Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Rational Design and Intramolecular Cyclization of Hotspot Peptide Segments at YAP–TEAD4 Complex Interface

Author(s): Dingwa Zhang*, Deyong He, Xiaoliang Pan and Lijun Liu*

Volume 27, Issue 10, 2020

Page: [999 - 1006] Pages: 8

DOI: 10.2174/0929866527666200414160723

Price: $65

Abstract

Background: The Yes-Associated Protein (YAP) is a central regulator of Hippo pathway involved in carcinogenesis, which functions through interaction with TEA Domain (TEAD) transcription factors. Pharmacological disruption of YAP–TEAD4 complexes has been recognized as a potential therapeutic strategy against diverse cancers by suppressing the oncogenic activity of YAP.

Objective: We systematically examine the crystal structure of YAP complex with TEAD4 and rationally identify two hotspot segments at the complex interface; they could be exploited as self-inhibitory peptides to target the complex interaction.

Methods: Two peptides, termed PS-1 and PS-2 are split from the interfacial context of YAP protein. Dynamics simulations, energetics analyses and fluorescence polarizations are employed to characterize the intrinsic disorder as well as binding energy/affinity of the two YAP peptides to TEAD4 protein.

Result: The native conformation of PS-2 peptide is a cyclic loop, which is supposed to be constrained by adding a disulfide bond across the spatially vicinal residue pair Arg87-Phe96 or Met86- Phe95 at the peptide’s two ends, consequently resulting in two intramolecular cyclized counterparts of linear PS-2 peptide, namely PS-2(cyc87,96) and PS-2(cyc86,95). The linear PS-2 peptide is determined as a weak binder of TEAD4 (Kd = 190 μM), while the two cyclic PS-2(cyc87,96) and PS-2(cyc86,95) peptides are measured to have moderate or high affinity towards TEAD4 (Kd = 21 and 45 μM, respectively).

Conclusion: PS-1 and PS-2 peptides are highly flexible and cannot maintain in native active conformation when splitting from the interfacial context, and thus would incur a considerable entropy penalty upon rebinding to the interface. Cyclization does not influence the direct interaction between PS-2 peptide and TEAD4 protein, but can largely reduce the intrinsic disorder of PS-2 peptide in free state and considerably minimize indirect entropy effect upon the peptide binding.

Keywords: Yes-associated protein, peptide, intramolecular cyclization, rational peptide design, protein-protein interaction, cancer therapy.

Graphical Abstract
[1]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[2]
Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell, 2010, 19(4), 491-505.
[http://dx.doi.org/10.1016/j.devcel.2010.09.011] [PMID: 20951342]
[3]
Barry, E.R.; Morikawa, T.; Butler, B.L.; Shrestha, K.; de la Rosa, R.; Yan, K.S.; Fuchs, C.S.; Magness, S.T.; Smits, R.; Ogino, S.; Kuo, C.J.; Camargo, F.D. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature, 2013, 493(7430), 106-110.
[http://dx.doi.org/10.1038/nature11693] [PMID: 23178811]
[4]
Guo, L.; Teng, L. YAP/TAZ for cancer therapy: Opportunities and challenges. Int. J. Oncol., 2015, 46(4), 1444-1452.
[http://dx.doi.org/10.3892/ijo.2015.2877] [PMID: 25652178]
[5]
Zhao, B.; Ye, X.; Yu, J.; Li, L.; Li, W.; Li, S.; Yu, J.; Lin, J.D.; Wang, C.Y.; Chinnaiyan, A.M.; Lai, Z.C.; Guan, K.L. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev., 2008, 22(14), 1962-1971.
[http://dx.doi.org/10.1101/gad.1664408] [PMID: 18579750]
[6]
Liu-Chittenden, Y.; Huang, B.; Shim, J.S.; Chen, Q.; Lee, S.J.; Anders, R.A.; Liu, J.O.; Pan, D. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev., 2012, 26(12), 1300-1305.
[http://dx.doi.org/10.1101/gad.192856.112] [PMID: 22677547]
[7]
Santucci, M.; Vignudelli, T.; Ferrari, S.; Mor, M.; Scalvini, L.; Bolognesi, M.L.; Uliassi, E.; Costi, M.P. The Hippo pathway and YAP/TAZ-TEAD protein-protein interaction as targets for regenerative medicine and cancer treatment. J. Med. Chem., 2015, 58(12), 4857-4873.
[http://dx.doi.org/10.1021/jm501615v] [PMID: 25719868]
[8]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[9]
Bai, Z.; Hou, S.; Zhang, S.; Li, Z.; Zhou, P. Targeting self-binding peptides as a novel strategy to regulate protein activity and function: A case study on the proto-oncogene tyrosine protein kinase c-Src. J. Chem. Inf. Model., 2017, 57(4), 835-845.
[http://dx.doi.org/10.1021/acs.jcim.6b00673] [PMID: 28345935]
[10]
Li, Z.; Miao, Q.; Yan, F.; Meng, Y.; Zhou, P. Machine learning in quantitative protein-peptide affinity prediction: Implications for therapeutic peptide design. Curr. Drug Metab., 2019, 20(3), 170-176.
[http://dx.doi.org/10.2174/1389200219666181012151944] [PMID: 30317994]
[11]
Jiao, S.; Wang, H.; Shi, Z.; Dong, A.; Zhang, W.; Song, X.; He, F.; Wang, Y.; Zhang, Z.; Wang, W.; Wang, X.; Guo, T.; Li, P.; Zhao, Y.; Ji, H.; Zhang, L.; Zhou, Z. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell, 2014, 25(2), 166-180.
[http://dx.doi.org/10.1016/j.ccr.2014.01.010] [PMID: 24525233]
[12]
Zhou, Z.; Hu, T.; Xu, Z.; Lin, Z.; Zhang, Z.; Feng, T.; Zhu, L.; Rong, Y.; Shen, H.; Luk, J.M.; Zhang, X.; Qin, N. Targeting Hippo pathway by specific interruption of YAP-TEAD interaction using cyclic YAP-like peptides. FASEB J., 2015, 29(2), 724-732.
[http://dx.doi.org/10.1096/fj.14-262980] [PMID: 25384421]
[13]
Zhou, Y.; Huang, T.; Cheng, A.S.L.; Yu, J.; Kang, W.; To, K.F. The TEAD family and its oncogenic role in promoting tumorigenesis. Int. J. Mol. Sci., 2016, 17(1), 138.
[http://dx.doi.org/10.3390/ijms17010138] [PMID: 26805820]
[14]
Mesrouze, Y.; Bokhovchuk, F.; Izaac, A.; Meyerhofer, M.; Zimmermann, C.; Fontana, P.; Schmelzle, T.; Erdmann, D.; Furet, P.; Kallen, J.; Chène, P. Adaptation of the bound intrinsically disordered protein YAP to mutations at the YAP:TEAD interface. Protein Sci., 2018, 27(10), 1810-1820.
[http://dx.doi.org/10.1002/pro.3493] [PMID: 30058229]
[15]
Zhou, P.; Yang, C.; Ren, Y.; Wang, C.; Tian, F. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem., 2013, 141(3), 2967-2973.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.140] [PMID: 23871047]
[16]
Tian, F.; Tan, R.; Guo, T.; Zhou, P.; Yang, L. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models. Biosystems, 2013, 113(1), 40-49.
[http://dx.doi.org/10.1016/j.biosystems.2013.04.004] [PMID: 23665477]
[17]
Ren, Y.; Chen, X.; Feng, M.; Wang, Q.; Zhou, P. Gaussian process: A promising approach for the modeling and prediction of peptide binding affinity to MHC proteins. Protein Pept. Lett., 2011, 18(7), 670-678.
[http://dx.doi.org/10.2174/092986611795445978] [PMID: 21413918]
[18]
Liu, L.; He, D.; Yang, S.; Xu, Y. Applying chemometrics approaches to model and predict the binding affinities between the human amphiphysin SH3 domain and its peptide ligands. Protein Pept. Lett., 2010, 17(2), 246-253.
[http://dx.doi.org/10.2174/092986610790226085] [PMID: 20214647]
[19]
Zhang, D.; He, D.; Pan, X.; Xu, Y.; Liu, L. Structural analysis and rational design of orthogonal stacking system in an E. coli DegP PDZ1–peptide complex. Chem. Pap., 2019, 73, 2469-2476.
[http://dx.doi.org/10.1007/s11696-019-00797-8]
[20]
Zhang, D.; He, D.; Pan, X.; Xu, Y.; Liu, L. Molecular design of orthogonal stacking system at the complex interface of HtrA PDZ domain with its peptide ligands. J. Serb. Chem. Soc., 2019, 84, 1367-1379.
[http://dx.doi.org/10.2298/JSC181221029Z]
[21]
He, D.; Huang, L.; Xu, Y.; Pan, X.; Liu, L. Computational analysis and enzyme assay of inhibitor response to disease single nucleotide polymorphisms (SNPs) in lipoprotein lipase. J. Bioinform. Comput. Biol., 2016, 14(5), 1650028.
[http://dx.doi.org/10.1142/S0219720016500281] [PMID: 27427383]
[22]
Guo, X.; He, D.; Huang, L.; Liu, L.; Liu, L.; Yang, H. Strain energy in enzyme–substrate binding: An energetic insight into the flexibility versus rigidity of enzyme active site. Comput. Theor. Chem., 2012, 995, 17-23.
[http://dx.doi.org/10.1016/j.comptc.2012.06.017]
[23]
Yang, C.; Zhang, S.; Bai, Z.; Hou, S.; Wu, D.; Huang, J.; Zhou, P. A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol. Biosyst., 2016, 12(4), 1201-1213.
[http://dx.doi.org/10.1039/C5MB00800J] [PMID: 26854254]
[24]
Zhou, P.; Wang, C.; Tian, F.; Ren, Y.; Yang, C.; Huang, J. Biomacromolecular quantitative structure-activity relationship (BioQSAR): A proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J. Comput. Aided Mol. Des., 2013, 27(1), 67-78.
[http://dx.doi.org/10.1007/s10822-012-9625-3] [PMID: 23306464]
[25]
Chen, K.; Huang, L.; Shen, B. Rational cyclization-based minimization of entropy penalty upon the binding of Nrf2-derived linear peptides to Keap1: A new strategy to improve therapeutic peptide activity against sepsis. Biophys. Chem., 2019, 244, 22-28.
[http://dx.doi.org/10.1016/j.bpc.2018.11.002] [PMID: 30465941]
[26]
Zhou, K.; Lu, J.; Yin, X.; Xu, H.; Li, L.; Ma, B. Structure-based derivation and intramolecular cyclization of peptide inhibitors from PD-1/PD-L1 complex interface as immune checkpoint blockade for breast cancer immunotherapy. Biophys. Chem., 2019, 253106213.
[http://dx.doi.org/10.1016/j.bpc.2019.106213] [PMID: 31276987]
[27]
Yang, C.; Zhang, S.; He, P.; Wang, C.; Huang, J.; Zhou, P. Self-binding peptides: folding or binding? J. Chem. Inf. Model., 2015, 55(2), 329-342.
[http://dx.doi.org/10.1021/ci500522v] [PMID: 25643174]
[28]
Zhou, P.; Hou, S.; Bai, Z.; Li, Z.; Wang, H.; Chen, Z.; Meng, Y. Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1122-1131.
[http://dx.doi.org/10.1080/21691401.2017.1360327] [PMID: 28754059]
[29]
Li, Z.; Yan, F.; Miao, Q.; Meng, Y.; Wen, L.; Jiang, Q.; Zhou, P. Self-binding peptides: Binding-upon-folding versus folding-upon-binding. J. Theor. Biol., 2019, 469, 25-34.
[http://dx.doi.org/10.1016/j.jtbi.2019.02.014] [PMID: 30802465]
[30]
Luo, H.; Du, T.; Zhou, P.; Yang, L.; Mei, H.; Ng, H.; Zhang, W.; Shu, M.; Tong, W.; Shi, L.; Mendrick, D.L.; Hong, H. Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions. Comb. Chem. High Throughput Screen., 2015, 18(3), 296-304.
[http://dx.doi.org/10.2174/1386207318666150305144015] [PMID: 25747444]
[31]
Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem., 2003, 24(16), 1999-2012.
[http://dx.doi.org/10.1002/jcc.10349] [PMID: 14531054]
[32]
Yang, C.; Wang, C.; Zhang, S.; Huang, J.; Zhou, P. Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol. Simul., 2015, 41, 741-751.
[http://dx.doi.org/10.1080/08927022.2014.929127]
[33]
Zhou, P.; Zhang, S.; Wang, Y.; Yang, C.; Huang, J. Structural modeling of HLA-B*1502/peptide/carbamazepine/T-cell receptor complex architecture: Implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. J. Biomol. Struct. Dyn., 2016, 34(8), 1806-1817.
[http://dx.doi.org/10.1080/07391102.2015.1092476] [PMID: 26488421]
[34]
Saíz-Urra, L.; Cabrera, M.A.; Froeyen, M. Exploring the conformational changes of the ATP binding site of gyrase B from Escherichia coli complexed with different established inhibitors by using molecular dynamics simulation: Protein-ligand interactions in the light of the alanine scanning and free energy decomposition methods. J. Mol. Graph. Model., 2011, 29(5), 726-739.
[http://dx.doi.org/10.1016/j.jmgm.2010.12.005] [PMID: 21216167]
[35]
Homeyer, N.; Gohlke, H. Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol. Inform., 2012, 31(2), 114-122.
[http://dx.doi.org/10.1002/minf.201100135] [PMID: 27476956]
[36]
Zhou, P.; Yan, F.; Miao, Q.; Chen, Z.; Wang, H. Why the first self-binding peptide of human c-Src kinase does not contain class II motif but can bind to its cognate Src homology 3 domain in class II mode? J. Biomol. Struct. Dyn., 2020, 39, 1-9.
[http://dx.doi.org/10.1080/07391102.2019.1709547] [PMID: 31872783]
[37]
Tian, F.; Lv, Y.; Zhou, P.; Yang, L. Characterization of PDZ domain-peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses. J. Comput. Aided Mol. Des., 2011, 25(10), 947-958.
[http://dx.doi.org/10.1007/s10822-011-9474-5] [PMID: 21964565]
[38]
Zhang, Y.; Schulten, K.; Gruebele, M.; Bansal, P.S.; Wilson, D.; Daly, N.L. Disulfide bridges: Bringing together frustrated structure in a bioactive peptide. Biophys. J., 2016, 110(8), 1744-1752.
[http://dx.doi.org/10.1016/j.bpj.2016.03.027] [PMID: 27119635]
[39]
Zhang, W.; Zhang, C.; Luo, C.; Zhan, Y.; Zhong, B. Design, cyclization, and optimization of MMP13-TIMP1 interaction-derived self-inhibitory peptides against chondrocyte senescence in osteoarthritis. Int. J. Biol. Macromol., 2019, 121, 921-929.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.141] [PMID: 30352228]
[40]
Tyler, R.C.; Peterson, F.C.; Volkman, B.F. Distal interactions within the par3-VE-cadherin complex. Biochemistry, 2010, 49(5), 951-957.
[http://dx.doi.org/10.1021/bi9017335] [PMID: 20047332]
[41]
Kortemme, T.; Kim, D.E.; Baker, D. Computational alanine scanning of protein-protein interfaces. Sci. STKE, 2004, 2004(219), pl2.
[PMID: 14872095]
[42]
Petsalaki, E.; Russell, R.B. Peptide-mediated interactions in biological systems: New discoveries and applications. Curr. Opin. Biotechnol., 2008, 19(4), 344-350.
[http://dx.doi.org/10.1016/j.copbio.2008.06.004] [PMID: 18602004]
[43]
London, N.; Raveh, B.; Movshovitz-Attias, D.; Schueler-Furman, O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins, 2010, 78(15), 3140-3149.
[http://dx.doi.org/10.1002/prot.22785] [PMID: 20607702]
[44]
Zhou, P.; Miao, Q.; Yan, F.; Li, Z.; Jiang, Q.; Wen, L.; Meng, Y. Is protein context responsible for peptide-mediated interactions? Mol. Omics, 2019, 15(4), 280-295.
[http://dx.doi.org/10.1039/C9MO00041K] [PMID: 31112188]
[45]
Yu, H.; Zhou, P.; Deng, M.; Shang, Z. Indirect readout in protein-peptide recognition: A different story from classical biomolecular recognition. J. Chem. Inf. Model., 2014, 54(7), 2022-2032.
[http://dx.doi.org/10.1021/ci5000246] [PMID: 24999015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy