Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

New Potential Biologically Active Compounds: Synthesis and Characterization of Urea and Thiourea Derivativpes Bearing 1,2,4-oxadiazole Ring

Author(s): Nevin Arıkan Ölmez* and Faryal Waseer

Volume 17, Issue 7, 2020

Page: [525 - 534] Pages: 10

DOI: 10.2174/1570179417666200417112106

Price: $65

Abstract

Background: Urea, thiourea, and 1,2,4-oxadiazole compounds are of great interest due to their different activities such as anti-inflammatory, antiviral, analgesic, fungicidal, herbicidal, diuretic, antihelminthic and antitumor along with antimicrobial activities.

Objective: In this work, we provide a new series of potential biologically active compounds containing both 1,2,4-oxadiazole and urea/thiouprea moiety.

Materials and Methods: Firstly, 5-chloromethyl-3-aryl-1,2,4-oxadiazoles (3a-j) were synthesized from the reaction of different substituted amidoximes (2a-j) and chloroacetyl chloride in the presence of pyridine by conventional and microwave-assisted methods. In the conventional method, 1,2,4-oxadiazoles were obtained in two steps. O-acylamidoximes obtained in the first step at room temperature were heated in toluene for an average of one hour to obtain 1,2,4-oxadiazoles. The yields varied from 70 to 96 %. 1,2,4-oxadiazoles were obtained under microwave irradiation in a single step in a 90-98 % yield at 160 °C in five minutes. 5-aminomethyl-3-aryl-1,2,4- oxadiazoles (5a-j) were obtained by Gabriel amine synthesis in two steps from corresponding 5-chloromethyl-3- aryl-1,2,4-oxadiazoles. Finally, twenty new urea (6a-j) and thiourea (7a-j) compounds bearing oxadiazole ring were synthesized by reacting 5-aminomethyl-3-aryl-1,2,4-oxadiazoles with phenyl isocyanate and isothiocyanate in tetrahydrofuran (THF) at room temperature with average yields (40-70%).

Results and Discussions: An efficient and rapid method for the synthesis of 1,2,4-oxadiazoles from the reaction of amidoximes and acyl halides without using any coupling reagent under microwave irradiation has been developed, and twenty new urea/thiourea compounds bearing 1,2,4-oxadiazole ring have been synthesized and characterized.

Conclusion: We have synthesized a new series of urea/thiourea derivatives bearing 1,2,4-oxadiazole ring. Also facile synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from amidoximes and acyl chlorides under microwave irradiation was reported. The compounds were characterized using FTIR, 1H NMR, 13C NMR, and elemental analysis techniques.

Keywords: Amidoxime, 1, 2, 4-oxadiazole, Gabriel amine synthesis, urea/thiourea derivatives, microwave irradiation, antimicrobial activities.

Graphical Abstract
[1]
Leite, A.C.L.; Vieira, R.F.; de Wanderley, A.G.; Afiatpour, P.; Ximenes, E.C.; Srivastava, R.M.; de Oliveira, C.F.; Medeiros, M.V.; Antunes, E.; Brondani, D.J.; Brondani, D.J. Synthesis, anti-inflammatory and antimicrobial activities of new 1,2,4-oxadiazoles peptidomimetics. Farmaco, 2000, 55(11-12), 719-724. Available at
[http://dx.doi.org/10.1016/S0014-827X(00)00099-9] [PMID: 11204948]
[2]
Srivastava, R.M.; de Almeida Lima, A.; Viana, O.S.; da Costa Silva, M.J.; Catanho, M.T.J.A.; de Morais, J.O. Antiinflammatory property of 3-aryl-5-(n-propyl)-1,2,4-oxadiazoles and antimicrobial property of 3-aryl-5-(n-propyl)-4,5-dihydro-1,2,4-oxadiazoles: Their syntheses and spectroscopic studies. Bioorg. Med. Chem., 2003, 11(8), 1821-1827. Available at
[http://dx.doi.org/10.1016/S0968-0896(03)00035-X ] [PMID: 12659768]
[3]
Bezerra, N.M.M.; De Oliveira, S.P.; Srivastava, R.M.; Da Silva, J.R. Synthesis of 3-aryl-5-decapentyl-1,2,4-oxadiazoles possessing antiinflammatory and antitumor properties. Farmaco, 2005, 60(11-12), 955-960. Available at
[http://dx.doi.org/10.1016/j.farmac.2005.08.003] [PMID: 16242685]
[4]
Kemnitzer, W.; Kuemmerle, J.; Zhang, H.Z.; Kasibhatla, S.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 3-aryl-5-aryl-1,2,4-oxadiazoles as a new series of apoptosis inducers. 2. Identification of more aqueous soluble analogs as potential anticancer agents. Bioorg. Med. Chem. Lett., 2009, 19(15), 4410-4415. Available at
[http://dx.doi.org/10.1016/j.bmcl.2009.05.052] [PMID: 19500976]
[5]
Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem., 2012, 55(5), 1817-1830. Available at
[http://dx.doi.org/10.1021/jm2013248] [PMID: 22185670]
[6]
Palumbo Piccionello, A.; Musumeci, R.; Cocuzza, C.; Fortuna, C.G.; Guarcello, A.; Pierro, P.; Pace, A. Synthesis and preliminary antibacterial evaluation of Linezolid-like 1,2,4-oxadiazole derivatives. Eur. J. Med. Chem., 2012, 50, 441-448. Available at
[http://dx.doi.org/10.1016/j.ejmech.2012.02.002] [PMID: 22365410 ]
[7]
Spink, E.; Ding, D.; Peng, Z.; Boudreau, M.A.; Leemans, E.; Lastochkin, E.; Song, W.; Lichtenwalter, K.; O’Daniel, P.I.; Testero, S.A.; Pi, H.; Schroeder, V.A.; Wolter, W.R.; Antunes, N.T.; Suckow, M.A.; Vakulenko, S.; Chang, M.; Mobashery, S. Structure-activity relationship for the oxadiazole class of antibiotics. J. Med. Chem., 2015, 58(3), 1380-1389. Available at
[http://dx.doi.org/10.1021/jm501661f] [PMID: 25590813]
[8]
De Freitas, J.J.R.; de Freitas, J.C.R.; da Silva, L.P.; de Freitas, F.J.R.; Kimura, G.Y.V.; Srivastava, R.M. Microwave-induced one-pot synthesis of 4-[3-(aryl)-1,2,4-oxadiazol-5-yl]-butan-2-ones under solvent free conditions. Tetrahedron Lett., 2007, 48, 6195-6198. Available at
[http://dx.doi.org/10.1016/j.tetlet.2007.06.116]
[9]
Sureshbabu, V.V.; Hemantha, H.P.; Naik, S.A. Synthesis of 1,2,4-oxadiazole-linked orthogonally urethane-protected dipeptide mimetics. Tetrahedron Lett., 2008, 49, 5133-5136. Available at
[http://dx.doi.org/10.1016/j.tetlet.2008.06.091]
[10]
Agneeswari, R.; Tamilavan, V.; Hyun, M.H. Synthesis and characterization of 1,2,4-oxadiazole-based deep-blue and blue color emitting polymers. Bull. Korean Chem. Soc., 2014, 35(2), 513-517. Available at
[http://dx.doi.org/10.5012/bkcs.2014.35.2.513]
[11]
Li, Q.; Cui, L.S.; Zhong, C.; Yuan, X.D.; Dong, S.C.; Jiang, Z.Q.; Liao, L.S. Synthesis of new bipolar host materials based on 1,2,4-oxadiazole for blue phosphorescent OLEDs. Dyes Pigments, 2014, 10, 142-149. Available at
[http://dx.doi.org/10.1016/j.dyepig.2013.09.029]
[12]
Kayukova, L.A. Synthesis of 1,2,4-Oxadiazoles (a review). Pharm. Chem. J., 2005, 39, 539-547. Available at
[http://dx.doi.org/10.1007/s11094-006-0017-7]]
[13]
Pace, A.; Pierro, P. The new era of 1,2,4-oxadiazoles. Org. Biomol. Chem., 2009, 7(21), 4337-4348. Available at
[http://dx.doi.org/10.1039/b908937c] [PMID: 19830279]
[14]
Pace, A.; Buscemi, S.; Piccionello, A.P.; Pibiri, I. Chapter Three: Recent advances in the chemistry of 1,2,4-oxadiazoles. Adv. Heterocycl. Chem., 2015, 116, 85-36. Available at
[http://dx.doi.org/10.1016/bs.aihch.2015.05.001]
[15]
Piccionello, A.P.; Pace, A.; Buscemi, S. Rearrangements of 1,2,4-oxadiazole: One ring to rule them all. Chem. Heterocycl. Compd., 2017, 53, 936-947. Available at
[http://dx.doi.org/10.1007/s10593-017-2154-1]
[16]
Augustine, J.K.; Akabote, V.; Hegde, S.G.; Alagarsamy, P. PTSA-ZnCl2: An efficient catalyst for the synthesis of 1,2,4-oxadiazoles from amidoximes and organic nitriles. J. Org. Chem., 2009, 74(15), 5640-5643. Available at
[http://dx.doi.org/10.1021/jo900818h]] [PMID: 19719253]
[17]
Zarei, M. A mild and efficient one-pot preparation of 1,2,4- oxadiazoles from nitriles and carboxylic acids using Vilsmeier reagent. ChemistrySelect, 2018, 3, 11273-11276. Available at
[http://dx.doi.org/10.1002/slct.201801857]]
[18]
Nishiwaki, N.; Kobiro, K.; Hirao, S.; Sawayama, J.; Saigo, K.; Ise, Y.; Okajima, Y.; Ariga, M. Inverse electron-demand 1,3-dipolar cycloaddition of nitrile oxide with common nitriles leading to 3-functionalized 1,2,4-oxadiazoles. Org. Biomol. Chem., 2011, 9(19), 6750-6754. Available at
[http://dx.doi.org/10.1039/c1ob05682d]] [PMID: 21826294]
[19]
Nikodemiak, P.; Koert, U. Metal-catalysed synthesisof functionalized 1,2,4-oxadiazoles from silyl nitronates and nitriles. Adv. Synth. Catal., 2017, 359, 1708-1716. Available at
[http://dx.doi.org/10.1002/adsc.201601378]]
[20]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis-a review. Tetrahedron, 2001, 57(45), 9225-9283. Available at
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]]
[21]
Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. J. Photochem. Photobiol. Chem., 2005, 6, 139. Available at
[http://dx.doi.org/10.1016/j.jphotochemrev.2005.07.001]]
[22]
Adib, M.; Jahromi, A.H.; Tavoosi, N.; Mahdavia, M.; Bijanzadeh, H.R. Microwave-assisted efficient, one-pot, three-component synthesis of 3,5-disubstituted 1,2,4-oxadiazoles under solvent-free conditions. Tetrahedron Lett., 2006, 47, 2965-2967. Available at
[http://dx.doi.org/10.1016/j.tetlet.2006.02.102]]
[23]
Porcheddu, A.; Cadoni, R.; De Luca, L. A fast and efficient one-pot microwave assisted synthesis of variously di-substituted 1,2,4-oxadiazoles. Org. Biomol. Chem., 2011, 9(21), 7539-7546. Available at
[http://dx.doi.org/10.1039/c1ob06055d]] [PMID: 21938295]
[24]
Shivaji Kandre, S.; Bhagat, P.R.; Rajiv Sharma, R.; Gupte, A. Microwave assisted synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from substituted amidoximes and benzoyl cyanides. Tetrahedron Lett., 2013, 54, 3526-3529. Available at
[http://dx.doi.org/10.1016/j.tetlet.2013.04.101]]
[25]
De Oliveira, V.N.M.; Dos Santos, F.G.; Ferreira, V.P.G.; Araujo, H.M. do O Pessoa, C.; Nicolete, R.;De Oliveira, R.N. Focused microwave irradiation-assisted synthesis of N-cyclohexyl derivatives with antitumor activity. Synth. Commun., 2018, 48, 2522-2532. Available at
[http://dx.doi.org/10.1080/00397911.2018.1509350]
[26]
Baral, N.; Mohapatra, S.; Raiguru, B.R.; Mishra, N.P.; Panda, P.; Nayak, S.; Pandey, S.K.; Kumar, P.S.; Sahoo, C.R. Microwave-assisted rapid and efficient synthesis of new series of chromene-based 1,2,4-oxadiazole derivatives and evaluation of antibacterial activity with molecular docking investigation. J. Heterocycl. Chem., 2019, 56, 552. Available at
[http://dx.doi.org/10.1002/jhet.3430]
[27]
Küçükgüzel, I.; Tatar, E.; Küçükgüzel, Ş.G.; Rollas, S.; De Clercq, E. Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur. J. Med. Chem., 2008, 43(2), 381-392. Available at
[http://dx.doi.org/10.1016/j.ejmech.2007.04.010] [PMID: 17583388]
[28]
Khan, K.M.; Saeed, S.; Ali, M.; Gohar, M.; Zahid, J.; Khan, A.; Perveen, S.; Choudhary, M.I. Unsymmetrically disubstituted urea derivatives: A potent class of antiglycating agents. Bioorg. Med. Chem., 2009, 17(6), 2447-2451. Available at
[http://dx.doi.org/10.1016/j.bmc.2009.01.075] [PMID: 19251423]
[29]
Stefanska, J.; Szulczyk, D.; Koziol, A.E.; Miroslaw, B.; Kedzierska, E.; Fidecka, S.; Busonera, B.; Sanna, G.; Giliberti, G.; La Colla, P.; Struga, M. Disubstituted thiourea derivatives and their activity on CNS: Synthesis and biological evaluation. Eur. J. Med. Chem., 2012, 55, 205-213. Available at
[http://dx.doi.org/10.1016/j.ejmech.2012.07.020] [PMID: 22884523]
[30]
Lu, C.; Tang, K.; Li, Y.; Li, P.; Lin, Z.; Yin, D.; Chen, X.; Huang, H. Design, synthesis and evaluation of novel diaryl urea derivatives as potential antitumor agents. Eur. J. Med. Chem., 2014, 77, 351-360. Available at
[http://dx.doi.org/10.1016/j.ejmech.2014.03.020] [PMID: 24675135]
[31]
Ovais, S.; Pushpalatha, H.; Reddy, G.B.; Rathore, P.; Bashir, R.; Yaseen, S.; Dheyaa, A.; Yaseen, R.; Tanwar, O.; Akthar, M.; Samim, M.; Javed, K. Synthesis and biological evaluation of some new pyrazoline substituted benzenesulfonylurea/thiourea derivatives as anti-hyperglycaemic agents and aldose reductase inhibitors. Eur. J. Med. Chem., 2014, 80, 209-217. Available at
[http://dx.doi.org/10.1016/j.ejmech.2014.04.046] [PMID: 24780598]
[32]
Patrick, D.A.; Wenzler, T.; Yang, S.; Weiser, P.T.; Wang, M.Z.; Brun, R.; Tidwell, R.R. Synthesis of novel amide and urea derivatives of thiazol-2-ethylamines and their activity against Trypanosoma brucei rhodesiense. Bioorg. Med. Chem., 2016, 24(11), 2451-2465. Available at
[http://dx.doi.org/10.1016/j.bmc.2016.04.006] [PMID: 27102161]
[33]
Krátký, M.; Stolaříková, J.; Vinšová, J. Novel sulfamethoxazole ureas and oxalamide as potential antimycobacterial agents. Molecules, 2017, 22(4), 535. Available at
[http://dx.doi.org/10.3390/molecules22040535] [PMID: 28350331]
[34]
Cui, P.; Li, X.; Zhu, M.; Wang, B.; Liu, J.; Chen, H. Design, synthesis and antibacterial activities of thiouracil derivatives containing acyl thiourea as SecA inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(10), 2234-2237. Available at
[http://dx.doi.org/10.1016/j.bmcl.2016.11.060] [PMID: 28041832]
[35]
Kucukoglu, K.; Tugrak, M.; Demirtas, A.; Sakagami, H.; Gul, H.I. Synthesis and cytotoxic activity of (4-substitutedbenzylidene)-(3-phenyl-1,2,4-oxadiazol-5-yl)methylamines. Pharm. Chem. J., 2016, 50, 234-238. Available at
[http://dx.doi.org/10.1007/s11094-016-1429-7]
[36]
Sen, S.E.; Roach, S.L. A convenient two-step procedure for the synthesis of substituted of allylic amines from allylic alcohols. Synthesis, 1995, 7, 756-758. Available at
[http://dx.doi.org/10.1055/s-1995-4012]
[37]
Keche, A.P.; Kamble, V.M. Synthesis and anti-inflammatory and antimicrobial activities of some novel 2-methylquinazolin-4(3H)-one derivatives bearing urea, thiourea and sulphonamide functionalities. Arab. J. Chem., 2019, 12(7), 1522-1531. Available at
[http://dx.doi.org/10.1016/j.arabjc.2014.10.025]
[38]
Zhao, Q.; Liu, S.; Li, Y.; Wang, Q. Design, synthesis, and biological activities of novel 2-cyanoacrylates containing oxazole, oxadiazole, or quinoline moieties. J. Agric. Food Chem., 2009, 57(7), 2849-2855. Available at
[http://dx.doi.org/10.1021/jf803632t] [PMID: 19271709]
[39]
Hyatt, J.A. Neber rearrangement of amidoximesulfonates. Synthesis of 2-Amino-l-azirines. J. Org. Chem., 1981, 46, 3953-3955. Available at
[http://dx.doi.org/10.1021/jo00333a004]
[40]
Tiemann, F.; Krüger, P. Ueber amidoxime und azoxime. Chem. Ber., 1884, 17, 1685. Available at
[http://dx.doi.org/10.1002/cber.18840170230]
[41]
Katritzky, A.R.; Shestopalov, A.A.; Suzuki, K. A convenient synthesis of chiral 1,2,4-oxadiazoles from N-protected (α-aminoacyl)benzotriazoles. ARKAT USA. Inc., 2005, 7, 36-55. Available at
[http://dx.doi.org/10.3998/ark.5550190.0006.705]
[42]
Gangloff, A.R.; Litvak, J.; Shelton, E.J.; Sperandio, D.; Wang, V.R.; Rice, K.D. Synthesis of 3,5-disubstituted-1,2,4-oxadiazoles using tetrabutylammonium fluoride as a mild and efficient catalyst. Tetrahedron Lett., 2001, 42, 1441-1443. Available at
[http://dx.doi.org/10.1016/S0040-4039(00)02288-7]
[43]
Kaboudin, B.; Saadati, F. Novel method for the synthesis of 1,2,4-oxadiazoles using alumina supported ammonium fluoride under solvent-free condition. J. Heterocycl. Chem., 2005, 42, 699. Available at
[http://dx.doi.org/10.1002/jhet.5570420434]
[44]
Kaboudin, B.; Saadati, F. Magnesia-supported hydroxylamine hydrochloride in the presence of sodium carbonate as an efficient reagent for the synthesis of 1,2,4-oxadiazoles from nitriles. Tetrahedron Lett., 2007, 48, 2829. Available at
[http://dx.doi.org/10.1016/j.tetlet.2007.02.105]
[45]
Rostamizadeh, S.; Ghaieni, H.R.; Ayran, R.; Amani, A.M. Clean one-pot synthesis of 1,2,4-oxadiazoles under solvent-free conditions using microwave irradiation and potassium fluoride as catalyst and solid support. Tetrahedron, 2010, 66, 494-497. Available at
[http://dx.doi.org/10.1016/j.tet.2009.11.063]
[46]
Palazzo, G.; Tavella, M.; Strani, G.; Silvestrini, B. 1,2,4-Oxadiazoles. IV. Synthesis and pharmacological properties of a series of substituted aminoalkyl-1,2,4-oxadiazoles. J. Med. Pharm. Chem., 1961, 4, 351-367.
[47]
Dürüst, Y.; Karakuş, H.; Kaiser, M.; Tasdemir, D. Synthesis and anti-protozoal activity of novel dihydropyrrolo[3,4-d][1,2,3]triazoles. Eur. J. Med. Chem., 2012, 48, 296-304. Available at
[http://dx.doi.org/10.1016/j.ejmech.2011.12.028] [PMID: 22217867]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy