, A. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science, 2019, 365(6453), 559-565.
[http://dx.doi.org/10.1126/science.aay0198] [PMID: 31395777]
[24]
Yeung, J.H.Y.; Palpagama, T.H.; Tate, W.P.; Peppercorn, K.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. The Acute Effects of Amyloid-Beta1-42 on Glutamatergic Receptor and Transporter Expression in the Mouse Hippocampus. Front. Neurosci., 2020, 13, 1427.
[http://dx.doi.org/10.3389/fnins.2019.01427] [PMID: 32009891]
[25]
Sokolow, S.; Luu, S.H.; Nandy, K.; Miller, C.A.; Vinters, H.V.; Poon, W.W.; Gylys, K.H. Preferential accumulation of amyloid-beta in presynaptic glutamatergic terminals (VGluT1 and VGluT2) in Alzheimer’s disease cortex. Neurobiol. Dis., 2012, 45(1), 381-387.
[http://dx.doi.org/10.1016/j.nbd.2011.08.027] [PMID: 21914482]
[26]
Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[27]
Collingridge, G.L.; Singer, W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol. Sci., 1990, 11(7), 290-296.
[http://dx.doi.org/10.1016/0165-6147(90)90011-V] [PMID: 2167544]
[28]
Robinson, D.M.; Keating, G.M. Memantine: a review of its use in Alzheimer’s disease. Drugs, 2006, 66(11), 1515-1534.
[http://dx.doi.org/10.2165/00003495-200666110-00015] [PMID: 16906789]
[29]
Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front. Neurosci., 2019, 13, 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[30]
Williams, K. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol., 1993, 44(4), 851-859.
[PMID: 7901753]
[31]
Pekny, M.; Pekna, M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol. Rev., 2014, 94(4), 1077-1098.
[http://dx.doi.org/10.1152/physrev.00041.2013] [PMID: 25287860]
[32]
Hefendehl, J.K.; LeDue, J.; Ko, R.W.; Mahler, J.; Murphy, T.H.; MacVicar, B.A. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nat. Commun., 2016, 7, 13441.
[http://dx.doi.org/10.1038/ncomms13441] [PMID: 27834383]
[33]
Scimemi, A.; Meabon, J.S.; Woltjer, R.L.; Sullivan, J.M.; Diamond, J.S.; Cook, D.G. Amyloid-β1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J. Neurosci., 2013, 33(12), 5312-5318.
[http://dx.doi.org/10.1523/JNEUROSCI.5274-12.2013] [PMID: 23516295]
[34]
Lauderback, C.M.; Hackett, J.M.; Huang, F.F.; Keller, J.N.; Szweda, L.I.; Markesbery, W.R.; Butterfield, D.A. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1-42. J. Neurochem., 2001, 78(2), 413-416.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00451.x] [PMID: 11461977]
[35]
Li, S.; Mallory, M.; Alford, M.; Tanaka, S.; Masliah, E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J. Neuropathol. Exp. Neurol., 1997, 56(8), 901-911.
[http://dx.doi.org/10.1097/00005072-199708000-00008] [PMID: 9258260]
[36]
Sharma, A.; Kazim, S.F.; Larson, C.S.; Ramakrishnan, A.; Gray, J.D.; McEwen, B.S.; Rosenberg, P.A.; Shen, L.; Pereira, A.C. Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimer’s molecular signatures. Proc. Natl. Acad. Sci. USA, 2019, 116(43), 21800-21811.
[http://dx.doi.org/10.1073/pnas.1903566116] [PMID: 31591195]
[37]
Takahashi, K.; Kong, Q.; Lin, Y.; Stouffer, N.; Schulte, D.A.; Lai, L.; Liu, Q.; Chang, L.C.; Dominguez, S.; Xing, X.; Cuny, G.D.; Hodgetts, K.J.; Glicksman, M.A.; Lin, C.L. Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J. Exp. Med., 2015, 212(3), 319-332.
[http://dx.doi.org/10.1084/jem.20140413] [PMID: 25711212]
[38]
Rothstein, J.D.; Patel, S.; Regan, M.R.; Haenggeli, C.; Huang, Y.H.; Bergles, D.E.; Jin, L.; Dykes Hoberg, M.; Vidensky, S.; Chung, D.S.; Toan, S.V.; Bruijn, L.I.; Su, Z.Z.; Gupta, P.; Fisher, P.B. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433(7021), 73-77.
[http://dx.doi.org/10.1038/nature03180] [PMID: 15635412]
[39]
Kong, Q.; Chang, L.C.; Takahashi, K.; Liu, Q.; Schulte, D.A.; Lai, L.; Ibabao, B.; Lin, Y.; Stouffer, N.; Das Mukhopadhyay, C.; Xing, X.; Seyb, K.I.; Cuny, G.D.; Glicksman, M.A.; Lin, C.L. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J. Clin. Invest., 2014, 124(3), 1255-1267.
[http://dx.doi.org/10.1172/JCI66163] [PMID: 24569372]
[40]
Strzelecki, D.; Podgórski, M.; Kałużyńska, O.; Stefańczyk, L.; Kotlicka-Antczak, M.; Gmitrowicz, A.; Grzelak, P. Adding sarcosine to antipsychotic treatment in patients with stable schizophrenia changes the concentrations of neuronal and glial metabolites in the left dorsolateral prefrontal cortex. Int. J. Mol. Sci., 2015, 16(10), 24475-24489.
[http://dx.doi.org/10.3390/ijms161024475] [PMID: 26501260]
[41]
Harada, K.; Nakato, K.; Yarimizu, J.; Yamazaki, M.; Morita, M.; Takahashi, S.; Aota, M.; Saita, K.; Doihara, H.; Sato, Y.; Yamaji, T.; Ni, K.; Matsuoka, N. A novel glycine transporter-1 (GlyT1) inhibitor, ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole), improves cognition in animal models of cognitive impairment in schizophrenia and Alzheimer’s disease. Eur. J. Pharmacol., 2012, 685(1-3), 59-69.
[http://dx.doi.org/10.1016/j.ejphar.2012.04.013] [PMID: 22542656]
[42]
Moschetti, V.; Schlecker, C.; Wind, S.; Goetz, S.; Schmitt, H.; Schultz, A.; Liesenfeld, K.H.; Wunderlich, G.; Desch, M. Multiple rising doses of oral bi 425809, a glyt1 inhibitor, in young and elderly healthy volunteers: a randomised, double-blind, phase i study investigating safety and pharmacokinetics. Clin. Drug Investig., 2018, 38(8), 737-750.
[http://dx.doi.org/10.1007/s40261-018-0660-2] [PMID: 29846887]
[43]
Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2018, 14(7), 399-415.
[http://dx.doi.org/10.1038/s41582-018-0013-z] [PMID: 29895964]
[44]
Jadhav, S.; Avila, J.; Schöll, M.; Kovacs, G.G.; Kövari, E.; Skrabana, R.; Evans, L.D.; Kontsekova, E.; Malawska, B.; de Silva, R.; Buee, L.; Zilka, N. A walk through tau therapeutic strategies. Acta Neuropathol. Commun., 2019, 7(1), 22.
[http://dx.doi.org/10.1186/s40478-019-0664-z] [PMID: 30767766]
[45]
Schneider, A.; Mandelkow, E. Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics, 2008, 5(3), 443-457.
[http://dx.doi.org/10.1016/j.nurt.2008.05.006] [PMID: 18625456]
[46]
Serenó, L.; Coma, M.; Rodríguez, M.; Sánchez-Ferrer, P.; Sánchez, M.B.; Gich, I.; Agulló, J.M.; Pérez, M.; Avila, J.; Guardia-Laguarta, C.; Clarimón, J.; Lleó, A.; Gómez-Isla, T. A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol. Dis., 2009, 35(3), 359-367.
[http://dx.doi.org/10.1016/j.nbd.2009.05.025] [PMID: 19523516]
[47]
García-Barroso, C.; Ricobaraza, A.; Pascual-Lucas, M.; Unceta, N.; Rico, A.J.; Goicolea, M.A.; Sallés, J.; Lanciego, J.L.; Oyarzabal, J.; Franco, R.; Cuadrado-Tejedor, M.; García-Osta, A. Tadalafil crosses the blood-brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology, 2013, 64, 114-123.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.052] [PMID: 22776546]
[48]
Gong, E.J.; Park, H.R.; Kim, M.E.; Piao, S.; Lee, E.; Jo, D.G.; Chung, H.Y.; Ha, N.C.; Mattson, M.P.; Lee, J. Morin attenuates tau hyperphosphorylation by inhibiting GSK3β. Neurobiol. Dis., 2011, 44(2), 223-230.
[http://dx.doi.org/10.1016/j.nbd.2011.07.005] [PMID: 21782947]
[49]
Nygaard, H.B.; Wagner, A.F.; Bowen, G.S.; Good, S.P.; MacAvoy, M.G.; Strittmatter, K.A.; Kaufman, A.C.; Rosenberg, B.J.; Sekine-Konno, T.; Varma, P.; Chen, K.; Koleske, A.J.; Reiman, E.M.; Strittmatter, S.M.; van Dyck, C.H. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res. Ther., 2015, 7(1), 35.
[http://dx.doi.org/10.1186/s13195-015-0119-0] [PMID: 25874001]
[50]
Medina, M.; Hernández, F.; Avila, J. New Features about Tau Function and Dysfunction. Biomolecules, 2016, 6(2)E21
[http://dx.doi.org/10.3390/biom6020021] [PMID: 27104579]
[51]
Min, S.W.; Chen, X.; Tracy, T.E.; Li, Y.; Zhou, Y.; Wang, C.; Shirakawa, K.; Minami, S.S.; Defensor, E.; Mok, S.A.; Sohn, P.D.; Schilling, B.; Cong, X.; Ellerby, L.; Gibson, B.W.; Johnson, J.; Krogan, N.; Shamloo, M.; Gestwicki, J.; Masliah, E.; Verdin, E.; Gan, L. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med., 2015, 21(10), 1154-1162.
[http://dx.doi.org/10.1038/nm.3951] [PMID: 26390242]
[52]
Yuzwa, S.A.; Shan, X.; Macauley, M.S.; Clark, T.; Skorobogatko, Y.; Vosseller, K.; Vocadlo, D.J. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol., 2012, 8(4), 393-399.
[http://dx.doi.org/10.1038/nchembio.797] [PMID: 22366723]
[53]
Sandhu, P.; Lee, J.; Ballard, J.; Walker, B.; Ellis, J.; Marcus, J.; Toolan, D.; Dreyer, D.; McAvoy, T.; Duffy, J. Pharmacokinetics and pharmacodynamics to support clinical studies of MK-8719: An O-GlcNAcase inhibitor for Progressive Supranuclear palsy. Alzheimers Dement., 2016, 12(7), 1028.
[http://dx.doi.org/10.1016/j.jalz.2016.06.2125]
[54]
Castillo-Carranza, D.L.; Gerson, J.E.; Sengupta, U.; Guerrero-Muñoz, M.J.; Lasagna-Reeves, C.A.; Kayed, R. Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J. Alzheimers Dis., 2014, 40(Suppl. 1), S97-S111.
[http://dx.doi.org/10.3233/JAD-132477] [PMID: 24603946]
[55]
Bittar, A.; Sengupta, U.; Kayed, R. Prospects for strain-specific immunotherapy in Alzheimer’s disease and tauopathies. NPJ Vaccines, 2018, 3, 9.
[http://dx.doi.org/10.1038/s41541-018-0046-8] [PMID: 29507776]
[56]
Theunis, C.; Crespo-Biel, N.; Gafner, V.; Pihlgren, M.; López-Deber, M.P.; Reis, P.; Hickman, D.T.; Adolfsson, O.; Chuard, N.; Ndao, D.M.; Borghgraef, P.; Devijver, H.; Van Leuven, F.; Pfeifer, A.; Muhs, A. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One, 2013, 8(8)e72301
[http://dx.doi.org/10.1371/journal.pone.0072301] [PMID: 23977276]
[57]
Hickman, D.T.; López-Deber, M.P.; Ndao, D.M.; Silva, A.B.; Nand, D.; Pihlgren, M.; Giriens, V.; Madani, R.; St-Pierre, A.; Karastaneva, H.; Nagel-Steger, L.; Willbold, D.; Riesner, D.; Nicolau, C.; Baldus, M.; Pfeifer, A.; Muhs, A. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J. Biol. Chem., 2011, 286(16), 13966-13976.
[http://dx.doi.org/10.1074/jbc.M110.186338] [PMID: 21343310]
[58]
Boxer, A.L.; Qureshi, I.; Ahlijanian, M.; Grundman, M.; Golbe, L.I.; Litvan, I.; Honig, L.S.; Tuite, P.; McFarland, N.R.; O’Suilleabhain, P.; Xie, T.; Tirucherai, G.S.; Bechtold, C.; Bordelon, Y.; Geldmacher, D.S.; Grossman, M.; Isaacson, S.; Zesiewicz, T.; Olsson, T.; Muralidharan, K.K.; Graham, D.L.; O’Gorman, J.; Haeberlein, S.B.; Dam, T. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol., 2019, 18(6), 549-558.
[http://dx.doi.org/10.1016/S1474-4422(19)30139-5] [PMID: 31122495]
[59]
Collin, L.; Bohrmann, B.; Göpfert, U.; Oroszlan-Szovik, K.; Ozmen, L.; Grüninger, F. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain, 2014, 137(Pt 10), 2834-2846.
[http://dx.doi.org/10.1093/brain/awu213] [PMID: 25085375]
[60]
Kfoury, N.; Holmes, B.B.; Jiang, H.; Holtzman, D.M.; Diamond, M.I. Trans-cellular propagation of Tau aggregation by fibrillar species. J. Biol. Chem., 2012, 287(23), 19440-19451.
[http://dx.doi.org/10.1074/jbc.M112.346072] [PMID: 22461630]
[61]
Yanamandra, K.; Jiang, H.; Mahan, T.E.; Maloney, S.E.; Wozniak, D.F.; Diamond, M.I.; Holtzman, D.M. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann. Clin. Transl. Neurol., 2015, 2(3), 278-288.
[http://dx.doi.org/10.1002/acn3.176] [PMID: 25815354]
[62]
Shahpasand, K.; Sepehri, S.A.; Nabavi, S.M. Ping. L.K.; Zhen Zhou, X. “Tau immunotherapy: Hopes and hindrances. Hum. Vaccin. Immunother., 2018, 14(2), 277-284.
[http://dx.doi.org/10.1080/21645515.2017.1393594] [PMID: 29049003]
[63]
Katsinelos, T.; Tuck, B.J.; Mukadam, A.S.; McEwan, W.A. The Role of antibodies and their receptors in protection against ordered protein assembly in neurodegeneration. Front. Immunol., 2019, 10, 1139.
[http://dx.doi.org/10.3389/fimmu.2019.01139] [PMID: 31214163]
[64]
Mufson, E.J.; He, B.; Nadeem, M.; Perez, S.E.; Counts, S.E.; Leurgans, S.; Fritz, J.; Lah, J.; Ginsberg, S.D.; Wuu, J.; Scheff, S.W. Hippocampal proNGF signaling pathways and β-amyloid levels in mild cognitive impairment and Alzheimer disease. J. Neuropathol. Exp. Neurol., 2012, 71(11), 1018-1029.
[http://dx.doi.org/10.1097/NEN.0b013e318272caab] [PMID: 23095849]
[65]
Chakravarthy, B.; Ménard, M.; Ito, S.; Gaudet, C.; Dal Prà, I.; Armato, U.; Whitfield, J. Hippocampal membrane-associated p75NTR levels are increased in Alzheimer’s disease. J. Alzheimers Dis., 2012, 30(3), 675-684.
[http://dx.doi.org/10.3233/JAD-2012-120115] [PMID: 22451321]
[66]
Fombonne, J.; Rabizadeh, S.; Banwait, S.; Mehlen, P.; Bredesen, D.E. Selective vulnerability in Alzheimer’s disease: amyloid precursor protein and p75(NTR) interaction. Ann. Neurol., 2009, 65(3), 294-303.
[http://dx.doi.org/10.1002/ana.21578] [PMID: 19334058]
[67]
Fahnestock, M.; Michalski, B.; Xu, B.; Coughlin, M.D. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol. Cell. Neurosci., 2001, 18(2), 210-220.
[http://dx.doi.org/10.1006/mcne.2001.1016] [PMID: 11520181]
[68]
Tep, C.; Lim, T.H.; Ko, P.O.; Getahun, S.; Ryu, J.C.; Goettl, V.M.; Massa, S.M.; Basso, M.; Longo, F.M.; Yoon, S.O. Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J. Neurosci., 2013, 33(2), 397-410.
[http://dx.doi.org/10.1523/JNEUROSCI.0399-12.2013] [PMID: 23303920]
[69]
Knowles, J.K.; Rajadas, J.; Nguyen, T.V.; Yang, T.; LeMieux, M.C.; Vander Griend, L.; Ishikawa, C.; Massa, S.M.; Wyss-Coray, T.; Longo, F.M. The p75 neurotrophin receptor promotes amyloid-beta(1-42)-induced neuritic dystrophy in vitro and in vivo. J. Neurosci., 2009, 29(34), 10627-10637.
[http://dx.doi.org/10.1523/JNEUROSCI.0620-09.2009] [PMID: 19710315]
[70]
Massa, S.M.; Xie, Y.; Yang, T.; Harrington, A.W.; Kim, M.L.; Yoon, S.O.; Kraemer, R.; Moore, L.A.; Hempstead, B.L.; Longo, F.M. Small, nonpeptide p75NTR ligands induce survival signaling and inhibit proNGF-induced death. J. Neurosci., 2006, 26(20), 5288-5300.
[http://dx.doi.org/10.1523/JNEUROSCI.3547-05.2006] [PMID: 16707781]
[71]
Yang, T.; Knowles, J.K.; Lu, Q.; Zhang, H.; Arancio, O.; Moore, L.A.; Chang, T.; Wang, Q.; Andreasson, K.; Rajadas, J.; Fuller, G.G.; Xie, Y.; Massa, S.M.; Longo, F.M. Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS One, 2008, 3(11)e3604
[http://dx.doi.org/10.1371/journal.pone.0003604] [PMID: 18978948]
[72]
Nguyen, T.V.; Shen, L.; Vander Griend, L.; Quach, L.N.; Belichenko, N.P.; Saw, N.; Yang, T.; Shamloo, M.; Wyss-Coray, T.; Massa, S.M.; Longo, F.M. Small molecule p75NTR ligands reduce pathological phosphorylation and misfolding of tau, inflammatory changes, cholinergic degeneration, and cognitive deficits in AβPP(L/S) transgenic mice. J. Alzheimers Dis., 2014, 42(2), 459-483.
[http://dx.doi.org/10.3233/JAD-140036] [PMID: 24898660]
[73]
Zhang, F.; Kang, Z.; Li, W.; Xiao, Z.; Zhou, X. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer’s disease. J. Clin. Neurosci., 2012, 19(7), 946-949.
[http://dx.doi.org/10.1016/j.jocn.2011.12.022] [PMID: 22613489]
[74]
Forlenza, O.V.; Diniz, B.S.; Teixeira, A.L.; Ojopi, E.B.; Talib, L.L.; Mendonça, V.A.; Izzo, G.; Gattaz, W.F. Effect of brain-derived neurotrophic factor Val66Met polymorphism and serum levels on the progression of mild cognitive impairment. World J. Biol. Psychiatry, 2010, 11(6), 774-780.
[http://dx.doi.org/10.3109/15622971003797241] [PMID: 20491609]
[75]
Arancio, O.; Chao, M.V. Neurotrophins, synaptic plasticity and dementia. Curr. Opin. Neurobiol., 2007, 17(3), 325-330.
[http://dx.doi.org/10.1016/j.conb.2007.03.013] [PMID: 17419049]
[76]
Pardridge, W.M. Neurotrophins, neuroprotection and the blood-brain barrier. Curr. Opin. Investig. Drugs, 2002, 3(12), 1753-1757.
[PMID: 12528312]
[77]
Paillard, T.; Rolland, Y.; de Souto Barreto, P. Protective effects of physical exercise in Alzheimer’s Disease and Parkinson’s Disease: A narrative review. J. Clin. Neurol., 2015, 11(3), 212-219.
[http://dx.doi.org/10.3988/jcn.2015.11.3.212] [PMID: 26174783]
[78]
Prakash, A.; Kumar, A. Implicating the role of lycopene in restoration of mitochondrial enzymes and BDNF levels in β-amyloid induced Alzheimer׳s disease. Eur. J. Pharmacol., 2014, 741, 104-111.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.036] [PMID: 25066110]
[79]
Cimini, A.; Gentile, R.; D’Angelo, B.; Benedetti, E.; Cristiano, L.; Avantaggiati, M.L.; Giordano, A.; Ferri, C.; Desideri, G. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J. Cell. Biochem., 2013, 114(10), 2209-2220.
[http://dx.doi.org/10.1002/jcb.24548] [PMID: 23554028]
[80]
Li, N.; Liu, G.T. The novel squamosamide derivative FLZ enhances BDNF/TrkB/CREB signaling and inhibits neuronal apoptosis in APP/PS1 mice. Acta Pharmacol. Sin., 2010, 31(3), 265-272.
[http://dx.doi.org/10.1038/aps.2010.3] [PMID: 20154710]
[81]
Choi, S.H.; Bylykbashi, E.; Chatila, Z.K.; Lee, S.W.; Pulli, B.; Clemenson, G.D.; Kim, E.; Rompala, A.; Oram, M.K.; Asselin, C.; Aronson, J.; Zhang, C.; Miller, S.J.; Lesinski, A.; Chen, J.W.; Kim, D.Y.; van Praag, H.; Spiegelman, B.M.; Gage, F.H.; Tanzi, R.E. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science, 2018, 361(6406)eaan8821
[http://dx.doi.org/10.1126/science.aan8821] [PMID: 30190379]
[82]
Massa, S.M.; Yang, T.; Xie, Y.; Shi, J.; Bilgen, M.; Joyce, J.N.; Nehama, D.; Rajadas, J.; Longo, F.M. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest., 2010, 120(5), 1774-1785.
[http://dx.doi.org/10.1172/JCI41356] [PMID: 20407211]
[83]
Jang, S.W.; Liu, X.; Yepes, M.; Shepherd, K.R.; Miller, G.W.; Liu, Y.; Wilson, W.D.; Xiao, G.; Blanchi, B.; Sun, Y.E.; Ye, K. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2687-2692.
[http://dx.doi.org/10.1073/pnas.0913572107] [PMID: 20133810]
[84]
Maliartchouk, S.; Feng, Y.; Ivanisevic, L.; Debeir, T.; Cuello, A.C.; Burgess, K.; Saragovi, H.U. A designed peptidomimetic agonistic ligand of TrkA nerve growth factor receptors. Mol. Pharmacol., 2000, 57(2), 385-391.
[PMID: 10648649]
[85]
Aboulkassim, T.; Tong, X.K.; Tse, Y.C.; Wong, T.P.; Woo, S.B.; Neet, K.E.; Brahimi, F.; Hamel, E.; Saragovi, H.U. Ligand-dependent TrkA activity in brain differentially affects spatial learning and long-term memory. Mol. Pharmacol., 2011, 80(3), 498-508.
[http://dx.doi.org/10.1124/mol.111.071332] [PMID: 21616921]
[86]
Scarpi, D.; Cirelli, D.; Matrone, C.; Castronovo, G.; Rosini, P.; Occhiato, E.G.; Romano, F.; Bartali, L.; Clemente, A.M.; Bottegoni, G.; Cavalli, A.; De Chiara, G.; Bonini, P.; Calissano, P.; Palamara, A.T.; Garaci, E.; Torcia, M.G.; Guarna, A.; Cozzolino, F. Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death Dis., 2012, 3e339
[http://dx.doi.org/10.1038/cddis.2012.80] [PMID: 22764098]
[87]
Yoon, S.O.; Park, D.J.; Ryu, J.C.; Ozer, H.G.; Tep, C.; Shin, Y.J.; Lim, T.H.; Pastorino, L.; Kunwar, A.J.; Walton, J.C.; Nagahara, A.H.; Lu, K.P.; Nelson, R.J.; Tuszynski, M.H.; Huang, K. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron, 2012, 75(5), 824-837.
[http://dx.doi.org/10.1016/j.neuron.2012.06.024] [PMID: 22958823]
[88]
Savage, M.J.; Lin, Y.G.; Ciallella, J.R.; Flood, D.G.; Scott, R.W. Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J. Neurosci., 2002, 22(9), 3376-3385.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03376.2002] [PMID: 11978814]
[89]
Morishima, Y.; Gotoh, Y.; Zieg, J.; Barrett, T.; Takano, H.; Flavell, R.; Davis, R.J.; Shirasaki, Y.; Greenberg, M.E. Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J. Neurosci., 2001, 21(19), 7551-7560.
[http://dx.doi.org/10.1523/JNEUROSCI.21-19-07551.2001] [PMID: 11567045]
[90]
Koch, P.; Gehringer, M.; Laufer, S.A. Inhibitors of c-Jun N-terminal kinases: an update. J. Med. Chem., 2015, 58(1), 72-95.
[http://dx.doi.org/10.1021/jm501212r] [PMID: 25415535]
[91]
Zhou, Q.; Wang, M.; Du, Y.; Zhang, W.; Bai, M.; Zhang, Z.; Li, Z.; Miao, J. Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann. Neurol., 2015, 77(4), 637-654.
[http://dx.doi.org/10.1002/ana.24361] [PMID: 25611954]
[92]
Harris, C.A.; Deshmukh, M.; Tsui-Pierchala, B.; Maroney, A.C.; Johnson, E.M., Jr Inhibition of the c-Jun N-terminal kinase signaling pathway by the mixed lineage kinase inhibitor CEP-1347 (KT7515) preserves metabolism and growth of trophic factor-deprived neurons. J. Neurosci., 2002, 22(1), 103-113.
[http://dx.doi.org/10.1523/JNEUROSCI.22-01-00103.2002] [PMID: 11756493]
[93]
Bozyczko-Coyne, D.; O’Kane, T.M.; Wu, Z.L.; Dobrzanski, P.; Murthy, S.; Vaught, J.L.; Scott, R.W. CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with Abeta-induced cortical neuron apoptosis. J. Neurochem., 2001, 77(3), 849-863.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00294.x] [PMID: 11331414]
[94]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[95]
Dong, H.; Yuede, C.M.; Coughlan, C.A.; Murphy, K.M.; Csernansky, J.G. Effects of donepezil on amyloid-beta and synapse density in the Tg2576 mouse model of Alzheimer’s disease. Brain Res., 2009, 1303, 169-178.
[http://dx.doi.org/10.1016/j.brainres.2009.09.097] [PMID: 19799879]
[96]
Takatori, S.; Wang, W.; Iguchi, A.; Tomita, T. Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. Adv. Exp. Med. Biol., 2019, 1118, 83-116.
[http://dx.doi.org/10.1007/978-3-030-05542-4_5] [PMID: 30747419]
[97]
Sierksma, A.; Lu, A.; Mancuso, R.; Fattorelli, N.; Thrupp, N.; Salta, E.; Zoco, J.; Blum, D.; Buée, L.; De Strooper, B. Novel Alzheimer risk genes determine the microglia response to amyloid-β but not to TAU pathology. EMBO Mol. Med., 2019, 12(3)e10606
[PMID: 31951107]
[98]
Fakhoury, M. Microglia and Astrocytes in Alzheimer’s Disease: Implications for Therapy. Curr. Neuropharmacol., 2018, 16(5), 508-518.
[http://dx.doi.org/10.2174/1570159X15666170720095240] [PMID: 28730967]
[99]
Chen, Z.; Trapp, B.D. Microglia and neuroprotection. J. Neurochem., 2016, 136(Suppl. 1), 10-17.
[http://dx.doi.org/10.1111/jnc.13062] [PMID: 25693054]
[100]
Dong, Y.; Li, X.; Cheng, J.; Hou, L. Drug development for Alzheimer’s Disease: Microglia induced neuroinflammation as a target? Int. J. Mol. Sci., 2019, 20(3)E558
[http://dx.doi.org/10.3390/ijms20030558] [PMID: 30696107]
[101]
Coppedè, F. The potential of epigenetic therapies in neurodegenerative diseases. Front. Genet., 2014, 5, 220.
[http://dx.doi.org/10.3389/fgene.2014.00220] [PMID: 25071843]
[102]
Li, M.Z.; Zheng, L.J.; Shen, J.; Li, X.Y.; Zhang, Q.; Bai, X.; Wang, Q.S.; Ji, J.G. SIRT1 facilitates amyloid beta peptide degradation by upregulating lysosome number in primary astrocytes. Neural Regen. Res., 2018, 13(11), 2005-2013.
[http://dx.doi.org/10.4103/1673-5374.239449] [PMID: 30233076]
[103]
Sadi, G.; Konat, D. Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats. Pharm. Biol., 2016, 54(7), 1156-1163.
[PMID: 26079852]
[104]
Carrizzo, A.; Forte, M.; Damato, A.; Trimarco, V.; Salzano, F.; Bartolo, M.; Maciag, A.; Puca, A.A.; Vecchione, C. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem. Toxicol., 2013, 61, 215-226.
[http://dx.doi.org/10.1016/j.fct.2013.07.021] [PMID: 23872128]
[105]
Zhao, H.F.; Li, N.; Wang, Q.; Cheng, X.J.; Li, X.M.; Liu, T.T. Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience, 2015, 310, 641-649.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.006] [PMID: 26454022]
[106]
Capiralla, H.; Vingtdeux, V.; Zhao, H.; Sankowski, R.; Al-Abed, Y.; Davies, P.; Marambaud, P. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J. Neurochem., 2012, 120(3), 461-472.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07594.x] [PMID: 22118570]
[107]
Chen, M.; Du, Z.Y.; Zheng, X.; Li, D.L.; Zhou, R.P.; Zhang, K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res., 2018, 13(4), 742-752.
[http://dx.doi.org/10.4103/1673-5374.230303] [PMID: 29722330]
[108]
Zhang, C.; Browne, A.; Child, D.; Tanzi, R.E. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J. Biol. Chem., 2010, 285(37), 28472-28480.
[http://dx.doi.org/10.1074/jbc.M110.133520] [PMID: 20622013]
[109]
Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat., 2014, 46(1), 2-18.
[http://dx.doi.org/10.4143/crt.2014.46.1.2] [PMID: 24520218]
[110]
Ghosh, S.; Sinha, J.K.; Muralikrishna, B.; Putcha, U.K.; Raghunath, M. Chronic transgenerational vitamin B12 deficiency of severe and moderate magnitudes modulates adiposity-probable underlying mechanisms. Biofactors, 2017, 43(3), 400-414.
[http://dx.doi.org/10.1002/biof.1350] [PMID: 28186655]
[111]
Ghosh, S.; Sinha, J.K.; Khandelwal, N.; Chakravarty, S.; Kumar, A.; Raghunath, M. Increased stress and altered expression of histone modifying enzymes in brain are associated with aberrant behaviour in vitamin B12 deficient female mice. Nutr. Neurosci., 2018, 1-10.
[http://dx.doi.org/10.1080/1028415X.2018.1548676] [PMID: 30474509]
[112]
Yokoyama, A.S.; Rutledge, J.C.; Medici, V. DNA methylation alterations in Alzheimer’s disease. Environ. Epigenet., 2017, 3(2)dvx008
[http://dx.doi.org/10.1093/eep/dvx008] [PMID: 29492310]
[113]
Sun, Y.; Lu, C.J.; Chien, K.L.; Chen, S.T.; Chen, R.C. Efficacy of multivitamin supplementation containing vitamins B6 and B12 and folic acid as adjunctive treatment with a cholinesterase inhibitor in Alzheimer’s disease: a 26-week, randomized, double-blind, placebo-controlled study in Taiwanese patients. Clin. Ther., 2007, 29(10), 2204-2214.
[http://dx.doi.org/10.1016/j.clinthera.2007.10.012] [PMID: 18042476]
[114]
Corrada, M.M.; Kawas, C.H.; Hallfrisch, J.; Muller, D.; Brookmeyer, R. Reduced risk of Alzheimer’s disease with high folate intake: the Baltimore Longitudinal Study of Aging. Alzheimers Dement., 2005, 1(1), 11-18.
[http://dx.doi.org/10.1016/j.jalz.2005.06.001] [PMID: 19595811]
[115]
Aisen, P.S.; Schneider, L.S.; Sano, M.; Diaz-Arrastia, R.; van Dyck, C.H.; Weiner, M.F.; Bottiglieri, T.; Jin, S.; Stokes, K.T.; Thomas, R.G.; Thal, L.J. Alzheimer Disease Cooperative Study. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA, 2008, 300(15), 1774-1783.
[http://dx.doi.org/10.1001/jama.300.15.1774] [PMID: 18854539]
[116]
Bhatti, A.B.; Usman, M.; Ali, F.; Satti, S.A. Vitamin supplementation as an adjuvant treatment for Alzheimer’s Disease. J. Clin. Diagn. Res., 2016, 10(8), OE07-OE11.
[http://dx.doi.org/10.7860/JCDR/2016/20273.8261] [PMID: 27656493]
[117]
Banerjee, A.; Khemka, V.K.; Ganguly, A.; Roy, D.; Ganguly, U.; Chakrabarti, S. Vitamin D and Alzheimer’s Disease: Neurocognition to therapeutics. Int. J. Alzheimers Dis., 2015, 2015192747
[http://dx.doi.org/10.1155/2015/192747] [PMID: 26351614]
[118]
Gugliandolo, A.; Bramanti, P.; Mazzon, E. Role of Vitamin E in the treatment of Alzheimer’s Disease: Evidence from animal models. Int. J. Mol. Sci., 2017, 18(12)E2504
[http://dx.doi.org/10.3390/ijms18122504] [PMID: 29168797]
[119]
Monacelli, F.; Acquarone, E.; Giannotti, C.; Borghi, R.; Nencioni, A.; Vitamin, C.; Vitamin, C. Aging and Alzheimer’s Disease. Nutrients, 2017, 9(7)E670
[http://dx.doi.org/10.3390/nu9070670] [PMID: 28654021]
[120]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[121]
Gupta, S.K.; Dongare, S.; Mathur, R.; Mohanty, I.R.; Srivastava, S.; Mathur, S.; Nag, T.C. Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Mol. Cell. Biochem., 2015, 408(1-2), 63-72.
[http://dx.doi.org/10.1007/s11010-015-2483-2] [PMID: 26092427]
[122]
Henderson, V.W.; Brinton, R.D. Menopause and mitochondria: windows into estrogen effects on Alzheimer’s disease risk and therapy.Prog. Brain Res., ; , 2010, 182, pp. 77-96.
[http://dx.doi.org/10.1016/S0079-6123(10)82003-5 ] [PMID: 20541661]
[123]
Zeng, H.; Chen, Q.; Zhao, B. Genistein ameliorates beta-amyloid peptide (25-35)-induced hippocampal neuronal apoptosis. Free Radic. Biol. Med., 2004, 36(2), 180-188.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.10.018] [PMID: 14744630]
[124]
Bang, O.Y.; Hong, H.S.; Kim, D.H.; Kim, H.; Boo, J.H.; Huh, K.; Mook-Jung, I. Neuroprotective effect of genistein against beta amyloid-induced neurotoxicity. Neurobiol. Dis., 2004, 16(1), 21-28.
[http://dx.doi.org/10.1016/j.nbd.2003.12.017] [PMID: 15207258]
[125]
Liao, W.; Jin, G.; Zhao, M.; Yang, H. The effect of genistein on the content and activity of α- and β-secretase and protein kinase C in Aβ-injured hippocampal neurons. Basic Clin. Pharmacol. Toxicol., 2013, 112(3), 182-185.
[http://dx.doi.org/10.1111/bcpt.12009] [PMID: 22994425]
[126]
Li, Y.; Daniel, M.; Tollefsbol, T.O. Epigenetic regulation of caloric restriction in aging. BMC Med., 2011, 9, 98.
[http://dx.doi.org/10.1186/1741-7015-9-98] [PMID: 21867551]
[127]
Wood, S.H.; van Dam, S.; Craig, T.; Tacutu, R.; O’Toole, A.; Merry, B.J.; de Magalhães, J.P. Transcriptome analysis in calorie-restricted rats implicates epigenetic and post-translational mechanisms in neuroprotection and aging. Genome Biol., 2015, 16, 285.
[http://dx.doi.org/10.1186/s13059-015-0847-2] [PMID: 26694192]
[128]
Masoro, E.J. Overview of caloric restriction and ageing. Mech. Ageing Dev., 2005, 126(9), 913-922.
[http://dx.doi.org/10.1016/j.mad.2005.03.012] [PMID: 15885745]
[129]
Patel, N.V.; Gordon, M.N.; Connor, K.E.; Good, R.A.; Engelman, R.W.; Mason, J.; Morgan, D.G.; Morgan, T.E.; Finch, C.E. Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol. Aging, 2005, 26(7), 995-1000.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.014] [PMID: 15748777]
[130]
Ghosh, S.; Raghunath, M.; Das, B.C.; Sinha, J.K. High sugar content in baby food: an Indian perspective. Lancet Diabetes Endocrinol., 2019, 7(10), 748-749.
[http://dx.doi.org/10.1016/S2213-8587(19)30291-8] [PMID: 31535615]
[131]
Alldred, M.J.; Chao, H.M.; Lee, S.H.; Beilin, J.; Powers, B.E.; Petkova, E.; Strupp, B.J.; Ginsberg, S.D. Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer’s disease. FASEB J., 2019, 33(9), 9871-9884.
[http://dx.doi.org/10.1096/fj.201802669RR] [PMID: 31180719]
[132]
Ghosh, S.; Sinha, J.K.; Raghunath, M. Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging. IUBMB Life, 2016, 68(9), 717-721.
[http://dx.doi.org/10.1002/iub.1532] [PMID: 27364681]
[133]
Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; Blennow, K.; Reiman, E.M.; Stomrud, E.; Dage, J.L.; Hansson, O. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med., 2020, 26(3), 379-386.
[http://dx.doi.org/10.1038/s41591-020-0755-1] [PMID: 32123385]
[134]
Thijssen, E.H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spina, S.; VandeVrede, L.; Chai, X.; Proctor, N.K.; Airey, D.C.; Shcherbinin, S.; Duggan Evans, C.; Sims, J.R.; Zetterberg, H.; Blennow, K.; Karydas, A.M.; Teunissen, C.E.; Kramer, J.H.; Grinberg, L.T.; Seeley, W.W.; Rosen, H.; Boeve, B.F.; Miller, B.L.; Rabinovici, G.D.; Dage, J.L.; Rojas, J.C.; Boxer, A.L.; Advancing, R. Advancing research and treatment for frontotemporal lobar degeneration (artfl) investigators. diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med., 2020, 26(3), 387-397.
[http://dx.doi.org/10.1038/s41591-020-0762-2] [PMID: 32123386]
[135]
Bateman, R.J.; Barthélemy, N.R.; Horie, K. Another step forward in blood-based diagnostics for Alzheimer’s disease. Nat. Med., 2020, 26(3), 314-316.
[http://dx.doi.org/10.1038/s41591-020-0797-4] [PMID: 32132715]
[136]
Tang, M.; Taghibiglou, C. The Mechanisms of Action of Curcumin in Alzheimer’s Disease. J. Alzheimers Dis., 2017, 58(4), 1003-1016.
[http://dx.doi.org/10.3233/JAD-170188] [PMID: 28527218]
[137]
Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; Dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s Disease: Role of SIRT1. Oxid. Med. Cell. Longev., 2018, 20188152373
[http://dx.doi.org/10.1155/2018/8152373] [PMID: 30510627]
[138]
Karuppagounder, S.S.; Pinto, J.T.; Xu, H.; Chen, H.L.; Beal, M.F.; Gibson, G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int., 2009, 54(2), 111-118.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008] [PMID: 19041676]
[139]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[140]
Sun, P.; Yin, J.B.; Liu, L.H.; Guo, J.; Wang, S.H.; Qu, C.H.; Wang, C.X. Protective role of Dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci. Rep., 2019, 39(1)BSR20180902
[http://dx.doi.org/10.1042/BSR20180902] [PMID: 30498091]
[141]
Ide, K.; Matsuoka, N.; Yamada, H.; Furushima, D.; Kawakami, K. Effects of tea catechins on Alzheimer’s Disease: Recent updates and perspectives. Molecules, 2018, 23(9)E2357
[http://dx.doi.org/10.3390/molecules23092357] [PMID: 30223480]
[142]
Jang, H.; Lee, S.; Choi, S.L.; Kim, H.Y.; Baek, S.; Kim, Y. Taurine directly binds to oligomeric Amyloid-β and recovers cognitive deficits in alzheimer model mice. Adv. Exp. Med. Biol., 2017, 975(Pt 1), 233-241.
[http://dx.doi.org/10.1007/978-94-024-1079-2_21] [PMID: 28849459]
[143]
Yamakawa, M.Y.; Uchino, K.; Watanabe, Y.; Adachi, T.; Nakanishi, M.; Ichino, H.; Hongo, K.; Mizobata, T.; Kobayashi, S.; Nakashima, K.; Kawata, Y. Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer’s disease. Nutr. Neurosci., 2016, 19(1), 32-42.
[http://dx.doi.org/10.1179/1476830515Y.0000000042] [PMID: 26304685]
[144]
Mori, T.; Rezai-Zadeh, K.; Koyama, N.; Arendash, G.W.; Yamaguchi, H.; Kakuda, N.; Horikoshi-Sakuraba, Y.; Tan, J.; Town, T. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J. Biol. Chem., 2012, 287(9), 6912-6927.
[http://dx.doi.org/10.1074/jbc.M111.294025] [PMID: 22219198]
[145]
Facundo, V.A.; Rios, K.A.; Medeiros, C.M.; Militão, J.S.; Miranda, A.L.P.; Epifanio, R.A.; Carvalho, M.P.; Andrade, A.T.; Pinto, A.C.; Rezende, C.M. Arjunolic acid in the ethanolic extract of Combretum leprosum root and its use as a potential multi-functional phytomedicine and drug for neurodegenerative disorders: anti-inflammatory and anticholinesterasic activities. J. Braz. Chem. Soc., 2005, 16(6B), 1309-1312.
[http://dx.doi.org/10.1590/S0103-50532005000800002]
[146]
Ghosh, J.; Sil, P.C. Arjunolic acid: a new multifunctional therapeutic promise of alternative medicine. Biochimie, 2013, 95(6), 1098-1109.
[http://dx.doi.org/10.1016/j.biochi.2013.01.016] [PMID: 23402784]
[147]
Mori, T.; Koyama, N.; Guillot-Sestier, M.V.; Tan, J.; Town, T. Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PLoS One, 2013, 8(2)e55774
[http://dx.doi.org/10.1371/journal.pone.0055774] [PMID: 23409038]
[148]
Okumura, N.; Yoshida, H.; Nishimura, Y.; Murakami, M.; Kitagishi, Y.; Matsuda, S. Genistein downregulates presenilin 1 and ubiquilin 1 expression. Mol. Med. Rep., 2012, 5(2), 559-561.
[PMID: 22038372]
[149]
Infante-Garcia, C.; Ramos-Rodriguez, J.J.; Delgado-Olmos, I.; Gamero-Carrasco, C.; Fernandez-Ponce, M.T.; Casas, L.; Mantell, C.; Garcia-Alloza, M. Long-Term mangiferin extract treatment improves central pathology and cognitive deficits in APP/PS1 mice. Mol. Neurobiol., 2017, 54(6), 4696-4704.
[http://dx.doi.org/10.1007/s12035-016-0015-z] [PMID: 27443159]
[150]
Chase, T.N.; Farlow, M.R.; Clarence-Smith, K. Donepezil plus solifenacin (cpc-201) treatment for Alzheimer’s Disease. Neurotherapeutics, 2017, 14(2), 405-416.
[http://dx.doi.org/10.1007/s13311-016-0511-x] [PMID: 28138837]
[151]
Lilienfeld, S. Galantamine--a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev., 2002, 8(2), 159-176.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00221.x] [PMID: 12177686]
[152]
Nordberg, A.; Ballard, C.; Bullock, R.; Darreh-Shori, T.; Somogyi, M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord.,, 2013, 15(2) PCC.12r01412.
[http://dx.doi.org/10.4088/PCC.12r01412] [PMID: 23930233]
[153]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline. Alzheimers Dement. (N. Y.), 2018, 4, 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[154]
Miller, R.G.; Block, G.; Katz, J.S.; Barohn, R.J.; Gopalakrishnan, V.; Cudkowicz, M.; Zhang, J.R.; McGrath, M.S.; Ludington, E.; Appel, S.H.; Azhir, A. Phase 2 Trial NP001 Investigators. Randomized phase 2 trial of NP001-a novel immune regulator: Safety and early efficacy in ALS. Neurol. Neuroimmunol. Neuroinflamm., 2015, 2(3)e100
[http://dx.doi.org/10.1212/NXI.0000000000000100] [PMID: 25884010]
[155]
Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; Case, M.; Dean, R.A.; Hake, A.; Sundell, K.; Poole Hoffmann, V.; Carlson, C.; Khanna, R.; Mintun, M.; DeMattos, R.; Selzler, K.J.; Siemers, E. Trial of solanezumab for mild dementia due to Alzheimer’s Disease. N. Engl. J. Med., 2018, 378(4), 321-330.
[http://dx.doi.org/10.1056/NEJMoa1705971] [PMID: 29365294]
[156]
Tucker, S.; Möller, C.; Tegerstedt, K.; Lord, A.; Laudon, H.; Sjödahl, J.; Söderberg, L.; Spens, E.; Sahlin, C.; Waara, E.R.; Satlin, A.; Gellerfors, P.; Osswald, G.; Lannfelt, L. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers Dis., 2015, 43(2), 575-588.
[http://dx.doi.org/10.3233/JAD-140741] [PMID: 25096615]
[157]
Torika, N.; Asraf, K.; Apte, R.N.; Fleisher-Berkovich, S. Candesartan ameliorates brain inflammation associated with Alzheimer’s disease. CNS Neurosci. Ther., 2018, 24(3), 231-242.
[http://dx.doi.org/10.1111/cns.12802] [PMID: 29365370]
[158]
Lahmy, V.; Meunier, J.; Malmstrom, S.; Naert, G.; Givalois, L.; Kim, S.H.; Villard, V.; Vamvakides, A.; Maurice, T. Blockade of Tau hyperphosphorylation and Abeta(1)(-)(4)(2) generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and sigma(1) receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology, 2013, 38(9), 1706-1723.
[http://dx.doi.org/10.1038/npp.2013.70] [PMID: 23493042]
[159]
Nelson, T.J.; Sun, M.K.; Lim, C.; Sen, A.; Khan, T.; Chirila, F.V.; Alkon, D.L. Bryostatin Effects on Cognitive Function and PKCɛ in Alzheimer’s Disease Phase IIa and Expanded Access Trials. J. Alzheimers Dis., 2017, 58(2), 521-535.
[http://dx.doi.org/10.3233/JAD-170161] [PMID: 28482641]
[160]
Cacabelos, R. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiatr. Dis. Treat., 2007, 3(3), 303-333.
[PMID: 19300564]
[161]
Thomas, S.J.; Grossberg, G.T. Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clin. Interv. Aging, 2009, 4, 367-377.
[PMID: 19851512]
[162]
Dang, V.; Medina, B.; Das, D.; Moghadam, S.; Martin, K.J.; Lin, B.; Naik, P.; Patel, D.; Nosheny, R.; Wesson Ashford, J.; Salehi, A. Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol. Psychiatry, 2014, 75(3), 179-188.
[http://dx.doi.org/10.1016/j.biopsych.2013.05.024] [PMID: 23827853]
[163]
Bali, P.; Lahiri, D.K.; Banik, A.; Nehru, B.; Anand, A. Potential for stem cells therapy in Alzheimer’s Disease: Do neurotrophic factors play critical role? Curr. Alzheimer Res., 2017, 14(2), 208-220.
[http://dx.doi.org/10.2174/1567205013666160314145347] [PMID: 26971940]
[164]
Cao, J.; Hou, J.; Ping, J.; Cai, D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener., 2018, 13(1), 64.
[http://dx.doi.org/10.1186/s13024-018-0299-8] [PMID: 30541602]
[165]
Lozano, E.; de Lucas, M.P.; Sáez, A.G. sta-1 is repressed by mir-58 family in Caenorhabditis elegans. Worm, 2016, 5(4)e1238560
[http://dx.doi.org/10.1080/21624054.2016.1238560] [PMID: 28090395]
[166]
Champagne, D.; Pearson, D.; Dea, D.; Rochford, J.; Poirier, J. The cholesterol-lowering drug probucol increases apolipoprotein E production in the hippocampus of aged rats: implications for Alzheimer’s disease. Neuroscience, 2003, 121(1), 99-110.
[http://dx.doi.org/10.1016/S0306-4522(03)00361-0] [PMID: 12946703]
[167]
Williams, K. Ifenprodil, a novel NMDA receptor antagonist: site and mechanism of action. Curr. Drug Targets, 2001, 2(3), 285-298.
[http://dx.doi.org/10.2174/1389450013348489] [PMID: 11554553]
[168]
Okamoto, M.; Gray, J.D.; Larson, C.S.; Kazim, S.F.; Soya, H.; McEwen, B.S.; Pereira, A.C. Riluzole reduces amyloid beta pathology, improves memory, and restores gene expression changes in a transgenic mouse model of early-onset Alzheimer’s disease. Transl. Psychiatry, 2018, 8(1), 153.
[http://dx.doi.org/10.1038/s41398-018-0201-z] [PMID: 30108205]
[169]
Subash, S.; Subramanian, P. Morin a flavonoid exerts antioxidant potential in chronic hyperammonemic rats: a biochemical and histopathological study. Mol. Cell. Biochem., 2009, 327(1-2), 153-161.
[http://dx.doi.org/10.1007/s11010-009-0053-1] [PMID: 19238524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy