Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Protective Potential of Ginkgo biloba Against an ADHD-like Condition

Author(s): Garima Sharma, Naveen Sharma, Bao Trong Nguyen, Ji Hoon Jeong, Seung-Yeol Nah, Yukio Yoneda, Eun-Joo Shin and Hyoung-Chun Kim*

Volume 14, Issue 2, 2021

Published on: 24 April, 2020

Page: [200 - 209] Pages: 10

DOI: 10.2174/1874467213666200424152454

Price: $65

Abstract

Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder commonly found in children, which is recognized by hyperactivity and aggressive behavior. It is known that the pathophysiology of ADHD is associated with neurobiological dysfunction. Although psychostimulants are recognized as the therapeutic drugs of choice for ADHD patients, the side effects might be of great concern. Ginkgo biloba is a promising herbal, complementary supplement that may modulate the neuronal system in an ADHD-like condition. The beneficial effect of Ginkgo biloba on ADHD-like symptoms may be related to the modulation of the system by novel molecular mechanisms. Ginkgo biloba is known to modulate dopamine, serotonin, and norepinephrine signaling. Flavonoid glycosides and terpene trilactones are the two major phytochemical components present in the Ginkgo biloba preparations, which can exhibit antioxidant and neuroprotective activities. The pharmacological mechanisms of the phytochemical components may also contribute to the neuroprotective activity of Ginkgo biloba.

In this review, we have summarized recent findings on the potential of various Ginkgo biloba preparations to treat ADHD-like symptoms. In addition, we have discussed the pharmacological mechanisms mediated by Ginkgo biloba against an ADHD-like condition.

Keywords: Attention deficit hyperactivity disorder, neurotransmitter, antioxidant potential, Ginkgo biloba, neuroprotection, EGb 761.

Graphical Abstract
[1]
Wilens, T.E.; Spencer, T.J. Understanding attention-deficit/hyperactivity disorder from childhood to adulthood. Postgrad. Med., 2010, 122(5), 97-109.
[PMID: 20861593]
[2]
Waxmonsky, J. Assessment and treatment of attention deficit hyperactivity disorder in children with comorbid psychiatric illness. Curr. Opin. Pediatr., 2003, 15(5), 476-482.
[PMID: 14508296]
[3]
Nagamitsu, S.; Yamashita, Y.; Tanigawa, H.; Chiba, H.; Kaida, H.; Ishibashi, M.; Kakuma, T.; Croarkin, P.E.; Matsuishi, T. Upregulated GABA Inhibitory Function in ADHD Children with Child Behavior Checklist-Dysregulation Profile: 123I-Iomazenil SPECT Study. Front. Psychiatry, 2015, 6, 84.
[PMID: 26082729]
[4]
Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am. J. Psychiatry, 2007, 164(6), 942-948.
[PMID: 17541055]
[5]
Faraone, S.V.; Biederman, J.; Mick, E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol. Med., 2006, 36(2), 159-165.
[PMID: 16420712]
[6]
Antshel, K.M.; Faraone, S.V.; Maglione, K.; Doyle, A.; Fried, R.; Seidman, L.; Biederman, J. Temporal stability of ADHD in the high-IQ population: results from the MGH Longitudinal Family Studies of ADHD. J. Am. Acad. Child Adolesc. Psychiatry, 2008, 47(7), 817-825.
[PMID: 18520956]
[7]
Mick, E.; Byrne, D.; Fried, R.; Monuteaux, M.; Faraone, S.V.; Biederman, J. Predictors of ADHD persistence in girls at 5-year follow-up. J. Atten. Disord., 2011, 15(3), 183-192.
[PMID: 20332414]
[8]
Volkow, N.D.; Swanson, J.M. Clinical practice: Adult attention deficit-hyperactivity disorder. N. Engl. J. Med., 2013, 369(20), 1935-1944.
[PMID: 24224626]
[9]
Curatolo, P.; D’Agati, E.; Moavero, R. The neurobiological basis of ADHD. Ital. J. Pediatr., 2010, 36(1), 79.
[PMID: 21176172]
[10]
Samiei, M.; Daneshmand, R.; Keramatfar, R.; Khooshabi, K.; Amiri, N.; Farhadi, Y.; Farzadfard, S.Z.; Kachooi, H.; Samadi, R. Attention Deficit Hyper Activity Disorder (ADHD) and Stress: A Mutual Relationship between Children and Mothers. Basic Clin. Neurosci., 2015, 6(2), 113-121.
[PMID: 27307956]
[11]
Schachar, R.; Chen, S.; Crosbie, J.; Goos, L.; Ickowicz, A.; Charach, A. Comparison of the predictive validity of hyperkinetic disorder and attention deficit hyperactivity disorder. J. Can. Acad. Child Adolesc. Psychiatry, 2007, 16(2), 90-100.
[PMID: 18392157]
[12]
Comings, D.E.; Gade-Andavolu, R.; Gonzalez, N.; Wu, S.; Muhleman, D.; Blake, H.; Chiu, F.; Wang, E.; Farwell, K.; Darakjy, S.; Baker, R.; Dietz, G.; Saucier, G.; MacMurray, J.P. Multivariate analysis of associations of 42 genes in ADHD, ODD and conduct disorder. Clin. Genet., 2000, 58(1), 31-40.
[PMID: 10945659]
[13]
Wild-Wall, N.; Oades, R.D.; Schmidt-Wessels, M.; Christiansen, H.; Falkenstein, M. Neural activity associated with executive functions in adolescents with attention-deficit/hyperactivity disorder (ADHD). Int. J. Psychophysiol., 2009, 74(1), 19-27.
[PMID: 19607863]
[14]
Pasini, A.; D’agati, E. Pathophysiology of NSS in ADHD. World J. Biol. Psychiatry, 2009, 10(4 Pt 2), 495-502.
[PMID: 19337883]
[15]
Nowrangi, M.A.; Lyketsos, C.; Rao, V.; Munro, C.A. Systematic review of neuroimaging correlates of executive functioning: converging evidence from different clinical populations. J. Neuropsychiatry Clin. Neurosci., 2014, 26(2), 114-125.
[PMID: 24763759]
[16]
Huang, H.C.; Wu, L.S.; Yu, S.C.; Wu, B.J.; Lua, A.C.; Lee, S.M.; Liu, C.Z. The Alpha-2A Adrenergic Receptor Gene -1291C/G Single Nucleotide Polymorphism is Associated with the Efficacy of Methylphenidate in Treating Taiwanese Children and Adolescents with Attention-Deficit Hyperactivity Disorder. Psychiatry Investig., 2018, 15(3), 306-312.
[PMID: 29486545]
[17]
Zaiou, M.; El Amri, H. Cardiovascular pharmacogenetics: a promise for genomically-guided therapy and personalized medicine. Clin. Genet., 2017, 91(3), 355-370.
[PMID: 27714756]
[18]
Bonvicini, C.; Faraone, S.V.; Scassellati, C. Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol. Psychiatry, 2016, 21(7), 872-884.
[PMID: 27217152]
[19]
Froehlich, T.E.; McGough, J.J.; Stein, M.A. Progress and promise of attention-deficit hyperactivity disorder pharmacogenetics. CNS Drugs, 2010, 24(2), 99-117.
[PMID: 20088618]
[20]
Uebel-von Sandersleben, H.; Rothenberger, A.; Albrecht, B.; Rothenberger, L.G.; Klement, S.; Bock, N. Ginkgo biloba extract EGb 761® in children with ADHD. Z. Kinder Jugendpsychiatr. Psychother., 2014, 42(5), 337-347.
[PMID: 25163996]
[21]
Wigal, S.B. Efficacy and safety limitations of attention-deficit hyperactivity disorder pharmacotherapy in children and adults. CNS Drugs, 2009, 23(Suppl. 1), 21-31.
[PMID: 19621975]
[22]
Sinha, D.; Efron, D. Complementary and alternative medicine use in children with attention deficit hyperactivity disorder. J. Paediatr. Child Health, 2005, 41(1-2), 23-26.
[PMID: 15670219]
[23]
Shakibaei, F.; Radmanesh, M.; Salari, E.; Mahaki, B. Ginkgo biloba in the treatment of attention-deficit/hyperactivity disorder in children and adolescents. A randomized, placebo-controlled, trial. Complement. Ther. Clin. Pract., 2015, 21(2), 61-67.
[PMID: 25925875]
[24]
He, S.; Wang, M.; Si, J.; Zhang, T.; Cui, H.; Gao, X. Efficacy and safety of ginkgo preparations for attention deficit hyperactivity disorder: a systematic review protocol. BMJ Open, 2018, 8(2), e020434.
[PMID: 29463592]
[25]
Ahn, J.; Ahn, H.S.; Cheong, J.H.; Dela Peña, I. Natural Product-Derived Treatments for Attention-Deficit/Hyperactivity Disorder: Safety, Efficacy, and Therapeutic Potential of Combination Therapy. Neural Plast., 2016, 2016, 1320423.
[PMID: 26966583]
[26]
Sharma, A.; Gerbarg, P.L.; Brown, R.P. Non-Pharmacological Treatments for ADHD in Youth. Adolesc. Psychiatry (Hilversum), 2015, 5(2), 84-95.
[PMID: 27489754]
[27]
Rucklidge, J.J.; Johnstone, J.; Kaplan, B.J. Nutrient supplementation approaches in the treatment of ADHD. Expert Rev. Neurother., 2009, 9(4), 461-476.
[PMID: 19344299]
[28]
DeFeudis, F.V.; Drieu, K. Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr. Drug Targets, 2000, 1(1), 25-58.
[PMID: 11475535]
[29]
Nathan, P. Can the cognitive enhancing effects of ginkgo biloba be explained by its pharmacology? Med. Hypotheses, 2000, 55(6), 491-493.
[PMID: 11090296]
[30]
Diamond, B.J.; Bailey, M.R. Ginkgo biloba: indications, mechanisms, and safety. Psychiatr. Clin. North Am., 2013, 36(1), 73-83.
[PMID: 23538078]
[31]
Drieu, K. [Preparation and definition of Ginkgo biloba extract]. Presse Med., 1986, 15(31), 1455-1457.
[PMID: 2947081]
[32]
Yeh, K.Y.; Wu, C.H.; Tai, M.Y.; Tsai, Y.F. Ginkgo biloba extract enhances noncontact erection in rats: the role of dopamine in the paraventricular nucleus and the mesolimbic system. Neuroscience, 2011, 189, 199-206.
[PMID: 21640798]
[33]
Yoshitake, T.; Yoshitake, S.; Kehr, J. The Ginkgo biloba extract EGb 761(R) and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Br. J. Pharmacol., 2010, 159(3), 659-668.
[PMID: 20105177]
[34]
Emminger, W.; Innerhofer, A.; Helfert, A.; Kummer, M.; Gadner, H. [Liposomal amphotericin B in the treatment of candida infection in a 3-month-old infant]. Padiatr. Padol., 1992, 27(4), 97-99.
[PMID: 1408291]
[35]
Niederhofer, H. Ginkgo biloba treating patients with attention-deficit disorder. Phytother. Res., 2010, 24(1), 26-27.
[PMID: 19441138]
[36]
Li, Z.Y.; Chung, Y.H.; Shin, E.J.; Dang, D.K.; Jeong, J.H.; Ko, S.K.; Nah, S.Y.; Baik, T.G.; Jhoo, J.H.; Ong, W.Y.; Nabeshima, T.; Kim, H.C. YY-1224, a terpene trilactone-strengthened Ginkgo biloba, attenuates neurodegenerative changes induced by β-amyloid (1-42) or double transgenic overexpression of APP and PS1 via inhibition of cyclooxygenase-2. J. Neuroinflammation, 2017, 14(1), 94.
[PMID: 28449688]
[37]
Singh, S.K.; Barreto, G.E.; Aliev, G.; Echeverria, V. Ginkgo biloba as an Alternative Medicine in the Treatment of Anxiety in Dementia and other Psychiatric Disorders. Curr. Drug Metab., 2017, 18(2), 112-119.
[PMID: 27908257]
[38]
Corona, J.C.; Duchen, M.R. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic. Biol. Med., 2016, 100, 153-163.
[PMID: 27352979]
[39]
Kim, J.I.; Lee, S.Y.; Park, M.; Kim, S.Y.; Kim, J.W.; Kim, S.A.; Kim, B.N. Peripheral Mitochondrial DNA Copy Number is Increased in Korean Attention-Deficit Hyperactivity Disorder Patients. Front. Psychiatry, 2019, 10, 506.
[PMID: 31379624]
[40]
Faraone, S.V.; Perlis, R.H.; Doyle, A.E.; Smoller, J.W.; Goralnick, J.J.; Holmgren, M.A.; Sklar, P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry, 2005, 57(11), 1313-1323.
[PMID: 15950004]
[41]
Sullivan, M.A.; Rudnik-Levin, F. Attention deficit/hyperactivity disorder and substance abuse. Diagnostic and therapeutic considerations. Ann. N. Y. Acad. Sci., 2001, 931, 251-270.
[PMID: 11462745]
[42]
Mrzljak, L.; Bergson, C.; Pappy, M.; Huff, R.; Levenson, R.; Goldman-Rakic, P.S. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature, 1996, 381(6579), 245-248.
[PMID: 8622768]
[43]
Wang, X.; Zhong, P.; Yan, Z. Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex. J. Neurosci., 2002, 22(21), 9185-9193.
[PMID: 12417643]
[44]
Beaulieu, J.M.; Espinoza, S.; Gainetdinov, R.R. Dopamine receptors - IUPHAR Review 13. Br. J. Pharmacol., 2015, 172(1), 1-23.
[PMID: 25671228]
[45]
Tahir, E.; Yazgan, Y.; Cirakoglu, B.; Ozbay, F.; Waldman, I.; Asherson, P.J. Association and linkage of DRD4 and DRD5 with attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children. Mol. Psychiatry, 2000, 5(4), 396-404.
[PMID: 10889550]
[46]
Sunohara, G.A.; Roberts, W.; Malone, M.; Schachar, R.J.; Tannock, R.; Basile, V.S.; Wigal, T.; Wigal, S.B.; Schuck, S.; Moriarty, J.; Swanson, J.M.; Kennedy, J.L.; Barr, C.L. Linkage of the dopamine D4 receptor gene and attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry, 2000, 39(12), 1537-1542.
[PMID: 11128331]
[47]
Xing, B.; Li, Y.C.; Gao, W.J. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res., 2016, 1641(Pt B), 217-233.
[PMID: 26790349]
[48]
Garbutt, J.C.; van Kammen, D.P. The interaction between GABA and dopamine: implications for schizophrenia. Schizophr. Bull., 1983, 9(3), 336-353.
[PMID: 6137869]
[49]
Waddington, J.L.; O’Tuathaigh, C.; O’Sullivan, G.; Tomiyama, K.; Koshikawa, N.; Croke, D.T. Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology-molecular biology interface. Psychopharmacology (Berl.), 2005, 181(4), 611-638.
[PMID: 16041535]
[50]
Su, S.Y.; Hsieh, C.L.; Wu, S.L.; Cheng, W.Y.; Li, C.C.; Lo, H.Y.; Ho, T.Y.; Hsiang, C.Y. Transcriptomic analysis of EGb 761-regulated neuroactive receptor pathway in vivo. J. Ethnopharmacol., 2009, 123(1), 68-73.
[PMID: 19429342]
[51]
Viggiano, D.; Vallone, D.; Sadile, A. Dysfunctions in dopamine systems and ADHD: evidence from animals and modeling. Neural Plast., 2004, 11(1-2), 97-114.
[PMID: 15303308]
[52]
Cook, E.H., Jr; Stein, M.A.; Krasowski, M.D.; Cox, N.J.; Olkon, D.M.; Kieffer, J.E.; Leventhal, B.L. Association of attention-deficit disorder and the dopamine transporter gene. Am. J. Hum. Genet., 1995, 56(4), 993-998.
[PMID: 7717410]
[53]
Gill, M.; Daly, G.; Heron, S.; Hawi, Z.; Fitzgerald, M. Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol. Psychiatry, 1997, 2(4), 311-313.
[PMID: 9246671]
[54]
Gainetdinov, R.R.; Caron, M.G. Genetics of childhood disorders: XXIV. ADHD, part 8: hyperdopaminergic mice as an animal model of ADHD. J. Am. Acad. Child Adolesc. Psychiatry, 2001, 40(3), 380-382.
[PMID: 11288782]
[55]
Yamashita, M.; Sakakibara, Y.; Hall, F.S.; Numachi, Y.; Yoshida, S.; Kobayashi, H.; Uchiumi, O.; Uhl, G.R.; Kasahara, Y.; Sora, I. Impaired cliff avoidance reaction in dopamine transporter knockout mice. Psychopharmacology (Berl.), 2013, 227(4), 741-749.
[PMID: 23397052]
[56]
Blecharz-Klin, K.; Piechal, A.; Joniec, I.; Pyrzanowska, J.; Widy-Tyszkiewicz, E. Pharmacological and biochemical effects of Ginkgo biloba extract on learning, memory consolidation and motor activity in old rats. Acta Neurobiol. Exp. (Warsz.), 2009, 69(2), 217-231.
[PMID: 19593336]
[57]
Fehske, C.J.; Leuner, K.; Müller, W.E. Ginkgo biloba extract (EGb761) influences monoaminergic neurotransmission via inhibition of NE uptake, but not MAO activity after chronic treatment. Pharmacol. Res., 2009, 60(1), 68-73.
[PMID: 19427589]
[58]
White, H.L.; Scates, P.W.; Cooper, B.R. Extracts of Ginkgo biloba leaves inhibit monoamine oxidase. Life Sci., 1996, 58(16), 1315-1321.
[PMID: 8614288]
[59]
Ponto, L.L.; Schultz, S.K. Ginkgo biloba extract: review of CNS effects. Ann. Clin. Psychiatry, 2003, 15(2), 109-119.
[PMID: 12938868]
[60]
Sloley, B.D.; Urichuk, L.J.; Morley, P.; Durkin, J.; Shan, J.J.; Pang, P.K.; Coutts, R.T. Identification of kaempferol as a monoamine oxidase inhibitor and potential Neuroprotectant in extracts of Ginkgo biloba leaves. J. Pharm. Pharmacol., 2000, 52(4), 451-459.
[PMID: 10813558]
[61]
Nam, Y.; Shin, E.J.; Shin, S.W.; Lim, Y.K.; Jung, J.H.; Lee, J.H.; Ha, J.R.; Chae, J.S.; Ko, S.K.; Jeong, J.H.; Jang, C.G.; Kim, H.C. YY162 prevents ADHD-like behavioral side effects and cytotoxicity induced by Aroclor1254 via interactive signaling between antioxidant potential, BDNF/TrkB, DAT and NET. Food Chem. Toxicol., 2014, 65, 280-292.
[PMID: 24394491]
[62]
Eckert, A.; Keil, U.; Kressmann, S.; Schindowski, K.; Leutner, S.; Leutz, S.; Müller, W.E. Effects of EGb 761 Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry, 2003, 36(Suppl. 1), S15-S23.
[PMID: 13130384]
[63]
Zhang, Z.; Peng, D.; Zhu, H.; Wang, X. Experimental evidence of Ginkgo biloba extract EGB as a neuroprotective agent in ischemia stroke rats. Brain Res. Bull., 2012, 87(2-3), 193-198.
[PMID: 22100334]
[64]
Rojas, P.; Ruiz-Sánchez, E.; Rojas, C.; Ogren, S.O. Ginkgo biloba extract (EGb 761) modulates the expression of dopamine-related genes in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neuroscience, 2012, 223, 246-257.
[PMID: 22885234]
[65]
Upadhyaya, H.P.; Desaiah, D.; Schuh, K.J.; Bymaster, F.P.; Kallman, M.J.; Clarke, D.O.; Durell, T.M.; Trzepacz, P.T.; Calligaro, D.O.; Nisenbaum, E.S.; Emmerson, P.J.; Schuh, L.M.; Bickel, W.K.; Allen, A.J. A review of the abuse potential assessment of atomoxetine: a nonstimulant medication for attention-deficit/hyperactivity disorder. Psychopharmacology (Berl.), 2013, 226(2), 189-200.
[PMID: 23397050]
[66]
Salim, K.N.; McEwen, B.S.; Chao, H.M. Ginsenoside Rb1 regulates ChAT, NGF and trkA mRNA expression in the rat brain. Brain Res. Mol. Brain Res., 1997, 47(1-2), 177-182.
[PMID: 9221915]
[67]
Lu, Z.F.; Shen, Y.X.; Zhang, P.; Xu, Y.J.; Fan, Z.H.; Cheng, M.H.; Dong, Q.R. Ginsenoside Rg1 promotes proliferation and neurotrophin expression of olfactory ensheathing cells. J. Asian Nat. Prod. Res., 2010, 12(4), 265-272.
[PMID: 20419536]
[68]
Dang, H.; Chen, Y.; Liu, X.; Wang, Q.; Wang, L.; Jia, W.; Wang, Y. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(8), 1417-1424.
[PMID: 19632285]
[69]
Madras, B.K.; Miller, G.M.; Fischman, A.J. The dopamine transporter and attention-deficit/hyperactivity disorder. Biol. Psychiatry, 2005, 57(11), 1397-1409.
[PMID: 15950014]
[70]
Smith, K.M.; Bauer, L.; Fischer, M.; Barkley, R.; Navia, B.A. Identification and characterization of human NR4A2 polymorphisms in attention deficit hyperactivity disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2005, 133B(1), 57-63.
[PMID: 15635701]
[71]
Berridge, C.W.; Devilbiss, D.M.; Andrzejewski, M.E.; Arnsten, A.F.; Kelley, A.E.; Schmeichel, B.; Hamilton, C.; Spencer, R.C. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol. Psychiatry, 2006, 60(10), 1111-1120.
[PMID: 16806100]
[72]
Hannestad, J.; Gallezot, J.D.; Planeta-Wilson, B.; Lin, S.F.; Williams, W.A.; van Dyck, C.H.; Malison, R.T.; Carson, R.E.; Ding, Y.S. Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol. Psychiatry, 2010, 68(9), 854-860.
[PMID: 20691429]
[73]
Valentini, V.; Frau, R.; Di Chiara, G. Noradrenaline transporter blockers raise extracellular dopamine in medial prefrontal but not parietal and occipital cortex: differences with mianserin and clozapine. J. Neurochem., 2004, 88(4), 917-927.
[PMID: 14756813]
[74]
Logan, J.; Wang, G.J.; Telang, F.; Fowler, J.S.; Alexoff, D.; Zabroski, J.; Jayne, M.; Hubbard, B.; King, P.; Carter, P.; Shea, C.; Xu, Y.; Muench, L.; Schlyer, D.; Learned-Coughlin, S.; Cosson, V.; Volkow, N.D.; Ding, Y.S. Imaging the norepinephrine transporter in humans with (S,S)-[11C]O-methyl reboxetine and PET: problems and progress. Nucl. Med. Biol., 2007, 34(6), 667-679.
[PMID: 17707807]
[75]
Nyberg, S.; Jucaite, A.; Takano, A.; Kågedal, M.; Cselényi, Z.; Halldin, C.; Farde, L. Norepinephrine transporter occupancy in the human brain after oral administration of quetiapine XR. Int. J. Neuropsychopharmacol., 2013, 16(10), 2235-2244.
[PMID: 23809226]
[76]
Faraone, S.V.; Mick, E. Molecular genetics of attention deficit hyperactivity disorder. Psychiatr. Clin. North Am., 2010, 33(1), 159-180.
[PMID: 20159345]
[77]
Liu, L.; Cheng, J.; Li, H.; Yang, L.; Qian, Q.; Wang, Y. The possible involvement of genetic variants of NET1 in the etiology of attention-deficit/hyperactivity disorder comorbid with oppositional defiant disorder. J. Child Psychol. Psychiatry, 2015, 56(1), 58-66.
[PMID: 24942521]
[78]
Kim, J.W.; Biederman, J.; McGrath, C.L.; Doyle, A.E.; Mick, E.; Fagerness, J.; Purcell, S.; Smoller, J.W.; Sklar, P.; Faraone, S.V. Further evidence of association between two NET single-nucleotide polymorphisms with ADHD. Mol. Psychiatry, 2008, 13(6), 624-630.
[PMID: 17876324]
[79]
Angyal, N.; Horvath, E.Z.; Tarnok, Z.; Richman, M.J.; Bognar, E.; Lakatos, K.; Sasvari-Szekely, M.; Nemoda, Z. Association analysis of norepinephrine transporter polymorphisms and methylphenidate response in ADHD patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 84(Pt A), 122-128.
[PMID: 29374517]
[80]
Senard, J.M.; Rouet, P. Dopamine beta-hydroxylase deficiency. Orphanet J. Rare Dis., 2006, 1, 7.
[PMID: 16722595]
[81]
Freire, M.T.; Marques, F.Z.; Hutz, M.H.; Bau, C.H. Polymorphisms in the DBH and DRD2 gene regions and smoking behavior. Eur. Arch. Psychiatry Clin. Neurosci., 2006, 256(2), 93-97.
[PMID: 16032443]
[82]
Winter, J.C.; Timineri, D. The discriminative stimulus properties of EGb 761, an extract of Ginkgo biloba. Pharmacol. Biochem. Behav., 1999, 62(3), 543-547.
[PMID: 10080249]
[83]
Ramassamy, C.; Christen, Y.; Clostre, F.; Costentin, J. The Ginkgo biloba extract, EGb761, increases synaptosomal uptake of 5-hydroxytryptamine: in-vitro and ex-vivo studies. J. Pharm. Pharmacol., 1992, 44(11), 943-945.
[PMID: 1361545]
[84]
Ahlemeyer, B.; Krieglstein, J. Neuroprotective effects of Ginkgo biloba extract. Cell. Mol. Life Sci., 2003, 60(9), 1779-1792.
[PMID: 14523543]
[85]
Shih, J.C.; Chen, K.; Ridd, M.J.; Seif, I. Ginkgo biloba abolishes aggression in mice lacking MAO A. Antioxid. Redox Signal., 2000, 2(3), 467-471.
[PMID: 11229360]
[86]
Huguet, F.; Tarrade, T. Alpha 2-adrenoceptor changes during cerebral ageing. The effect of Ginkgo biloba extract. J. Pharm. Pharmacol., 1992, 44(1), 24-27.
[PMID: 1350623]
[87]
Taylor, J.E. [Neuromediator binding to receptors in the rat brain. The effect of chronic administration of Ginkgo biloba extract]. Presse Med., 1986, 15(31), 1491-1493. [Neuromediator binding to receptors in the rat brain. The effect of chronic administration of Ginkgo biloba extract].
[PMID: 2878427]
[88]
Huguet, F.; Drieu, K.; Piriou, A. Decreased cerebral 5-HT1A receptors during ageing: reversal by Ginkgo biloba extract (EGb 761). J. Pharm. Pharmacol., 1994, 46(4), 316-318.
[PMID: 8051617]
[89]
Giovannitti, J.A., Jr; Thoms, S.M.; Crawford, J.J. Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth. Prog., 2015, 62(1), 31-39.
[PMID: 25849473]
[90]
Arnsten, A.F. The use of α-2A adrenergic agonists for the treatment of attention-deficit/hyperactivity disorder. Expert Rev. Neurother., 2010, 10(10), 1595-1605.
[PMID: 20925474]
[91]
Ceylan, M.F.; Sener, S.; Bayraktar, A.C.; Kavutcu, M. Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry Clin. Neurosci., 2012, 66(3), 220-226.
[PMID: 22443244]
[92]
Verlaet, A.A.J.; Maasakkers, C.M.; Hermans, N.; Savelkoul, H.F.J. Rationale for Dietary Antioxidant Treatment of ADHD. Nutrients, 2018, 10(4), 10.
[PMID: 29587355]
[93]
Kul, M.; Unal, F.; Kandemir, H.; Sarkarati, B.; Kilinc, K.; Kandemir, S.B. Evaluation of Oxidative Metabolism in Child and Adolescent Patients with Attention Deficit Hyperactivity Disorder. Psychiatry Investig., 2015, 12(3), 361-366.
[PMID: 26207130]
[94]
Lopresti, A.L. Oxidative and nitrosative stress in ADHD: possible causes and the potential of antioxidant-targeted therapies. Atten. Defic. Hyperact. Disord., 2015, 7(4), 237-247.
[PMID: 25894292]
[95]
Iuga, C.; Alvarez-Idaboy, J.R.; Vivier-Bunge, A. ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments. J. Phys. Chem. B, 2011, 115(42), 12234-12246.
[PMID: 21919526]
[96]
Waisbren, S.E.; Rohr, F.; Anastasoaie, V.; Brown, M.; Harris, D.; Ozonoff, A.; Petrides, S.; Wessel, A.; Levy, H.L. Maternal Phenylketonuria: Long-term Outcomes in Offspring and Post-pregnancy Maternal Characteristics. JIMD Rep., 2015, 21, 23-33.
[PMID: 25712380]
[97]
Motaghinejad, M.; Motevalian, M.; Shabab, B. Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats. Neurosci. Lett., 2016, 619, 106-113.
[PMID: 26687276]
[98]
Lee, J.Y.; Hwang, I.W.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of glutathione S-transferases M1, T1 and P1 gene polymorphisms with attention deficit and hyperactivity disorder in Korean children. Gene, 2016, 586(2), 228-233.
[PMID: 27060407]
[99]
Gomes, K.M.; Petronilho, F.C.; Mantovani, M.; Garbelotto, T.; Boeck, C.R.; Dal-Pizzol, F.; Quevedo, J. Antioxidant enzyme activities following acute or chronic methylphenidate treatment in young rats. Neurochem. Res., 2008, 33(6), 1024-1027.
[PMID: 18049893]
[100]
Marcocci, L.; Packer, L.; Droy-Lefaix, M.T.; Sekaki, A.; Gardès-Albert, M. Antioxidant action of Ginkgo biloba extract EGb 761. Methods Enzymol., 1994, 234, 462-475.
[PMID: 7808320]
[101]
Tsuchiya, H. Membrane interactions of phytochemicals as their molecular mechanism applicable to th discovery of drug leads from plants. Molecules, 2015, 20(10), 18923-18966.
[PMID: 26501254]
[102]
Shi, C.; Zhao, L.; Zhu, B.; Li, Q.; Yew, D.T.; Yao, Z.; Xu, J. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against beta-amyloid peptide-induced toxicity in SH-SY5Y cells. Chem. Biol. Interact., 2009, 181(1), 115-123.
[PMID: 19464278]
[103]
Kaur, S.; Chhabra, R.; Nehru, B. Ginkgo biloba extract attenuates hippocampal neuronal loss and cognitive dysfunction resulting from trimethyltin in mice. Phytomedicine, 2013, 20(2), 178-186.
[PMID: 23177260]
[104]
Ahmad, M.; Saleem, S.; Ahmad, A.S.; Yousuf, S.; Ansari, M.A.; Khan, M.B.; Ishrat, T.; Chaturvedi, R.K.; Agrawal, A.K.; Islam, F. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J. Neurochem., 2005, 93(1), 94-104.
[PMID: 15773909]
[105]
Liu, Q.; Jin, Z.; Xu, Z.; Yang, H.; Li, L.; Li, G.; Li, F.; Gu, S.; Zong, S.; Zhou, J.; Cao, L.; Wang, Z.; Xiao, W. Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo. Cell Stress Chaperones, 2019, 24(2), 441-452.
[PMID: 30815818]
[106]
Bridi, R.; Crossetti, F.P.; Steffen, V.M.; Henriques, A.T. The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytother. Res., 2001, 15(5), 449-451.
[PMID: 11507743]
[107]
Eyre, O.; Langley, K.; Stringaris, A.; Leibenluft, E.; Collishaw, S.; Thapar, A. Irritability in ADHD: Associations with depression liability. J. Affect. Disord., 2017, 215, 281-287.
[PMID: 28363151]
[108]
Pardon, M.C.; Joubert, C.; Perez-Diaz, F.; Christen, Y.; Launay, J.M.; Cohen-Salmon, C. in vivo regulation of cerebral monoamine oxidase activity in senescent controls and chronically stressed mice by long-term treatment with Ginkgo biloba extract (EGb 761). Mech. Ageing Dev., 2000, 113(3), 157-168.
[PMID: 10714935]
[109]
DeFeudisranc, F.V. Effects of Ginkgo biloba extract (EGb 761) on gene expression: Possible relevance to neurological disorders and ag-associated cognitive impairment. Drug Dev. Res., 2002, 57, 214-235.
[110]
Hsu, C.L.; Wu, Y.L.; Tang, G.J.; Lee, T.S.; Kou, Y.R. Ginkgo biloba extract confers protection from cigarette smoke extract-induced apoptosis in human lung endothelial cells: Role of heme oxygenase-1. Pulm. Pharmacol. Ther., 2009, 22(4), 286-296.
[PMID: 19254777]
[111]
Xin, W.; Wei, T.; Chen, C.; Ni, Y.; Zhao, B.; Hou, J. Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents. Toxicology, 2000, 148(2-3), 103-110.
[PMID: 10962128]
[112]
Mahdy, H.M.; Tadros, M.G.; Mohamed, M.R.; Karim, A.M.; Khalifa, A.E. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem. Int., 2011, 59(6), 770-778.
[PMID: 21827809]
[113]
Smith, J.V.; Burdick, A.J.; Golik, P.; Khan, I.; Wallace, D.; Luo, Y. Anti-apoptotic properties of Ginkgo biloba extract EGb 761 in differentiated PC12 cells. Cell. Mol. Biol., 2002, 48(6), 699-707.
[PMID: 12396082]
[114]
Shi, C.; Yao, Z.; Xu, J.; Yew, D.T. Effects of Gingko Extract (EGb761) on oxidative damage under different conditions of serum supply. J. Bioenerg. Biomembr., 2009, 41(1), 61-69.
[PMID: 19205855]
[115]
Saija, A.; Scalese, M.; Lanza, M.; Marzullo, D.; Bonina, F.; Castelli, F. Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic. Biol. Med., 1995, 19(4), 481-486.
[PMID: 7590397]
[116]
Tchantchou, F.; Xu, Y.; Wu, Y.; Christen, Y.; Luo, Y. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J., 2007, 21(10), 2400-2408.
[PMID: 17356006]
[117]
Tao, X.; Finkbeiner, S.; Arnold, D.B.; Shaywitz, A.J.; Greenberg, M.E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron, 1998, 20(4), 709-726.
[PMID: 9581763]
[118]
Hou, Y.; Aboukhatwa, M.A.; Lei, D.L.; Manaye, K.; Khan, I.; Luo, Y. Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology, 2010, 58(6), 911-920.
[PMID: 19917299]
[119]
Tchantchou, F.; Lacor, P.N.; Cao, Z.; Lao, L.; Hou, Y.; Cui, C.; Klein, W.L.; Luo, Y. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J. Alzheimers Dis., 2009, 18(4), 787-798.
[PMID: 19661619]
[120]
Li, Z.; Ya, K.; Xiao-Mei, W.; Lei, Y.; Yang, L.; Ming, Q.Z. Ginkgolides protect PC12 cells against hypoxia-induced injury by p42/p44 MAPK pathway-dependent upregulation of HIF-1alpha expression and HIF-1DNA-binding activity. J. Cell. Biochem., 2008, 103(2), 564-575.
[PMID: 17647269]
[121]
Hu, Y.Y.; Huang, M.; Dong, X.Q.; Xu, Q.P.; Yu, W.H.; Zhang, Z.Y. Ginkgolide B reduces neuronal cell apoptosis in the hemorrhagic rat brain: possible involvement of Toll-like receptor 4/nuclear factor-kappa B pathway. J. Ethnopharmacol., 2011, 137(3), 1462-1468.
[PMID: 21878382]
[122]
Li, L.Y.; Zhao, X.L.; Fei, X.F.; Gu, Z.L.; Qin, Z.H.; Liang, Z.Q. Bilobalide inhibits 6-OHDA-induced activation of NF-kappaB and loss of dopaminergic neurons in rat substantia nigra. Acta Pharmacol. Sin., 2008, 29(5), 539-547.
[PMID: 18430361]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy