Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

TLRs Play Crucial Roles in Regulating RA Synoviocyte

Author(s): Xuling Luo, Juncheng Cui, Xin Long and Zhiwei Chen*

Volume 20, Issue 8, 2020

Page: [1156 - 1165] Pages: 10

DOI: 10.2174/1871530320666200427115225

Price: $65

Abstract

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease comparing the inflammation of synovium. Macrophage-like synoviocytes and fibroblast-like synoviocytes (synoviocytes) are crucial ingredients of synovium. Therein, a lot of research has focused on synoviocytes. Researches demonstrated that TLR1, TLR2, TLR3, TLR4, TLR5, TLR6 TLR7 and TLR9 are expressed in synoviocyte. Additionally, the expression of TLR2, TLR3, TLR4 and TLR5 is increased in RA synoviocyte. In this paper, we review the exact role of TLR2, TLR3, TLR4 and TLR5 participate in regulating the production of inflammatory factors in RA synoviocyte. Furthermore, we discuss the role of vasoactive intestinal peptide (VIP), MicroRNA, Monome of Chinese herb and other cells (Monocyte and T cell) influence the function of synoviocyte by regulating TLRs. The activation of toll-like receptors (TLRs) in synoviocyte leads to the aggravation of arthritis, comparing with angiogenesis and bone destruction. Above all, TLRs are promising targets for managing RA.

Keywords: TLRs, synoviocyte, rheumatoid arthritis, secretion, proliferation, autoimmune inflammatory disease.

Graphical Abstract
[1]
Maeda, Y.; Takeda, K. Host-microbiota interactions in rheumatoid arthritis. Exp. Mol. Med., 2019, 51(12), 150.
[http://dx.doi.org/10.1038/s12276-019-0283-6] [PMID: 31827063]
[2]
Zafari, P.; Rafiei, A.; Esmaeili, S.A.; Moonesi, M.; Taghadosi, M. Survivin a pivotal antiapoptotic protein in rheumatoid arthritis. J. Cell. Physiol., 2019, 234(12), 21575-21587.
[http://dx.doi.org/10.1002/jcp.28784] [PMID: 31062383]
[3]
Bhattaram, P.; Chandrasekharan, U. The joint synovium: A critical determinant of articular cartilage fate in inflammatory joint diseases. Semin. Cell Dev. Biol., 2017, 62, 86-93.
[http://dx.doi.org/10.1016/j.semcdb.2016.05.009] [PMID: 27212252]
[4]
Asif Amin, M.; Fox, D.A.; Ruth, J.H. Synovial cellular and molecular markers in rheumatoid arthritis. Semin. Immunopathol., 2017, 39(4), 385-393.
[http://dx.doi.org/10.1007/s00281-017-0631-3] [PMID: 28497350]
[5]
Liu, M.; Zhou, X.; Zhou, L.; Liu, Z.; Yuan, J.; Cheng, J.; Zhao, J.; Wu, L.; Li, H.; Qiu, H.; Xu, J. Carnosic acid inhibits inflammation response and joint destruction on osteoclasts, fibroblast-like synoviocytes, and collagen-induced arthritis rats. J. Cell. Physiol., 2018, 233(8), 6291-6303.
[http://dx.doi.org/10.1002/jcp.26517] [PMID: 29521424]
[6]
Ross, C.L.; Ang, D.C.; Almeida-Porada, G. Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Front. Immunol., 2019, 10, 266.
[http://dx.doi.org/10.3389/fimmu.2019.00266] [PMID: 30886614]
[7]
Mauviel, A.; Redini, F.; Loyau, G.; Pujol, J.P. Modulation of extracellular matrix metabolism in rabbit articular chondrocytes and human rheumatoid synovial cells by the non-steroidal anti-inflammatory drug etodolac. I: Collagen synthesis. Agents Actions, 1990, 31(3-4), 345-352.
[http://dx.doi.org/10.1007/BF01997630] [PMID: 2150740]
[8]
Diaz-Rodriguez, P.; Erndt-Marino, J.D.; Gharat, T.; Munoz Pinto, D.J.; Samavedi, S.; Bearden, R.; Grunlan, M.A.; Saunders, W.B.; Hahn, M.S. Toward zonally tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(6), 2019-2029.
[http://dx.doi.org/10.1002/jbm.b.34293] [PMID: 30549205]
[9]
Hu, X.X.; Wu, Y.J.; Zhang, J.; Wei, W. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. Int. Immunopharmacol., 2019, 70, 428-434.
[http://dx.doi.org/10.1016/j.intimp.2019.03.008] [PMID: 30856393]
[10]
Donlin, L.T.; Rao, D.A.; Wei, K.; Slowikowski, K.; McGeachy, M.J.; Turner, J.D.; Meednu, N.; Mizoguchi, F.; Gutierrez-Arcelus, M.; Lieb, D.J.; Keegan, J.; Muskat, K.; Hillman, J.; Rozo, C.; Ricker, E.; Eisenhaure, T.M.; Li, S.; Browne, E.P.; Chicoine, A.; Sutherby, D.; Noma, A.; Nusbaum, C.; Kelly, S.; Pernis, A.B.; Ivashkiv, L.B.; Goodman, S.M.; Robinson, W.H.; Utz, P.J.; Lederer, J.A.; Gravallese, E.M.; Boyce, B.F.; Hacohen, N.; Pitzalis, C.; Gregersen, P.K.; Firestein, G.S.; Raychaudhuri, S.; Moreland, L.W.; Holers, V.M.; Bykerk, V.P.; Filer, A.; Boyle, D.L.; Brenner, M.B.; Anolik, J.H. Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Res. Ther., 2018, 20(1), 139.
[http://dx.doi.org/10.1186/s13075-018-1631-y] [PMID: 29996944]
[11]
Scheinecker, C.; Göschl, L.; Bonelli, M. Treg cells in health and autoimmune diseases: New insights from single cell analysis. J. Autoimmun., 2020, 110: 102376.
[http://dx.doi.org/10.1016/j.jaut.2019.102376] [PMID: 31862128]
[12]
Takeuchi, Y.; Hirota, K.; Sakaguchi, S. Synovial Tissue Inflammation Mediated by Autoimmune T Cells. Front. Immunol., 2019, 10, 1989.
[http://dx.doi.org/10.3389/fimmu.2019.01989] [PMID: 31497022]
[13]
Kim, E.K.; Kwon, J.E.; Lee, S.Y.; Lee, E.J.; Kim, D.S.; Moon, S.J.; Lee, J.; Kwok, S.K.; Park, S.H.; Cho, M.L. IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis., 2017, 8(1): e2565.
[http://dx.doi.org/10.1038/cddis.2016.490] [PMID: 28102843]
[14]
Barnas, J.L.; Looney, R.J.; Anolik, J.H. B cell targeted therapies in autoimmune disease. Curr. Opin. Immunol., 2019, 61, 92-99.
[http://dx.doi.org/10.1016/j.coi.2019.09.004] [PMID: 31733607]
[15]
Kam, N.W.; Liu, D.; Cai, Z.; Mak, W.Y.; Wong, C.K.; Chiu, K.H.; Wong, K.Y.; Tsang, W.L.; Tam, L.S. Synoviocytes-derived interleukin 35 potentiates B cell response in patients with osteoarthritis and rheumatoid arthritis. J. Rheumatol., 2018, 45(4), 563-573.
[http://dx.doi.org/10.3899/jrheum.161363] [PMID: 29247146]
[16]
Zeisbrich, M.; Yanes, R.E.; Zhang, H.; Watanabe, R.; Li, Y.; Brosig, L.; Hong, J.; Wallis, B.B.; Giacomini, J.C.; Assimes, T.L.; Goronzy, J.J.; Weyand, C.M. Hypermetabolic macrophages in rheumatoid arthritis and coronary artery disease due to glycogen synthase kinase 3b inactivation. Ann. Rheum. Dis., 2018, 77(7), 1053-1062.
[http://dx.doi.org/10.1136/annrheumdis-2017-212647] [PMID: 29431119]
[17]
Yang, X.; Li, S.; Zhao, Y.; Li, S.; Zhao, T.; Tai, Y.; Zhang, B.; Wang, X.; Wang, C.; Chen, J.; Wang, Q.; Zhang, L.; Xu, D.; Chang, Y.; Wei, W. GRK2 mediated abnormal transduction of PGE2-EP4-cAMP-CREB signaling induces the imbalance of macrophages polarization in collagen-induced arthritis mice. Cells, 2019, 8(12): E1596.
[http://dx.doi.org/10.3390/cells8121596] [PMID: 31818003]
[18]
Dong, X.; Gan, Y.; Ding, L.; Zeng, F.; Ding, D. Effect of Jiawei Fengshining on synovial cell apoptosis and TGF-β1/Smad signaling pathway in rats with rheumatoid arthritis. Evid. Based Complement. Alternat. Med., 2019, 2019: 8614034.
[http://dx.doi.org/10.1155/2019/8614034] [PMID: 31929822]
[19]
Al-Azab, M.; Qaed, E.; Ouyang, X.; Elkhider, A.; Walana, W.; Li, H.; Li, W.; Tang, Y.; Adlat, S.; Wei, J.; Wang, B.; Li, X. TL1A/TNFR2-mediated mitochondrial dysfunction of fibroblast-like synoviocytes increases inflammatory response in patients with rheumatoid arthritis via reactive oxygen species generation. FEBS J., 2020, 287(14), 3088-3104.
[http://dx.doi.org/10.1111/febs.15181] [PMID: 31953914]
[20]
Niu, R.; Hang, X.; Feng, Y.; Zhang, Y.; Qian, X.; Song, S.; Wang, C.; Tao, J.; Peng, X.; Chen, F. ASIC1a promotes synovial invasion of rheumatoid arthritis via Ca2+/Rac1 pathway. Int. Immunopharmacol., 2020.79106089
[http://dx.doi.org/10.1016/j.intimp.2019.106089] [PMID: 31865241]
[21]
Anderson, K.V.; Bokla, L.; Nüsslein-Volhard, C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell, 1985, 42(3), 791-798.
[http://dx.doi.org/10.1016/0092-8674(85)90275-2] [PMID: 3931919]
[22]
Hashimoto, C.; Hudson, K.L.; Anderson, K.V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell, 1988, 52(2), 269-279.
[http://dx.doi.org/10.1016/0092-8674(88)90516-8] [PMID: 2449285]
[23]
Lemaitre, B.; Nicolas, E.; Michaut, L.; Reichhart, J.M.; Hoffmann, J.A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86(6), 973-983.
[http://dx.doi.org/10.1016/S0092-8674(00)80172-5] [PMID: 8808632]
[24]
Medzhitov, R.; Preston-Hurlburt, P.; Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388(6640), 394-397.
[http://dx.doi.org/10.1038/41131] [PMID: 9237759]
[25]
Nomura, N.; Miyajima, N.; Sazuka, T.; Tanaka, A.; Kawarabayasi, Y.; Sato, S.; Nagase, T.; Seki, N.; Ishikawa, K.; Tabata, S. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res., 1994, 1(1), 27-35.
[http://dx.doi.org/10.1093/dnares/1.1.27] [PMID: 7584026]
[26]
Michels, K.R.; Lukacs, N.W.; Fonseca, W. TLR Activation and Allergic Disease: Early Life Microbiome and Treatment. Curr. Allergy Asthma Rep., 2018, 18(11), 61.
[http://dx.doi.org/10.1007/s11882-018-0815-5] [PMID: 30259206]
[27]
Lauw, F.N.; Caffrey, D.R.; Golenbock, D.T. Of mice and man: TLR11 (finally) finds profilin. Trends Immunol., 2005, 26(10), 509-511.
[http://dx.doi.org/10.1016/j.it.2005.08.006] [PMID: 16111920]
[28]
Arleevskaya, M.I.; Larionova, R.V.; Brooks, W.H.; Bettacchioli, E.; Renaudineau, Y. Toll-Like Receptors, Infections, and Rheumatoid Arthritis. Clin. Rev. Allergy Immunol., 2019, 58, 172-181.
[http://dx.doi.org/10.1007/s12016-019-08742-z] [PMID: 31144208]
[29]
Carrión, M.; Juarranz, Y.; Pérez-García, S.; Jimeno, R.; Pablos, J.L.; Gomariz, R.P.; Gutiérrez-Cañas, I. RNA sensors in human osteoarthritis and rheumatoid arthritis synovial fibroblasts: Immune regulation by vasoactive intestinal peptide. Arthritis Rheum., 2011, 63(6), 1626-1636.
[http://dx.doi.org/10.1002/art.30294] [PMID: 21337319]
[30]
Kumar, V. Toll-like receptors in the pathogenesis of neuroinflammation. J. Neuroimmunol., 2019, 332, 16-30.
[http://dx.doi.org/10.1016/j.jneuroim.2019.03.012] [PMID: 30928868]
[31]
Jung, Y.O.; Cho, M.L.; Lee, S.Y.; Oh, H.J.; Park, J.S.; Park, M.K.; Park, M.J.; Ju, J.H.; Kim, S.I.; Park, S.H.; Kim, H.Y.; Min, J.K. Synergism of toll-like receptor 2 (TLR2), TLR4, and TLR6 ligation on the production of tumor necrosis factor (TNF)-alpha in a spontaneous arthritis animal model of interleukin (IL)-1 receptor antagonist-deficient mice. Immunol. Lett., 2009, 123(2), 138-143.
[http://dx.doi.org/10.1016/j.imlet.2009.03.004] [PMID: 19428561]
[32]
Karpus, O.N.; Heutinck, K.M.; Wijnker, P.J.; Tak, P.P.; Hamann, J. Triggering of the dsRNA sensors TLR3, MDA5, and RIG-I induces CD55 expression in synovial fibroblasts. PLoS One, 2012, 7(5), e35606.
[http://dx.doi.org/10.1371/journal.pone.0035606] [PMID: 22590509]
[33]
Agarwal, S.; Misra, R.; Aggarwal, A. Induction of metalloproteinases expression by TLR ligands in human fibroblast like synoviocytes from juvenile idiopathic arthritis patients. Indian J. Med. Res., 2010, 131, 771-779.
[PMID: 20571165]
[34]
Ashrafi Jigheh, Z.; Ghorbani Haghjo, A.; Argani, H.; Roshangar, L.; Rashtchizadeh, N.; Sanajou, D.; Nazari Soltan Ahmad, S.; Rashedi, J.; Dastmalchi, S.; Mesgari Abbasi, M. Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis. Iran. J. Basic Med. Sci., 2019, 22(4), 384-390.
[PMID: 31168342]
[35]
Ayala-Cuellar, A.P.; Cho, J.; Choi, K.C. Toll-like receptors: A pathway alluding to cancer control. J. Cell. Physiol., 2019, 234(12), 21707-21715.
[http://dx.doi.org/10.1002/jcp.28879] [PMID: 31144310]
[36]
Kumar, V. The complement system, toll-like receptors and inflammasomes in host defense: Three musketeers’ one target. Int. Rev. Immunol., 2019, 38(4), 131-156.
[http://dx.doi.org/10.1080/08830185.2019.1609962] [PMID: 31066339]
[37]
Aderem, A.; Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature, 2000, 406(6797), 782-787.
[http://dx.doi.org/10.1038/35021228] [PMID: 10963608]
[38]
Akira, S.; Takeda, K.; Kaisho, T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat. Immunol., 2001, 2(8), 675-680.
[http://dx.doi.org/10.1038/90609] [PMID: 11477402]
[39]
Rifkin, I.R.; Leadbetter, E.A.; Busconi, L.; Viglianti, G.; Marshak-Rothstein, A. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol. Rev., 2005, 204, 27-42.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00239.x] [PMID: 15790348]
[40]
Elshabrawy, H.A.; Essani, A.E.; Szekanecz, Z.; Fox, D.A.; Shahrara, S. TLRs, future potential therapeutic targets for RA. Autoimmun. Rev., 2017, 16(2), 103-113.
[http://dx.doi.org/10.1016/j.autrev.2016.12.003] [PMID: 27988432]
[41]
Kyburz, D.; Rethage, J.; Seibl, R.; Lauener, R.; Gay, R.E.; Carson, D.A.; Gay, S. Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling. Arthritis Rheum., 2003, 48(3), 642-650.
[http://dx.doi.org/10.1002/art.10848] [PMID: 12632416]
[42]
Fu, D.; Xiao, C.; Xie, Y.; Gao, J.; Ye, S. MiR-3926 inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion through targeting toll like receptor 5. Gene, 2019, 687, 200-206.
[http://dx.doi.org/10.1016/j.gene.2018.11.014] [PMID: 30412746]
[43]
Luo, X.; Zuo, X.; Zhang, B.; Song, L.; Wei, X.; Zhou, Y.; Xiao, X. Release of heat shock protein 70 and the effects of extracellular heat shock protein 70 on the production of IL-10 in fibroblast-like synoviocytes. Cell Stress Chaperones, 2008, 13(3), 365-373.
[http://dx.doi.org/10.1007/s12192-008-0036-2] [PMID: 18392950]
[44]
Alsaleh, G.; Sparsa, L.; Chatelus, E.; Ehlinger, M.; Gottenberg, J.E.; Wachsmann, D.; Sibilia, J. Innate immunity triggers IL-32 expression by fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther., 2010, 12(4), R135.
[http://dx.doi.org/10.1186/ar3073] [PMID: 20615213]
[45]
Lee, S.Y.; Yoon, B.Y.; Kim, J.I.; Heo, Y.M.; Woo, Y.J.; Park, S.H.; Kim, H.Y.; Kim, S.I.; Cho, M.L. Interleukin-17 increases the expression of Toll-like receptor 3 via the STAT3 pathway in rheumatoid arthritis fibroblast-like synoviocytes. Immunology, 2014, 141(3), 353-361.
[http://dx.doi.org/10.1111/imm.12196] [PMID: 24708416]
[46]
Alsousi, A.A.; Igwe, O.J. Redox-active trace metal-induced release of high mobility group box 1(HMGB1) and inflammatory cytokines in fibroblast-like synovial cells is Toll-like receptor 4 (TLR4) dependent. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(11), 3847-3858.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.029] [PMID: 30254017]
[47]
Kabala, P.A.; Angiolilli, C.; Yeremenko, N.; Grabiec, A.M.; Giovannone, B.; Pots, D.; Radstake, T.R.; Baeten, D.; Reedquist, K.A. Endoplasmic reticulum stress cooperates with Toll-like receptor ligation in driving activation of rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Res. Ther., 2017, 19(1), 207.
[http://dx.doi.org/10.1186/s13075-017-1386-x] [PMID: 28923079]
[48]
Cho, M.L.; Jung, Y.O.; Kim, K.W.; Park, M.K.; Oh, H.J.; Ju, J.H.; Cho, Y.G.; Min, J.K.; Kim, S.I.; Park, S.H.; Kim, H.Y. IL-17 induces the production of IL-16 in rheumatoid arthritis. Exp. Mol. Med., 2008, 40(2), 237-245.
[http://dx.doi.org/10.3858/emm.2008.40.2.237] [PMID: 18446062]
[49]
Sommerfelt, R.M.; Feuerherm, A.J.; Skuland, T.; Johansen, B. Cytosolic phospholipase A2 modulates TLR2 signaling in synoviocytes. PLoS One, 2015, 10(4): e0119088.
[http://dx.doi.org/10.1371/journal.pone.0119088] [PMID: 25893499]
[50]
Said, S.I.; Mutt, V. Polypeptide with broad biological activity: isolation from small intestine. Science, 1970, 169(3951), 1217-1218.
[http://dx.doi.org/10.1126/science.169.3951.1217] [PMID: 5450698]
[51]
Lee, D.G.; Woo, J.W.; Kwok, S.K.; Cho, M.L.; Park, S.H. MRP8 promotes Th17 differentiation via upregulation of IL-6 production by fibroblast-like synoviocytes in rheumatoid arthritis. Exp. Mol. Med., 2013, 45e20
[http://dx.doi.org/10.1038/emm.2013.39] [PMID: 23619188]
[52]
Wu, R.; Long, L.; Chen, Q.; Wu, X.; Zhu, J.; Zhou, B.; Cheng, J. Effects of Tim-3 silencing on the viability of fibroblast-like synoviocytes and lipopolysaccharide-induced inflammatory reactions. Exp. Ther. Med., 2017, 14(3), 2721-2727.
[http://dx.doi.org/10.3892/etm.2017.4819] [PMID: 28962218]
[53]
Ganesan, R.; Rasool, M. Ferulic acid inhibits interleukin 17-dependent expression of nodal pathogenic mediators in fibroblast like synoviocytes of rheumatoid arthritis. J. Cell. Biochem., 2018.
[PMID: 30160792]
[54]
Hamnett, R.; Crosby, P.; Chesham, J.E.; Hastings, M.H. Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signalling. Nat. Commun., 2019, 10(1), 542.
[http://dx.doi.org/10.1038/s41467-019-08427-3] [PMID: 30710088]
[55]
Chedid, P.; Boussetta, T.; Dang, P.M.; Belambri, S.A.; Marzaioli, V.; Fasseau, M.; Walker, F.; Couvineau, A.; El-Benna, J.; Marie, J.C. Vasoactive intestinal peptide dampens formyl-peptide-induced ROS production and inflammation by targeting a MAPK-p47phox phosphorylation pathway in monocytes. Mucosal Immunol., 2017, 10(2), 332-340.
[http://dx.doi.org/10.1038/mi.2016.51] [PMID: 27271317]
[56]
Carrión, M.; Juarranz, Y.; Seoane, I.V.; Martínez, C.; González-Álvaro, I.; Pablos, J.L.; Gutiérrez-Cañas, I.; Gomariz, R.P. VIP modulates IL-22R1 expression and prevents the contribution of rheumatoid synovial fibroblasts to IL-22-mediated joint destruction. J. Mol. Neurosci., 2014, 52(1), 10-17.
[http://dx.doi.org/10.1007/s12031-013-0177-3] [PMID: 24254222]
[57]
Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.; Lenhof, H.P.; Keller, A.; Meese, E. An estimate of the total number of true human miRNAs. Nucleic Acids Res., 2019, 47(7), 3353-3364.
[http://dx.doi.org/10.1093/nar/gkz097] [PMID: 30820533]
[58]
Khan, S.; Ayub, H.; Khan, T.; Wahid, F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie, 2019, 167, 12-24.
[http://dx.doi.org/10.1016/j.biochi.2019.09.001] [PMID: 31493469]
[59]
Gutiérrez-Cañas, I.; Juarranz, Y.; Santiago, B.; Arranz, A.; Martinez, C.; Galindo, M.; Payá, M.; Gomariz, R.P.; Pablos, J.L. VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts. Rheumatology (Oxford), 2006, 45(5), 527-532.
[http://dx.doi.org/10.1093/rheumatology/kei219] [PMID: 16319097]
[60]
Arranz, A.; Gutiérrez-Cañas, I.; Carrión, M.; Juarranz, Y.; Pablos, J.L.; Martínez, C.; Gomariz, R.P. VIP reverses the expression profiling of TLR4-stimulated signaling pathway in rheumatoid arthritis synovial fibroblasts. Mol. Immunol., 2008, 45(11), 3065-3073.
[http://dx.doi.org/10.1016/j.molimm.2008.03.011] [PMID: 18452992]
[61]
Meylan, E.; Tschopp, J. Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol. Cell, 2006, 22(5), 561-569.
[http://dx.doi.org/10.1016/j.molcel.2006.05.012] [PMID: 16762830]
[62]
Philippe, L.; Alsaleh, G.; Suffert, G.; Meyer, A.; Georgel, P.; Sibilia, J.; Wachsmann, D.; Pfeffer, S. TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J. Immunol., 2012, 188(1), 454-461.
[http://dx.doi.org/10.4049/jimmunol.1102348] [PMID: 22105995]
[63]
Li, Z.; Cai, J.; Cao, X. MiR-19 suppresses fibroblast-like synoviocytes cytokine release by targeting toll like receptor 2 in rheumatoid arthritis. Am. J. Transl. Res., 2016, 8(12), 5512-5518.
[PMID: 28078022]
[64]
Li, H.; Guan, S.B.; Lu, Y.; Wang, F. MiR-140-5p inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion through targeting TLR4. Biomed. Pharmacother., 2017, 96, 208-214.
[http://dx.doi.org/10.1016/j.biopha.2017.09.079] [PMID: 28987944]
[65]
Liu, W.; Wu, Y.H.; Zhang, L.; Xue, B.; Wang, Y.; Liu, B.; Liu, X.Y.; Zuo, F.; Yang, X.Y.; Chen, F.Y.; Duan, R.; Cai, Y.; Zhang, B.; Ji, Y. MicroRNA-146a suppresses rheumatoid arthritis fibroblast-like synoviocytes proliferation and inflammatory responses by inhibiting the TLR4/NF-kB signaling. Oncotarget, 2018, 9(35), 23944-23959.
[http://dx.doi.org/10.18632/oncotarget.24050] [PMID: 29844864]
[66]
Li, D.; Zhou, Q.; Hu, G.; Wang, G. MicroRNA-506 inhibits rheumatoid arthritis fibroblast-like synoviocytes proliferation and induces apoptosis by targeting TLR4. Biosci. Rep., 2019, 39(5), BSR20182500.
[67]
Liang, T.S.; Zheng, Y.J.; Wang, J.; Zhao, J.Y.; Yang, D.K.; Liu, Z.S. MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2. J. Exp. Clin. Cancer Res., 2019, 38(1), 97.
[http://dx.doi.org/10.1186/s13046-019-1023-4] [PMID: 30791932]
[68]
Balap, A.; Lohidasan, S.; Sinnathambi, A.; Mahadik, K. Herb-drug interaction of Andrographis paniculata (Nees) extract and andrographolide on pharmacokinetic and pharmacodynamic of naproxen in rats. J. Ethnopharmacol., 2017, 195, 214-221.
[http://dx.doi.org/10.1016/j.jep.2016.11.022] [PMID: 27847337]
[69]
Kannaiyan, R.; Shanmugam, M.K.; Sethi, G. Molecular targets of celastrol derived from Thunder of God Vine: Potential role in the treatment of inflammatory disorders and cancer. Cancer Lett., 2011, 303(1), 9-20.
[http://dx.doi.org/10.1016/j.canlet.2010.10.025] [PMID: 21168266]
[70]
Lin, M.W.; Lin, C.C.; Chen, Y.H.; Yang, H.B.; Hung, S.Y. Celastrol inhibits dopaminergic neuronal death of Parkinson’s disease through activating mitophagy. Antioxidants, 2019, 9(1), E37.
[http://dx.doi.org/10.3390/antiox9010037] [PMID: 31906147]
[71]
Cascão, R.; Vidal, B.; Jalmari Finnilä, M.A.; Lopes, I.P.; Teixeira, R.L.; Saarakkala, S.; Moita, L.F.; Fonseca, J.E. Effect of celastrol on bone structure and mechanics in arthritic rats. RMD Open, 2017, 3(2), e000438.
[http://dx.doi.org/10.1136/rmdopen-2017-000438] [PMID: 28955491]
[72]
Liu, W.; Zhang, Y.; Zhu, W.; Ma, C.; Ruan, J.; Long, H.; Wang, Y. Sinomenine Inhibits the Progression of Rheumatoid Arthritis by Regulating the Secretion of Inflammatory Cytokines and Monocyte/Macrophage Subsets. Front. Immunol., 2018, 9, 2228.
[http://dx.doi.org/10.3389/fimmu.2018.02228] [PMID: 30319663]
[73]
Chen, J.; Wu, W.; Zhang, M.; Chen, C. Taraxasterol suppresses inflammation in IL-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Int. Immunopharmacol., 2019, 70, 274-283.
[http://dx.doi.org/10.1016/j.intimp.2019.02.029] [PMID: 30851708]
[74]
Hsieh, M.J.; Wang, C.W.; Lin, J.T.; Chuang, Y.C.; Hsi, Y.T.; Lo, Y.S.; Lin, C.C.; Chen, M.K. Celastrol, a plant-derived triterpene, induces cisplatin-resistance nasopharyngeal carcinoma cancer cell apoptosis though ERK1/2 and p38 MAPK signaling pathway. Phytomedicine, 2019., 58152805
[http://dx.doi.org/10.1016/j.phymed.2018.12.028] [PMID: 31022663]
[75]
Gao, T.; Shi, T.; Wiesenfeld-Hallin, Z.; Li, T.; Jiang, J.D.; Xu, X.J. Sinomenine facilitates the efficacy of gabapentin or ligustrazine hydrochloride in animal models of neuropathic pain. Eur. J. Pharmacol., 2019, 854, 101-108.
[http://dx.doi.org/10.1016/j.ejphar.2019.03.061] [PMID: 30954565]
[76]
Li, X.; Li, P.; Liu, C.; Ren, Y.; Tang, X.; Wang, K.; He, J. Sinomenine hydrochloride inhibits breast cancer metastasis by attenuating inflammation-related epithelial-mesenchymal transition and cancer stemness. Oncotarget, 2017, 8(8), 13560-13574.
[http://dx.doi.org/10.18632/oncotarget.14593] [PMID: 28088791]
[77]
Qiu, J.; Yan, Z.; Tao, K.; Li, Y.; Li, Y.; Li, J.; Dong, Y.; Feng, D.; Chen, H. Sinomenine activates astrocytic dopamine D2 receptors and alleviates neuroinflammatory injury via the CRYAB/STAT3 pathway after ischemic stroke in mice. J. Neuroinflammation, 2016, 13(1), 263.
[http://dx.doi.org/10.1186/s12974-016-0739-8] [PMID: 27724964]
[78]
Wang, S.; Ma, K.; Zhou, C.; Wang, Y.; Hu, G.; Chen, L.; Li, Z.; Hu, C.; Xu, Q.; Zhu, H.; Liu, M.; Xu, N. LKB1 and YAP phosphorylation play important roles in Celastrol-induced β-catenin degradation in colorectal cancer. Ther. Adv. Med. Oncol., 2019, 11, 1758835919843736.
[http://dx.doi.org/10.1177/1758835919843736] [PMID: 31040884]
[79]
Li, G.Q.; Liu, D.; Zhang, Y.; Qian, Y.Y.; Zhu, Y.D.; Guo, S.Y.; Sunagawa, M.; Hisamitsu, T.; Liu, Y.Q. Anti-invasive effects of celastrol in hypoxia-induced fibroblast-like synoviocyte through suppressing of HIF-1α/CXCR4 signaling pathway. Int. Immunopharmacol., 2013, 17(4), 1028-1036.
[http://dx.doi.org/10.1016/j.intimp.2013.10.006] [PMID: 24144813]
[80]
Li, G.; Liu, D.; Zhang, Y.; Qian, Y.; Zhang, H.; Guo, S.; Sunagawa, M.; Hisamitsu, T.; Liu, Y. Celastrol inhibits lipopolysaccharide-stimulated rheumatoid fibroblast-like synoviocyte invasion through suppression of TLR4/NF-κB-mediated matrix metalloproteinase-9 expression. PLoS One, 2013, 8(7), e68905.
[http://dx.doi.org/10.1371/journal.pone.0068905] [PMID: 23861949]
[81]
Xu, W.; Wang, X.; Tu, Y.; Masaki, H.; Tanaka, S.; Onda, K.; Sugiyama, K.; Yamada, H.; Hirano, T. Plant-derived alkaloid sinomenine potentiates glucocorticoid pharmacodynamics in mitogen-activated human peripheral blood mononuclear cells by regulating the translocation of glucocorticoid receptor. Phytother. Res., 2019, 33(1), 187-196.
[http://dx.doi.org/10.1002/ptr.6215] [PMID: 30357956]
[82]
Zhang, H.C.; Liu, M.X.; Wang, E.P.; Lin, Z.; Lv, G.F.; Chen, X. Effect of sinomenine on the expression of rheumatoid arthritis fibroblast-like synoviocytes MyD88 and TRAF6. Genet. Mol. Res., 2015, 14(4), 18928-18935.
[http://dx.doi.org/10.4238/2015.December.28.41] [PMID: 26782542]
[83]
Yao, R.B.; Zhao, Z.M.; Zhao, L.J.; Cai, H. Sinomenine inhibits the inflammatory responses of human fibroblast-like synoviocytes via the TLR4/MyD88/NF-κB signaling pathway in rheumatoid arthritis. Pharmazie, 2017, 72(6), 355-360.
[PMID: 29442025]
[84]
Li, Y.; Xu, J.Z.; Gu, C.X.; Liu, G.L.; Tian, K. Carvacrol suppresses inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes. J. Cell. Biochem., 2018.
[PMID: 30485517]
[85]
Rúa, J.; Del Valle, P.; de Arriaga, D.; Fernández-Álvarez, L.; García-Armesto, M.R. Combination of Carvacrol and Thymol: Antimicrobial Activity Against Staphylococcus aureus and Antioxidant Activity. Foodborne Pathog. Dis., 2019, 16(9), 622-629.
[http://dx.doi.org/10.1089/fpd.2018.2594] [PMID: 31009261]
[86]
Shrestha, S.; Wagle, B.R.; Upadhyay, A.; Arsi, K.; Upadhyaya, I.; Donoghue, D.J.; Donoghue, A.M. Edible coatings fortified with carvacrol reduce Campylobacter jejuni on chicken wingettes and modulate expression of select virulence genes. Front. Microbiol., 2019, 10, 583.
[http://dx.doi.org/10.3389/fmicb.2019.00583] [PMID: 30984132]
[87]
Shrestha, S.; Wagle, B.R.; Upadhyay, A.; Arsi, K.; Donoghue, D.J.; Donoghue, A.M. Carvacrol antimicrobial wash treatments reduce Campylobacter jejuni and aerobic bacteria on broiler chicken skin. Poult. Sci., 2019, 98(9), 4073-4083.
[http://dx.doi.org/10.3382/ps/pez198] [PMID: 30993343]
[88]
Mahmoodi, M.; Amiri, H.; Ayoobi, F.; Rahmani, M.; Taghipour, Z.; Ghavamabadi, R.T.; Jafarzadeh, A.; Sankian, M. Carvacrol ameliorates experimental autoimmune encephalomyelitis through modulating pro- and anti-inflammatory cytokines. Life Sci., 2019, 219, 257-263.
[http://dx.doi.org/10.1016/j.lfs.2018.11.051] [PMID: 30472298]
[89]
de Santana Souza, M.T.; Teixeira, D.F.; de Oliveira, J.P.; Oliveira, A.S.; Quintans-Júnior, L.J.; Correa, C.B.; Camargo, E.A. Protective effect of carvacrol on acetic acid-induced colitis. Biomed. Pharmacother., 2017, 96, 313-319.
[http://dx.doi.org/10.1016/j.biopha.2017.10.017] [PMID: 29017143]
[90]
Li, Y.; Yang, B.; Bai, J.Y.; Xia, S.; Mao, M.; Li, X.; Li, N.; Chen, L. The roles of synovial hyperplasia, angiogenesis and osteoclastogenesis in the protective effect of apigenin on collagen-induced arthritis. Int. Immunopharmacol., 2019, 73, 362-369.
[http://dx.doi.org/10.1016/j.intimp.2019.05.024] [PMID: 31132731]
[91]
Cho, M.L.; Ju, J.H.; Kim, H.R.; Oh, H.J.; Kang, C.M.; Jhun, J.Y.; Lee, S.Y.; Park, M.K.; Min, J.K.; Park, S.H.; Lee, S.H.; Kim, H.Y. Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts. Immunol. Lett., 2007, 108(2), 121-128.
[http://dx.doi.org/10.1016/j.imlet.2006.11.005] [PMID: 17182109]
[92]
Zhu, W.; Meng, L.; Jiang, C.; He, X.; Hou, W.; Xu, P.; Du, H.; Holmdahl, R.; Lu, S. Arthritis is associated with T-cell-induced upregulation of Toll-like receptor 3 on synovial fibroblasts. Arthritis Res. Ther., 2011, 13(3), R103.
[http://dx.doi.org/10.1186/ar3384] [PMID: 21708001]
[93]
Zhu, W.; Jiang, C.; Xu, J.; Geng, M.; Wu, X.; Sun, J.; Ma, J.; Holmdahl, R.; Meng, L.; Lu, S. Pristane primed rat T cells enhance TLR3 expression of fibroblast-like synoviocytes via TNF-α initiated p38 MAPK and NF-κB pathways. Clin. Immunol., 2015, 156(2), 141-153.
[http://dx.doi.org/10.1016/j.clim.2014.11.008] [PMID: 25533241]
[94]
Rana, A.K.; Li, Y.; Dang, Q.; Yang, F. Monocytes in rheumatoid arthritis: Circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int. Immunopharmacol., 2018, 65, 348-359.
[http://dx.doi.org/10.1016/j.intimp.2018.10.016] [PMID: 30366278]
[95]
Kim, K.W.; Cho, M.L.; Lee, S.H.; Oh, H.J.; Kang, C.M.; Ju, J.H.; Min, S.Y.; Cho, Y.G.; Park, S.H.; Kim, H.Y. Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation. Immunol. Lett., 2007, 110(1), 54-64.
[http://dx.doi.org/10.1016/j.imlet.2007.03.004] [PMID: 17467812]
[96]
Kim, K.W.; Cho, M.L.; Oh, H.J.; Kim, H.R.; Kang, C.M.; Heo, Y.M.; Lee, S.H.; Kim, H.Y. TLR-3 enhances osteoclastogenesis through upregulation of RANKL expression from fibroblast-like synoviocytes in patients with rheumatoid arthritis. Immunol. Lett., 2009, 124(1), 9-17.
[http://dx.doi.org/10.1016/j.imlet.2009.02.006] [PMID: 19446344]
[97]
Kim, K.W.; Kim, B.M.; Won, J.Y.; Lee, K.A.; Kim, H.R.; Lee, S.H. Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis. J. Biochem., 2019, 166(3), 259-270.
[http://dx.doi.org/10.1093/jb/mvz033] [PMID: 31086948]
[98]
Safiri, S.; Kolahi, A.A.; Hoy, D.; Smith, E.; Bettampadi, D.; Mansournia, M.A.; Almasi-Hashiani, A.; Ashrafi-Asgarabad, A.; Moradi-Lakeh, M.; Qorbani, M.; Collins, G.; Woolf, A.D.; March, L.; Cross, M. Global, regional and national burden of rheumatoid arthritis 1990-2017: A systematic analysis of the Global Burden of Disease study 2017. Ann. Rheum. Dis., 2019, 78(11), 1463-1471.
[http://dx.doi.org/10.1136/annrheumdis-2019-215920] [PMID: 31511227]
[99]
Banoth, B.; Cassel, S.L. Mitochondria in innate immune signaling. Transl. Res., 2018, 202, 52-68.
[http://dx.doi.org/10.1016/j.trsl.2018.07.014] [PMID: 30165038]
[100]
Park, J.S.; Choi, H.S.; Yim, S.Y.; Lee, S.M. Heme oxygenase-1 protects the liver from septic injury by modulating TLR4-mediated mitochondrial quality control in mice. Shock, 2018, 50(2), 209-218.
[http://dx.doi.org/10.1097/SHK.0000000000001020] [PMID: 29028772]
[101]
Yamada, C.; Beron-Pelusso, C.; Algazzaz, N.; Heidari, A.; Luz, D.; Rawas-Qalaji, M.; Toderas, I.; Mascarenhas, A.K.; Kawai, T.; Movila, A. Age-dependent effect between MARCO and TLR4 on PMMA particle phagocytosis by macrophages. J. Cell. Mol. Med., 2019, 23(8), 5827-5831.
[http://dx.doi.org/10.1111/jcmm.14494] [PMID: 31225947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy