Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis of New Thioureas Derivatives and Evaluation of Their Efficacy as Proliferation Inhibitors in MCF-7 Breast Cancer Cells by Using 99mTc-MIBI Radiotracer

Author(s): Ahmad Hormati, Jafar Abbasi Shiran, Mikaeil Molazadeh, Babak Kaboudin* and Sajjad Ahmadpour*

Volume 17, Issue 7, 2021

Published on: 25 April, 2020

Page: [766 - 778] Pages: 13

DOI: 10.2174/1573406416666200425224921

Price: $65

Abstract

Background and Objectives: Anti-tumor activity of some thioureas derivatives is well documented in literature and received considerable attention. The present study aims to synthesize and characterize some novel thioureas and carbonylthioureas as anti-tumor agents for MCF-7 breast cancer cells in vitro and in vivo.

Materials and Methods: Several 1-allyl-3-(substituted phenyl), N,N'-(phenylene) bis(3- allyldithithiourea) and 1-cyclopropanecarbonyl-3-(substituted phenyl)-thioureas derivatives were synthesized and confirmed by FT-IR spectroscopy, NMR and 13C-NMR. Anti-tumor activity of these compounds was determined by various in vitro and in vivo assays including; MTT, tumor volume measurement as well as,99mTc-MIBI tumor uptake in MCF-7 tumor bearing nude mice.

Results: Among all of the synthesized compounds, some thioureas derivatives [3i] and [4b] at 100 nM concentration exhibited significant inhibitory effects on the proliferation of MCF-7 cell in vitro. However, this inhibition was not observed in HUVEC human endothelial normal cells. In vivo anti-tumor effects of the synthesized compounds on MCF-7 xenograft mouse models demonstrated a reduction in the tumor volume for various concentrations between 2 to 10 mg/kg after 21 days. These effects were comparable with Tamoxifen as standard anti-estrogen drug. According to the 99mTc-MIBI biodistribution result, treatment of MCF-7 bearing nude mice with both [3i] and [4b] compounds at the maximum concentration (10 mg/kg) can lead to a significant decrease of 99mTc- MIBI tumor uptake.

Conclusion: Compounds [3i] and [4b] suppressed the growth of MCF-7 cells in the xenograft nude mice at the doses that were well-tolerated. Our study suggests that these new compounds with their significant anti-tumor effects, may serve as useful candidates for breast cancer therapy.

Keywords: Breast cancer, thiourea, NMR, MTT assay, biodistribution, MCF-7.

Graphical Abstract
[1]
McPherson, K.; Steel, C.M.; Dixon, J.M. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ, 2000, 321(7261), 624-628.
[http://dx.doi.org/10.1136/bmj.321.7261.624] [PMID: 10977847]
[2]
Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 316.
[http://dx.doi.org/10.1001/jama.2018.20751] [PMID: 30667503]
[3]
Watanabe, T. Practical guidance of outpatient cancer chemotherapy and management of side effect. Nihon Geka Gakkai Zasshi, 2006, 107, 192-195.
[4]
Giessen-Jung, C.; von Baumgarten, L. Peripheral neuropathy as a side effect of chemotherapy and targeted therapy. Dtsch. Med. Wochenschr., 1946, 2018(113), 970-978.
[5]
Cronin, P.A.; Myers, E.; Redmond, H.P.; O’Reilly, S.; Kirwan, W.O. Lipomatosis: an unusual side-effect of cytotoxic chemotherapy? Acta Derm. Venereol., 2010, 90(3), 303-304.
[http://dx.doi.org/10.2340/00015555-0823] [PMID: 20526554]
[6]
Joseph, W.R.; Cao, Z.; Mountjoy, K.G.; Marshall, E.S.; Baguley, B.C.; Ching, L.M. Stimulation of tumors to synthesize tumor necrosis factor-alpha in situ using 5,6-dimethylxanthenone-4-acetic acid: a novel approach to cancer therapy. Cancer Res., 1999, 59(3), 633-638.
[PMID: 9973211]
[7]
Zhang, C.Y.; Wang, W.Q.; Chen, J.; Lin, S.X. Reductive 17beta-hydroxysteroid dehydrogenases which synthesize estradiol and inactivate dihydrotestosterone constitute major and concerted players in ER+ breast cancer cells. J. Steroid Biochem. Mol. Biol., 2015, 150, 24-34.
[http://dx.doi.org/10.1016/j.jsbmb.2014.09.017] [PMID: 25257817]
[8]
Chen, H.; Xu, Y.; Zhang, Y.; Zheng, Z. A New Approach to Synthesize of 4-Phenacylideneflavene Derivatives and to Evaluate Their Cytotoxic Effects on HepG2 Cell Line. Molecules, 2017, 22(8), 22.
[http://dx.doi.org/10.3390/molecules22081296] [PMID: 28792431]
[9]
Tantipanjaporn, A.; Prabpai, S.; Suksen, K.; Kongsaeree, P. A thiourea-appended rhodamine chemodosimeter for mercury(II) and its bioimaging application. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 192, 101-107.
[http://dx.doi.org/10.1016/j.saa.2017.10.057] [PMID: 29126002]
[10]
Maleki, A.; Daraei, H.; Amini, N. Electrocatalytic activity of manganese oxide nanosphere immobilized onto deoxyribonucleic acid modified electrode: Application to determine environmental pollutant thiourea at natural pH. J. Colloid Interface Sci., 2017, 504, 579-585.
[http://dx.doi.org/10.1016/j.jcis.2017.06.016] [PMID: 28609741]
[11]
Wang, N.; Xu, X.; Li, H.; Wang, Q.; Yuan, L.; Yu, H. High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb(II) removal from wastewater. Bioresour. Technol., 2017, 233, 58-66.
[http://dx.doi.org/10.1016/j.biortech.2017.02.069] [PMID: 28258997]
[12]
Liu, S.J.; Guo, Y.P.; Yang, H.Y.; Wang, S.; Ding, H.; Qi, Y. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash. J. Environ. Manage., 2016, 182, 328-334.
[http://dx.doi.org/10.1016/j.jenvman.2016.07.086] [PMID: 27497309]
[13]
Spink, S.S.; Kazakov, O.I.; Kiesewetter, E.T.; Kiesewetter, M.K. Rate Accelerated Organocatalytic Ring-Opening Polymerization of L-Lactide via the Application of a Bis(thiourea) H-bond Donating Cocatalyst. Macromolecules, 2015, 48(17), 6127-6131.
[http://dx.doi.org/10.1021/acs.macromol.5b01320] [PMID: 27182086]
[14]
Lai, Q.; Li, Y.; Gong, Z.; Liu, Q.; Wei, C.; Song, Z. Novel Chiral Bifunctional L-Thiazoline-Thiourea Derivatives: Design and Application in Enantioselective Michael Reactions. Chirality, 2015, 27(12), 979-988.
[http://dx.doi.org/10.1002/chir.22540] [PMID: 26427336]
[15]
Nezhadali, A.; Es’haghi, Z.; Bahar, S.; Banaei, A.; Shiran, J.A. Selective Separation of Silver(I) Ion Through a Bulk Liquid Membrane Containing 1,1′-(1,3-Phenylene)bis(3-allylthiourea) as Carrier. J. Braz. Chem. Soc., 2016, 27, 99-108.
[16]
Lu, A.; Wang, Z.; Zhou, Z.; Chen, J.; Wang, Q. Application of “hydrogen bonding interaction” in new drug development: design, synthesis, antiviral activity, and SARs of thiourea derivatives. J. Agric. Food Chem., 2015, 63(5), 1378-1384.
[http://dx.doi.org/10.1021/jf505355r] [PMID: 25619875]
[17]
Chen, M.H.; Chen, Z.; Song, B.A.; Bhadury, P.S.; Yang, S.; Cai, X.J.; Hu, D.Y.; Xue, W.; Zeng, S. Synthesis and antiviral activities of chiral thiourea derivatives containing an alpha-aminophosphonate moiety. J. Agric. Food Chem., 2009, 57(4), 1383-1388.
[http://dx.doi.org/10.1021/jf803215t] [PMID: 19199594]
[18]
Küçükgüzel, I.; Tatar, E.; Küçükgüzel, S.G.; Rollas, S.; De Clercq, E. Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur. J. Med. Chem., 2008, 43(2), 381-392.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.010] [PMID: 17583388]
[19]
Antypenko, L.; Meyer, F.; Kholodniak, O.; Sadykova, Z.; Jirásková, T.; Troianova, A.; Buhaiova, V.; Cao, S.; Kovalenko, S.; Garbe, L.A.; Steffens, K.G. Novel acyl thiourea derivatives: Synthesis, antifungal activity, gene toxicity, drug-like and molecular docking screening. Arch. Pharm. (Weinheim), 2019, 352(2), e1800275.
[http://dx.doi.org/10.1002/ardp.201800275] [PMID: 30589110]
[20]
Abbas, S.Y.; El-Sharief, M.A.; Basyouni, W.M.; Fakhr, I.M.; El-Gammal, E.W. Thiourea derivatives incorporating a hippuric acid moiety: synthesis and evaluation of antibacterial and antifungal activities. Eur. J. Med. Chem., 2013, 64, 111-120.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.002] [PMID: 23644194]
[21]
Cui, P.; Li, X.; Zhu, M.; Wang, B.; Liu, J.; Chen, H. Design, synthesis and antibacterial activities of thiouracil derivatives containing acyl thiourea as SecA inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(10), 2234-2237.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.060] [PMID: 28041832]
[22]
Khan, S.A.; Singh, N.; Saleem, K. Synthesis, characterization and in vitro antibacterial activity of thiourea and urea derivatives of steroids. Eur. J. Med. Chem., 2008, 43(10), 2272-2277.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.012] [PMID: 18294737]
[23]
Maalik, A.; Rahim, H.; Saleem, M.; Fatima, N.; Rauf, A.; Wadood, A.; Malik, M.I.; Ahmed, A.; Rafique, H.; Zafar, M.N.; Riaz, M.; Rasheed, L.; Mumtaz, A. Synthesis, antimicrobial, antioxidant, cytotoxic, antiurease and molecular docking studies of N-(3-trifluoromethyl)benzoyl-N'-aryl thiourea derivatives. Bioorg. Chem., 2019, 88, 102946.
[http://dx.doi.org/10.1016/j.bioorg.2019.102946] [PMID: 31054433]
[24]
Vega-Pérez, J.M.; Periñán, I.; Argandoña, M.; Vega-Holm, M.; Palo-Nieto, C.; Burgos-Morón, E.; López-Lázaro, M.; Vargas, C.; Nieto, J.J.; Iglesias-Guerra, F. Isoprenyl-thiourea and urea derivatives as new farnesyl diphosphate analogues: synthesis and in vitro antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2012, 58, 591-612.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.042] [PMID: 23174318]
[25]
Vantová, Z.; Paulíková, H.; Sabolová, D.; Kozurková, M.; Suchánová, M.; Janovec, L.; Kristian, P.; Imrich, J. Cytotoxic activity of acridin-3,6-diyl dithiourea hydrochlorides in human leukemia line HL-60 and resistant subline HL-60/ADR. Int. J. Biol. Macromol., 2009, 45(2), 174-180.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.04.018] [PMID: 19414028]
[26]
Shing, J.C.; Choi, J.W.; Chapman, R.; Schroeder, M.A.; Sarkaria, J.N.; Fauq, A.; Bram, R.J. A novel synthetic 1,3-phenyl bis-thiourea compound targets microtubule polymerization to cause cancer cell death. Cancer Biol. Ther., 2014, 15(7), 895-905.
[http://dx.doi.org/10.4161/cbt.28881] [PMID: 24755487]
[27]
Farooqi, A.S.; Hong, J.Y.; Cao, J.; Lu, X.; Price, I.R.; Zhao, Q.; Kosciuk, T.; Yang, M.; Bai, J.J.; Lin, H. Novel lysine-based thioureas as mechanism-based inhibitors of sirtuin 2 (SIRT2) with anticancer activity in a colorectal cancer murine model. J. Med. Chem., 2019, 62(8), 4131-4141.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00191] [PMID: 30986062]
[28]
Sweeney, E.E.; McDaniel, R.E.; Maximov, P.Y.; Fan, P.; Jordan, V.C. Models and mechanisms of acquired antihormone resistance in breast cancer: significant clinical progress despite limitations. Horm. Mol. Biol. Clin. Investig., 2012, 9(2), 143-163.
[http://dx.doi.org/10.1515/hmbci-2011-0004] [PMID: 23308083]
[29]
Benz, C.C.; Scott, G.K.; Sarup, J.C.; Johnson, R.M.; Tripathy, D.; Coronado, E.; Shepard, H.M.; Osborne, C.K. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res. Treat., 1992, 24(2), 85-95.
[http://dx.doi.org/10.1007/BF01961241] [PMID: 8095168]
[30]
D’Anselmi, F.; Masiello, M.G.; Cucina, A.; Proietti, S.; Dinicola, S.; Pasqualato, A.; Ricci, G.; Dobrowolny, G.; Catizone, A.; Palombo, A.; Bizzarri, M. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines. PLoS One, 2013, 8(12), e83770.
[http://dx.doi.org/10.1371/journal.pone.0083770] [PMID: 24386275]
[31]
Pérez-Yépez, E.A.; Ayala-Sumuano, J.T.; Reveles-Espinoza, A.M.; Meza, I. Selection of a MCF-7 Breast Cancer Cell Subpopulation with High Sensitivity to IL-1β: Characterization of and Correlation between Morphological and Molecular Changes Leading to Increased Invasiveness. Int. J. Breast Cancer, 2012, 2012, 609148.
[http://dx.doi.org/10.1155/2012/609148] [PMID: 22655200]
[32]
Matsuo, S.; Nakajima, K.; Kinuya, S. Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics. Asia Ocean. J. Nucl. Med. Biol., 2013, 1(1), 39-43.
[PMID: 27408841]
[33]
Fukumoto, M. Single-photon agents for tumor imaging: 201Tl, 99mTc-MIBI, and 99mTc-tetrofosmin. Ann. Nucl. Med., 2004, 18(2), 79-95.
[http://dx.doi.org/10.1007/BF02985098] [PMID: 15195755]
[34]
Zhang, A.; Li, P.; Liu, Q.; Song, S. Breast-specific gamma camera imaging with 99mTc-MIBI has better diagnostic performance than magnetic resonance imaging in breast cancer patients: A meta-analysis. Hell. J. Nucl. Med., 2017, 20(1), 26-35.
[PMID: 28315905]
[35]
Kanaev, S.V.; Novikov, S.N.; Krivorot’ko, P.V.; Semiglazov, V.F.; Kryzhevitskiĭ, P.I.; Zhukova, L.A.; Semënov, I.I.; Semiglazova, T.Iu.; Negustorov, IuF. [Combined use of 99mTc-MIBI scintigraphy and ultrasonography (US) in the diagnosis of axillary lymphatic metastasis in patients with breast cancer]. Vopr. Onkol., 2013, 59(1), 52-58.
[PMID: 23805451]
[36]
Kim, I.J.; Kim, Y.K.; Kim, S.J. Detection and prediction of breast cancer using double phase Tc-99m MIBI scintimammography in comparison with MRI. Onkologie, 2009, 32(10), 556-560.
[http://dx.doi.org/10.1159/000232316] [PMID: 19816071]
[37]
Banaei, A.; Shiran, J.A.; Saadat, A.; Ardabili, F.F.; McArdle, P. One-pot and two-step synthesis of novel carbonylthioureas and dicarbonyldithioureas derivatives. J. Mol. Struct., 2015, 1099, 427-431.
[http://dx.doi.org/10.1016/j.molstruc.2015.06.074]
[38]
Abbasi Shiran, J.; Yahyazadeh, A.; Mamaghani, M.; Rassa, M. Regioselective synthesis of novel 3-allyl-2-(substituted imino)-4-phenyl-3H-thiazole and 2,2-(1,3-phenylene)bis(3-substituted-2-imino-4-phenyl-3H-thiazole) derivatives as antibacterial agents. J. Mol. Struct., 2013, 1039, 113-118.
[http://dx.doi.org/10.1016/j.molstruc.2013.02.003]
[39]
Ghanbari Pirbasti, F.; Mahmoodi, N.O.; Abbasi Shiran, J. Synthesis and evaluation of biological activities of 4-cyclopropyl-5-(2-fluorophenyl) arylhydrazono-2,3-dihydrothiazoles as potent antioxidant agents. J. Sulfur Chem., 2016, 37, 196-210.
[http://dx.doi.org/10.1080/17415993.2015.1122009]
[40]
Kumar, P; Nagarajan, A Uchil, PD Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor protocols., 2018, 2018.
[http://dx.doi.org/10.1101/pdb.prot095505]
[41]
Koleva, I.I.; van Beek, T.A.; Linssen, J.P.; de Groot, A.; Evstatieva, L.N. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem. Anal., 2002, 13(1), 8-17.
[http://dx.doi.org/10.1002/pca.611] [PMID: 11899609]
[42]
Ahmadpour, S.; Noaparast, Z.; Abedi, S.M.; Hosseinimehr, S.J. 99mTc-(tricine)-HYNIC-Lys-FROP peptide for breast tumor targeting. Anticancer. Agents Med. Chem., 2018, 18(9), 1295-1302.
[http://dx.doi.org/10.2174/1871520618666180307142027] [PMID: 29521248]
[43]
Ahmadpour, S.; Noaparast, Z.; Abedi, S.M.; Hosseinimehr, S.J. 99mTc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging. J. Biomed. Sci., 2018, 25(1), 17.
[http://dx.doi.org/10.1186/s12929-018-0420-x] [PMID: 29455647]
[44]
Khodadust, F.; Ahmadpour, S.; Aligholikhamseh, N.; Abedi, S.M.; Hosseinimehr, S.J. An improved 99mTc-HYNIC-(Ser)3-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor. Eur. J. Med. Chem., 2018, 144, 767-773.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.037] [PMID: 29291444]
[45]
Aligholikhamseh, N.; Ahmadpour, S.; Khodadust, F.; Abedi Seyed, M.; Hosseinimehr Seyed, J. 99mTc-HYNIC-(Ser)3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor. Radiochim. Acta, 2018, 106, 601-609.
[http://dx.doi.org/10.1515/ract-2017-2868]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy