Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Characterizing the Binding of Angiotensin Converting Enzyme I Inhibitory Peptide to Human Hemoglobin: Influence of Electromagnetic Fields

Author(s): Farzaneh Sadeghzadeh, Amir Arsalan Entezari, Kiana Behzadian, Kimia Habibi, Zeinab Amiri-Tehranizadeh*, Ahmad Asoodeh, Mohammad Reza Saberi and Jamshidkhan Chamani*

Volume 27, Issue 10, 2020

Page: [1007 - 1021] Pages: 15

DOI: 10.2174/1871530320666200425203636

Price: $65

Abstract

Background: Drug-protein complexes is one of the crucial factors when analyzing the pharmacokinetics and pharmacodynamics of a drug because they can affect the excretion, distribution, metabolism and interaction with target tissues.

Objectives: The aim of this study was to investigate the interaction of human hemoglobin (Hb) and angiotensin I converting enzyme inhibitory peptide (ACEIP) in the absence and presence of different- frequency electromagnetic fields (EMF).

Methods: Various spectroscopic methods like fluorescence spectroscopy, ultraviolet, circular dichroism and conductometry techniques were applied to investigate Hb-ACEIP interaction in the absence and presence of EMF.

Result: The presented spectroscopic studies indicated that EMF changed the interaction between Hb and ACEIP. The a-helix content of Hb decreased upon binding to ACEIP and conductivity of the solution enhanced upon binding. Based on Stern-Volmer equations, it could be stated that the Hb-ACEIP affinity was higher in the presence of EMF.

Conclusion: It can be concluded that for patients who use the drug to control blood pressure, a low-frequency electromagnetic field would have a positive effect on the uptake of the drug.

Keywords: Drug-protein complexes, ACE inhibitory peptide, human hemoglobin, electromagnetic field, fluorescence spectroscopy, circular dichroism.

Next »
Graphical Abstract
[1]
Laurence, J.A.; French, P.W.; Lindner, R.A.; Mckenzie, D.R. Biological effects of electromagnetic fields--mechanisms for the effects of pulsed microwave radiation on protein conformation. J. Theor. Biol., 2000, 206(2), 291-298.
[http://dx.doi.org/10.1006/jtbi.2000.2123] [PMID: 10966765]
[2]
Blank, M. Protein and DNA reactions stimulated by electromagnetic fields. Electromagn. Biol. Med., 2008, 27(1), 3-23.
[http://dx.doi.org/10.1080/15368370701878820] [PMID: 18327711]
[3]
Mousavy, S.J.; Riazi, G.H.; Kamarei, M.; Aliakbarian, H.; Sattarahmady, N.; Sharifizadeh, A.; Safarian, S.; Ahmad, F.; Moosavi-Movahedi, A.A. Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. Int. J. Biol. Macromol., 2009, 44(3), 278-285.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.01.001] [PMID: 19263507]
[4]
Blank, M.; Goodman, R. Do electromagnetic fields interact directly with DNA? Bioelectromagnetics, 1997, 18(2), 111-115.
[http://dx.doi.org/10.1002/(SICI)1521-186X(1997)18:2<111:AID-BEM3>3.0.CO;2-5] [PMID: 9084861]
[5]
Song, K. Im, S.H.; Yoon, Y.J.; Kim, H.M.; Lee, H.J.; Park, G.S. A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS One, 2018, 13(7), e0199753.
[http://dx.doi.org/10.1371/journal.pone.0199753] [PMID: 30011321]
[6]
Kumar, S.; Kesari, K.K.; Behari, J. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics (São Paulo), 2011, 66(7), 1237-1245.
[http://dx.doi.org/10.1590/S1807-59322011000700020] [PMID: 21876981]
[7]
Markov, M.S. Magnetic field therapy: A review. Electromagn. Biol. Med., 2007, 26(1), 1-23.
[http://dx.doi.org/10.1080/15368370600925342] [PMID: 17454079]
[8]
Trostel, C.T.; McLaughlin, R.M.; Lamberth, J.G.; Cooper, R.C.; Elder, S.H.; Pool, R.R.; Gao, C.; Cromiak, J.A.; Boyle, C.R. Effects of pico-tesla electromagnetic field treatment on wound healing in rats. Am. J. Vet. Res., 2003, 64(7), 845-854.
[http://dx.doi.org/10.2460/ajvr.2003.64.845] [PMID: 12856768]
[9]
Wang, Y-Q.; Zhang, H-M.; Zhou, Q-H.; Xu, H-L. A study of the binding of colloidal Fe3O4 with bovine hemoglobin using optical spectroscopy. Colloids Surf. Physicochem. Eng. Aspects, 2009, 337, 102-108.
[http://dx.doi.org/10.1016/j.colsurfa.2008.12.003]
[10]
Lei, C.; Wollenberger, U.; Bistolas, N.; Guiseppi-Elie, A.; Scheller, F.W. Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles. Anal. Bioanal. Chem., 2002, 372(2), 235-239.
[http://dx.doi.org/10.1007/s00216-001-1200-z] [PMID: 11936092]
[11]
Cui, F-L.; Fan, J.; Li, J-P.; Hu, Z-D. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spectroscopy. Bioorg. Med. Chem., 2004, 12(1), 151-157.
[http://dx.doi.org/10.1016/j.bmc.2003.10.018] [PMID: 14697780]
[12]
Gabbianelli, R.; Santroni, A.M.; Fedeli, D.; Kantar, A.; Falcioni, G. Antioxidant activities of different hemoglobin derivatives. Biochem. Biophys. Res. Commun., 1998, 242, 560-564.
[13]
Wang, L.; Liu, R.; Chi, Z.; Yang, B.; Zhang, P.; Wang, M. Spectroscopic investigation on the toxic interactions of Ni2+ with bovine hemoglobin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 76(2), 155-160.
[http://dx.doi.org/10.1016/j.saa.2010.03.006] [PMID: 20400367]
[14]
Wang, Y.Q.; Zhang, H.M.; Zhang, G.C.; Liu, S.X.; Zhou, Q.H.; Fei, Z.H.; Liu, Z.T. Studies of the interaction between paraquat and bovine hemoglobin. Int. J. Biol. Macromol., 2007, 41(3), 243-250.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.02.011] [PMID: 17403534]
[15]
Chaudhuri, S.; Pahari, B.; Sengupta, B.; Sengupta, P.K. Binding of the bioflavonoid robinetin with model membranes and hemoglobin: Inhibition of lipid peroxidation and protein glycosylation. J. Photochem. Photobiol. B, 2010, 98(1), 12-19.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.10.002] [PMID: 19914085]
[16]
De, S.; Girigoswami, A. A fluorimetric and circular dichroism study of hemoglobin-effect of pH and anionic amphiphiles. J. Colloid Interface Sci., 2006, 296(1), 324-331.
[http://dx.doi.org/10.1016/j.jcis.2005.08.047] [PMID: 16225884]
[17]
Xi, J.; Guo, R. Interactions between flavonoids and hemoglobin in lecithin liposomes. Int. J. Biol. Macromol., 2007, 40(4), 305-311.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.08.011] [PMID: 16997370]
[18]
Mendis, S.; O’Brien, E.; Seedat, Y.K.; Yusuf, S. Hypertension and diabetes: Entry points for prevention and control of the global cardiovascular epidemic. Int. J. Hypertens., 2013, 2013878460.
[http://dx.doi.org/10.1155/2013/878460] [PMID: 23653856]
[19]
Farrell, B.; Monahan, A.; Dore, N.; Walsh, K. Blood pressure targets in the very old: Development of a tool in a geriatric day hospital. Can. Fam. Physician, 2014, 60(7), e350-e355.
[PMID: 25022653]
[20]
Wu, J.Y.; Gabriel, M.T.; Lee, S.H.; Lee, S.H.; Tsai, Y.W.; Hsu, S.C.; Chang, S.S.; Lee, C.C. Angiotensin-converting enzyme inhibitors and active tuberculosis: A population-based study, Medicine: United States, 2016, pp. 95.
[21]
Stefan Offermanns, W.R . Encyclopedia of Molecular Pharmacology. Springer Science & Business Media: Berlin, New York . 2008
[http://dx.doi.org/10.1007/978-3-540-38918-7]
[22]
Honore, P.M.; De Bels, D.; Barreto Gutierrez, L.; Redant, S.; Gallerani, A.; Boer, W. Icatibant, another piece of the therapeutic puzzle regarding hemodynamic side effects of angiotensin-converting enzyme inhibitors. Crit. Care, 2019, 23(1), 289.
[http://dx.doi.org/10.1186/s13054-019-2571-x] [PMID: 31462265]
[23]
Finkel, M.A.C.R.P.C. Champe., L.X. Cubeddu, Pharmacology. 4th ed Lippincott: Williams & Wilkins, 2008
[24]
Azimi, O.; Emami, Z.; Salari, H.; Chamani, J. Probing the interaction of human serum albumin with norfloxacin in the presence of high-frequency electromagnetic fields: Fluorescence spectroscopy and circular dichroism investigations. Molecules, 2011, 16(12), 9792-9818.
[http://dx.doi.org/10.3390/molecules16129792] [PMID: 22117170]
[25]
Zohoorian-Abootorabi, T.; Sanee, H.; Iranfar, H.; Saberi, M.R.; Chamani, J. Separate and simultaneous binding effects through a non-cooperative behavior between cyclophosphamide hydrochloride and fluoxymesterone upon interaction with human serum albumin: Multi-spectroscopic and molecular modeling approaches. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 88, 177-191.
[http://dx.doi.org/10.1016/j.saa.2011.12.026] [PMID: 22217702]
[26]
Li, L.; Pan, Q.; Wang, Y.X.; Song, G.W.; Xu, Z.S. Study on the binding equilibrium between surfactant FC95 and DNA by resonance light-scattering technique. Appl. Surf. Sci., 2011, 257, 4547-4551.
[http://dx.doi.org/10.1016/j.apsusc.2010.10.024]
[27]
Tanzadehpanah, H.; Asoodeh, A.; Saberi, M.R.; Chamani, J. Identification of a novel angiotensin-I converting enzyme inhibitory peptide from ostrich egg white and studying its interactions with the enzyme. Innov. Food Sci. Emerg. Technol., 2013, 18, 212-219.
[http://dx.doi.org/10.1016/j.ifset.2013.02.002]
[28]
Chi, Z.; Liu, R.; Yang, B.; Zhang, H. Toxic interaction mechanism between oxytetracycline and bovine hemoglobin. J. Hazard. Mater., 2010, 180(1-3), 741-747.
[http://dx.doi.org/10.1016/j.jhazmat.2010.04.110] [PMID: 20494513]
[29]
Cai, H-H.; Yang, P-H.; Cai, J-Y. Binding of artemisinin to holotransferrin: Electrochemical and spectroscopic characterization. J. Electroanal. Chem. (Lausanne Switz.), 2008, 619-620, 59-64.
[http://dx.doi.org/10.1016/j.jelechem.2008.03.011]
[30]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy. 3rd ed; Springer: New York, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[31]
Harding, B.Z.C.S.E. Protein-Ligand Interactions: Hydrodynamics and Calorimetry: A Practical Approach. 1st ed; Oxford University Press, New York: Oxford, 2001.
[32]
Hu, Y-J.; Wang, Y.; Ou-Yang, Y.; Zhou, J.; Liu, Y. Characterize the interaction between naringenin and bovine serum albumin using spectroscopic approach. J. Lumin., 2010, 130, 1394-1399.
[http://dx.doi.org/10.1016/j.jlumin.2010.02.053]
[33]
Roy, I.; Rao, M.V.S.; Gupta, M.N. An integrated process for purification of lysozyme, ovalbumin, and ovomucoid from hen egg white. Appl. Biochem. Biotechnol., 2003, 111(1), 55-63.
[http://dx.doi.org/10.1385/ABAB:111:1:55] [PMID: 14566069]
[34]
Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Zubik-Skupień, I.; Temba, E.; Pentak, D.; Sułkowski, W.W. Competitive binding of phenylbutazone and colchicine to serum albumin in multidrug therapy: A spectroscopic study. J. Mol. Struct., 2008, 881, 97-106.
[http://dx.doi.org/10.1016/j.molstruc.2007.09.001]
[35]
Ding, F.; Huang, J.; Lin, J.; Li, Z.; Liu, F.; Jiang, Z.; Sun, Y. A study of the binding of C.I. Mordant Red 3 with bovine serum albumin using fluorescence spectroscopy. Dyes Pigments, 2009, 82, 65-70.
[http://dx.doi.org/10.1016/j.dyepig.2008.11.003]
[36]
Anbazhagan, V.; Renganathan, R. Study on the binding of 2,3-diazabicyclo[2.2.2]oct-2-ene with bovine serum albumin by fluorescence spectroscopy. J. Lumin., 2008, 128, 1454-1458.
[http://dx.doi.org/10.1016/j.jlumin.2008.02.004]
[37]
Chaudhuri, S.; Pahari, B.; Sengupta, P.K. Ground and excited state proton transfer and antioxidant activity of 7-hydroxyflavone in model membranes: Absorption and fluorescence spectroscopic studies. Biophys. Chem., 2009, 139(1), 29-36.
[http://dx.doi.org/10.1016/j.bpc.2008.09.018] [PMID: 18977065]
[38]
Lemma, T.; Pawliszyn, J. Human serum albumin interaction with oxaliplatin studied by capillary isoelectric focusing with the whole column imaging detection and spectroscopic method. J. Pharm. Biomed. Anal., 2009, 50(4), 570-575.
[http://dx.doi.org/10.1016/j.jpba.2008.10.028] [PMID: 19070448]
[39]
Zhang, G.; Que, Q.; Pan, J.; Guo, J. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J. Mol. Struct., 2008, 881, 132-138.
[http://dx.doi.org/10.1016/j.molstruc.2007.09.002]
[40]
He, Y.; Wang, Y.; Tang, L.; Liu, H.; Chen, W.; Zheng, Z.; Zou, G. Binding of puerarin to human serum albumin: A spectroscopic analysis and molecular docking. J. Fluoresc., 2008, 18(2), 433-442.
[http://dx.doi.org/10.1007/s10895-007-0283-0] [PMID: 18058205]
[41]
Tang, J.; Luan, F.; Chen, X. Binding analysis of glycyrrhetinic acid to human serum albumin: fluorescence spectroscopy, FTIR, and molecular modeling. Bioorg. Med. Chem., 2006, 14(9), 3210-3217.
[http://dx.doi.org/10.1016/j.bmc.2005.12.034] [PMID: 16412649]
[42]
Alberts, B. Molecular Biology of the cell. 5th ed; Garland Science: New York, 2008.
[43]
Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W.W. Influence of myristic acid on furosemide binding to bovine serum albumin. Comparison with furosemide-human serum albumin complex. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 76(1), 6-11.
[http://dx.doi.org/10.1016/j.saa.2010.02.020] [PMID: 20308015]
[44]
Ding, F.; Liu, W.; Zhang, L.; Yin, B.; Sun, Y. Sulfometuron-methyl binding to human serum albumin: Evidence that sulfometuron-methyl binds at the Sudlow’s site I. J. Mol. Struct., 2010, 968, 59-66.
[http://dx.doi.org/10.1016/j.molstruc.2010.01.020]
[45]
Zhu, Y.; Zhang, R.; Wang, Y.; Ma, J.; Li, K.; Li, Z. Biophysical study on the interaction of an aesthetic, vecuronium bromide with human serum albumin using spectroscopic and calorimetric methods. J. Photochem. Photobiol. B: Biol., 2014, 14 https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jphotobiol.2014.08.019
[46]
Kabiri, M.; Amiri-Tehranizadeh, Z.; Baratian, A.; Saberi, M-R.; Chamani, J. Use of spectroscopic, zeta potential and molecular dynamic techniques to study the interaction between human holo-transferrin and two antagonist drugs: comparison of binary and ternary systems. Molecules, 2012, 17(3), 3114-3147.
[http://dx.doi.org/10.3390/molecules17033114] [PMID: 22410420]
[47]
Pourgonabadi, S.; Saberi, M.R.; Chamani, J.K. Investigating the antagonistic action between aspirin and tamoxifen with HSA: Identification of binding sites in binary and ternary drug-protein systems by spectroscopic and molecular modeling approaches. Protein Pept. Lett., 2011, 18(3), 305-317.
[http://dx.doi.org/10.2174/092986611794578350] [PMID: 21121897]
[48]
Chamani, J.; Tafrishi, N.; Momen-Heravi, M. Characterization of the interaction between human lactoferrin and lomefloxacin at physiological condition: Multi-spectroscopic and modeling description. J. Lumin., 2010, 130, 1160-1168.
[http://dx.doi.org/10.1016/j.jlumin.2010.02.014]
[49]
Wu, L.; Mu, D.; Gao, D.; Deng, X.; Tian, Y.; Zhang, H.; Yu, A. Determination of protein by resonance light scattering technique using dithiothreitol-sodium dodecylbenzene sulphonate as probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 72(1), 178-181.
[http://dx.doi.org/10.1016/j.saa.2008.09.022] [PMID: 19019725]
[50]
Chen, Z.; Liu, G.; Chen, M.; Xu, B.; Peng, Y.; Chen, M.; Wu, M. Screen anticancer drug in vitro using resonance light scattering technique. Talanta, 2009, 77(4), 1365-1369.
[http://dx.doi.org/10.1016/j.talanta.2008.09.016] [PMID: 19084650]
[51]
Li, J.; Kang, J.; Lu, J.; Li, X.; Tang, J.; Zhang, H.; Zhang, Y. Determination of calf thymus DNA using resonance light-scattering quenching method based on the terbium (Ш) (Tb3+)/europium (Ш) (Eu3+)–quercetin system. J. Lumin., 2009, 129, 906-911.
[http://dx.doi.org/10.1016/j.jlumin.2009.03.015]
[52]
Lu, W.; Shang, J. A resonance light-scattering (RLS) serving for various quantitative events since 1995: A comment proposed towards how to apprehend well the meaning of RLS and its corresponding guiding role. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 74(1), 285-291.
[http://dx.doi.org/10.1016/j.saa.2009.06.058] [PMID: 19648054]
[53]
Huang, C.; Li, Y.; Liu, X. Determination of nucleic acids at nanogram levels with safranine T by a resonance light-scattering technique. Anal. Chim. Acta, 1998, 375, 89-97.
[http://dx.doi.org/10.1016/S0003-2670(98)00254-2]
[54]
Long, X.; Zhang, C.; Cheng, J.; Bi, S. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 69(1), 71-77.
[http://dx.doi.org/10.1016/j.saa.2007.03.011] [PMID: 17434334]
[55]
Ding, F.; Han, B-Y.; Liu, W.; Zhang, L.; Sun, Y. Interaction of imidacloprid with hemoglobin by fluorescence and circular dichroism. J. Fluoresc., 2010, 20(3), 753-762.
[http://dx.doi.org/10.1007/s10895-010-0618-0] [PMID: 20204684]
[56]
Sklar, L.A.; Hudson, B.S.; Simoni, R.D. Conjugated polyene fatty acids as fluorescent probes: Binding to bovine serum albumin. Biochemistry, 1977, 16(23), 5100-5108.
[http://dx.doi.org/10.1021/bi00642a024] [PMID: 911814]
[57]
Sanei, H.; Asoodeh, A.; Hamedakbari-Tusi, S.; Chamani, J. Multi-spectroscopic Investigations of aspirin and colchicine interactions with human hemoglobin: Binary and ternary systems. J. Solution Chem., 2011, 40, 1905-1931.
[http://dx.doi.org/10.1007/s10953-011-9766-3]
[58]
Abdollahpour, N.; Asoodeh, A.; Saberi, M.R.; Chamani, J. Separate and simultaneous binding effects of aspirin and amlodipine to human serum albumin based on fluorescence spectroscopic and molecular modeling characterizations: A mechanistic insight for determining usage drugs doses. J. Lumin., 2011, 131, 1885-1899.
[http://dx.doi.org/10.1016/j.jlumin.2011.04.043]
[59]
Valeur, B. Molecular Fluorescence: Principles and Applications. Wiley: New York, 2001.
[http://dx.doi.org/10.1002/3527600248]
[60]
Rodríguez-Cuesta, M.J.; Boqué, R.; Rius, F.X.; Picón Zamora, D.; Martínez Galera, M.; Garrido Frenich, A. Determination of carbendazim, fuberidazole and thiabendazole by three-dimensional excitation–emission matrix fluorescence and parallel factor analysis. Anal. Chim. Acta, 2003, 491, 47-56.
[http://dx.doi.org/10.1016/S0003-2670(03)00786-4]
[61]
He, L.; Wang, X.; Liu, B.; Wang, J.; Sun, Y.; Gao, E.; Xu, S. Study on the interaction between promethazine hydrochlorid and bovine serum albumin by fluorescence spectroscopy. J. Luminesc., 2011, 131, 285-290.
[62]
Chen, Y-H.; Yang, J.T.; Martinez, H.M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 1972, 11(22), 4120-4131.
[http://dx.doi.org/10.1021/bi00772a015] [PMID: 4343790]
[63]
Ding, F.; Liu, W.; Li, Y.; Zhang, L.; Sun, Y. Determining the binding affinity and binding site of bensulfuron-methyl to human serum albumin by quenching of the intrinsic tryptophan fluorescence. J. Lumin., 2010, 130, 2013-2021.
[http://dx.doi.org/10.1016/j.jlumin.2010.05.019]
[64]
Tantra, R.; Schulze, P.; Quincey, P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology, 2010, 8, 279-285.
[http://dx.doi.org/10.1016/j.partic.2010.01.003]
[65]
Matei, I.; Hillebrand, M. Interaction of kaempferol with human serum albumin: A fluorescence and circular dichroism study. J. Pharm. Biomed. Anal., 2010, 51(3), 768-773.
[http://dx.doi.org/10.1016/j.jpba.2009.09.037] [PMID: 19853398]
[66]
Gao, Y.P.F. The Principle of Bioinorganic Chemistry. Science: Beijing, 2002.
[67]
Greenfield, N.J.; Fasman, G.D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 1969, 8, 4108-4116.
[http://dx.doi.org/10.1021/bi00838a031]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy