Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Novel Electrochemical Sensor Based on Au-rGO Nanocomposite Decorated with Poly(L-cysteine) for Determination of Paracetamol

Author(s): Lin Zhang, Xiaojing Si, Xiaoxia Yan, Haibo He*, Dongmei Deng and Liqiang Luo*

Volume 16, Issue 8, 2020

Page: [1063 - 1070] Pages: 8

DOI: 10.2174/1573411016999200414145325

Price: $65

Abstract

Background: Paracetamol is a common antipyretic and analgesic drug, but its excessive intake can accumulate toxic metabolites and cause kidney and liver damage, so it is critical to determine the content of paracetamol for clinical diagnosis and dose use.

Methods: Au-reduced graphene oxide (Au-rGO) nanocomposite decorated with poly(L-cysteine) on carbon paste electrode was fabricated for the determination of paracetamol. Au-rGO was first coelectrodeposited on the carbon paste electrode surface. Afterwards, L-cysteine was electropolymerized to fabricate the Au-rGO/poly(L-cysteine) modified carbon paste electrode. Scanning electron microscope was used to characterize the morphology of Au-rGO and poly(L-cysteine)/Au-rGO. The electrochemical properties of the sensor were studied by cyclic voltammetry and differential pulse voltammetry.

Results: After exploring the optimal conditions, the sensor showed a wide linear response for paracetamol detection in the range of 1-200 μM with a detection limit of 0.5 μM (S/N = 3).

Conclusion: The fabricated sensor demonstrated good sensitivity with rapid detection capacity in real samples.

Keywords: Au-rGO, carbon paste electrode, electrochemical sensor, L-cysteine, paracetamol, scanning electron microscope.

Graphical Abstract
[1]
Adhikari, B.R.; Govindhan, M.; Chen, A. Sensitive detection of acetaminophen with graphene-based electrochemical sensor. Electrochim. Acta, 2015, 162, 198-204.
[http://dx.doi.org/10.1016/j.electacta.2014.10.028]
[2]
Cernat, A.; Tertiş, M.; Săndulescu, R.; Bedioui, F.; Cristea, A.; Cristea, C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Anal. Chim. Acta, 2015, 886, 16-28.
[http://dx.doi.org/10.1016/j.aca.2015.05.044] [PMID: 26320632]
[3]
Jaeschke, H.; Williams, C.D.; Ramachandran, A.; Bajt, M.L. Acetaminophen hepatotoxicity and repair: The role of sterile inflammation and innate immunity. Liver Int., 2012, 32(1), 8-20.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02501.x] [PMID: 21745276]
[4]
Habibi, B.; Jahanbakhshi, M.; Pournaghi-Azar, M.H. Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon-ceramic electrode by differential pulse voltammetry. Electrochim. Acta, 2011, 56(7), 2888-2894.
[http://dx.doi.org/10.1016/j.electacta.2010.12.079]
[5]
Zhang, Y.; Jiang, X.; Zhang, J.; Zhang, H.; Li, Y. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens. Bioelectron., 2019, 130, 315-321.
[http://dx.doi.org/10.1016/j.bios.2019.01.043] [PMID: 30784985]
[6]
Perez, E.R.; Knapp, J.A.; Horn, C.K.; Stillman, S.L.; Evans, J.E.; Arfsten, D.P. Comparison of LC-MS-MS and GC-MS analysis of benzodiazepine compounds included in the drug demand reduction urinalysis program. J. Anal. Toxicol., 2016, 40(3), 201-207.
[http://dx.doi.org/10.1093/jat/bkv140] [PMID: 26755538]
[7]
Nebot, C.; Gibb, S.W.; Boyd, K.G. Quantification of human pharmaceuticals in water samples by high performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2007, 598(1), 87-94.
[http://dx.doi.org/10.1016/j.aca.2007.07.029] [PMID: 17693311]
[8]
Nagaraja, P.; Murthy, K.C.; Rangappa, K.S. Spectrophotometric method for the determination of paracetamol and phenacetin. J. Pharm. Biomed. Anal., 1998, 17(3), 501-506.
[http://dx.doi.org/10.1016/S0731-7085(97)00237-9] [PMID: 9656162]
[9]
Solangi, A.; Memon, S.; Mallah, A.; Memon, N.; Bhanger, M.I. Determination of ceftriaxone, ceftizoxime, paracetamol and diclofenac sodium by capillary zone electrophoresis in pharmaceutical formulations and in human blood serum. Turk. J. Chem., 2014, 34(6), 921-933.
[10]
Radecki, J.; Szymanska, I.; Bulgariu, L.; Pietraszkiewicz, M. Covalent and embedment immobilization of macrocyclic polyamines on gold electrodes and their voltarnmetric responses towards ethene dicarboxylic acids. Electrochim. Acta, 2006, 51(11), 2289-2297.
[http://dx.doi.org/10.1016/j.electacta.2005.02.153]
[11]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[12]
Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl., 2009, 48(42), 7752-7777.
[http://dx.doi.org/10.1002/anie.200901678] [PMID: 19784976]
[13]
Li, Y.; Zhang, Z.; Zhang, Y.; Deng, D.; Luo, L.; Han, B.; Fan, C. Nitidine chloride-assisted bio-functionalization of reduced graphene oxide by bovine serum albumin for impedimetric immunosensing. Biosens. Bioelectron., 2016, 79, 536-542.
[http://dx.doi.org/10.1016/j.bios.2015.12.076] [PMID: 26748371]
[14]
Mahya Karami, M.; Mohammad Reza, G.; Mona, H-K-G.; Farnoush, F. Electroanalysis of catecholamine drugs using graphene modified electrodes. Curr. Anal. Chem., 2019, 15(4), 443-466.
[http://dx.doi.org/10.2174/1573411014666180917113206]
[15]
Asiye Aslıhan, A.; Sevda, A.; Hayati, F. Voltammetric sensing of bilirubin based on nafion/electrochemically reduced graphene oxide composite modified glassy carbon electrode. Curr. Anal. Chem., 2015, 11(2), 96-103.
[http://dx.doi.org/10.2174/157341101102150223123009]
[16]
Chen, Y.; Li, Y.; Deng, D.; He, H.; Yan, X.; Wang, Z.; Fan, C.; Luo, L. Effective immobilization of Au nanoparticles on TiO2 loaded graphene for a novel sandwich-type immunosensor. Biosens. Bioelectron., 2018, 102, 301-306.
[http://dx.doi.org/10.1016/j.bios.2017.11.009] [PMID: 29156405]
[17]
Zhou, M.; Han, L.; Deng, D.; Zhang, Z.; He, H.; Zhang, L.; Luo, L. 4-mercaptobenzoic acid modified silver nanoparticles-enhanced electrochemical sensor for highly sensitive detection of Cu2+. Sens. Actuators B Chem., 2019, 291, 164-169.
[http://dx.doi.org/10.1016/j.snb.2019.04.060]
[18]
Darya, O.P.; Andrey, V.K.; Eduard, V.G.; Vladimir, I.B.; Ivan, E.P. Au-nanoparticles based sensors for voltammetric determination of glutathione. Curr. Anal. Chem., 2017, 13(3), 225-230.
[http://dx.doi.org/10.2174/1573411012666160606175735]
[19]
Siangproh, W.; Dungchai, W.; Rattanarat, P.; Chailapakul, O. Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review. Anal. Chim. Acta, 2011, 690(1), 10-25.
[http://dx.doi.org/10.1016/j.aca.2011.01.054] [PMID: 21414432]
[20]
Er, E.; Çelikkan, H.; Erk, N.; Aksu, M.L. A new generation electrochemical sensor based on graphene nanosheets/gold nanoparticles/nafion nanocomposite for determination of silodosin. Electrochim. Acta, 2015, 157, 252-257.
[http://dx.doi.org/10.1016/j.electacta.2015.01.020]
[21]
Fu, Y.; Wang, L.; Chen, Q.; Zhou, J. Enantioselective recognition of chiral mandelic acid in the presence of Zn(II) ions by L-cysteine-modified electrode. Sens. Actuators B Chem., 2011, 155(1), 140-144.
[http://dx.doi.org/10.1016/j.snb.2010.11.038]
[22]
Hatamluyi, B. Lorestani, F.; Es’haghi, Z. Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs. Ifosfamide and Etoposide. Biosens. Bioelectron., 2018, 120, 22-29.
[http://dx.doi.org/10.1016/j.bios.2018.08.008] [PMID: 30144642]
[23]
Lee, C.S.; Yu, S.H.; Kim, T.H. One-step electrochemical fabrication of reduced graphene oxide/gold nanoparticles nanocomposite-modified electrode for simultaneous detection of dopamine, ascorbic acid, and uric acid. Nanomaterials (Basel), 2017, 8(1), 17.
[http://dx.doi.org/10.3390/nano8010017] [PMID: 29301209]
[24]
Guo, X.C. One step electrodeposition of graphene-Au nanocomposites for highly sensitive electrochemical detection of salbutamol. Int. J. Electrochem. Sci., 2017, 12, 861-875.
[http://dx.doi.org/10.20964/2017.02.29]
[25]
Wang, Y.; Ding, Y.; Li, L.; Hu, P. Nitrogen-doped carbon nanotubes decorated poly (L-Cysteine) as a novel, ultrasensitive electrochemical sensor for simultaneous determination of theophylline and caffeine. Talanta, 2018, 178, 449-457.
[http://dx.doi.org/10.1016/j.talanta.2017.08.076] [PMID: 29136847]
[26]
Guo, H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H. A green approach to the synthesis of graphene nanosheets. ACS Nano, 2009, 3(9), 2653-2659.
[http://dx.doi.org/10.1021/nn900227d] [PMID: 19691285]
[27]
Liu, C.; Wang, K.; Luo, S.; Tang, Y.; Chen, L. Direct electrodeposition of graphene enabling the one-step synthesis of graphene metal nanocomposite films. Small, 2011, 7(9), 1203-1206.
[http://dx.doi.org/10.1002/smll.201002340] [PMID: 21480521]
[28]
Yan, L.; Zhao, H.; Xie, Q.; Sun, L.; Gu, T.; Zou, L.; Bu, L.; Yao, S.; Tu, X.; Luo, X. Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III). Sens. Actuators B Chem., 2013, 188(11), 894-901.
[29]
Chen, Y.H.; Kirankumar, R.; Kao, C.L.; Chen, P.Y. Electrodeposited Ag, Au, and AuAg nanoparticles on graphene oxide-modified screen-printed carbon electrodes for the voltammetric determination of free sulfide in alkaline solutions. Electrochim. Acta, 2016, 205, 124-131.
[http://dx.doi.org/10.1016/j.electacta.2016.04.111]
[30]
Zhao, G.; Wang, H.; Liu, G.; Wang, Z.; Cheng, J. Simultaneous determination of trace Cd(II) and Pb(II) based on Bi/nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition. Ionics, 2017, 23(3), 767-777.
[http://dx.doi.org/10.1007/s11581-016-1843-6]
[31]
Xia, S.; Zhu, P.; Pi, F.; Zhang, Y.; Li, Y.; Wang, J.; Sun, X. Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1. Biosens. Bioelectron., 2017, 97, 345-351.
[http://dx.doi.org/10.1016/j.bios.2017.06.002] [PMID: 28623817]
[32]
Zhou, F.; Wang, Y.; Wu, W.; Jing, T.; Mei, S.; Zhou, Y. Synergetic signal amplification of multi-walled carbon nanotubes-Fe3O4 hybrid and trimethyloctadecylammonium bromide as a highly sensitive detection platform for tetrabromobisphenol A. Sci. Rep., 2016, 6, 38000.
[http://dx.doi.org/10.1038/srep38000] [PMID: 27897238]
[33]
Thu, N.T.A.; Duc, H.V.; Phong, N.H.; Cuong, N.D.; Hoan, N.T.V.; Khieu, D.Q. Electrochemical determination of paracetamol using Fe3O4/reduced graphene-oxide-based electrode. J. Nanomater., 2018, 2018, Article ID 7619419
[http://dx.doi.org/10.1155/2018/7619419]
[34]
Tu, N.T.T.; Sy, P.C.; Thien, T.V.; Toan, T.T.T.; Phong, N.H.; Long, H.T.; Khieu, D.Q. Microwave-assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. J. Mater. Sci., 2019, 54(17), 11654-11670.
[http://dx.doi.org/10.1007/s10853-019-03709-z]
[35]
Li, M.; Jing, L. Electrochemical behavior of acetaminophen and its detection on the PANI-MWCNTs composite modified electrode. Electrochim. Acta, 2007, 52(9), 3250-3257.
[http://dx.doi.org/10.1016/j.electacta.2006.10.001]
[36]
Pasban, A.A.; Nia, E.H.; Piryaei, M. Determination of acetaminophen via TiO2/MWCNT modified electrode. J. Nanoanalysis, 2017, 4(2), 142-149.
[37]
Si, W.; Lei, W.; Han, Z.; Zhang, Y.; Hao, Q.; Xia, M. Electrochemical sensing of acetaminophen based on poly(3,4-ethylenedioxy-thiophene)/graphene oxide composites. Sens. Actuators B Chem., 2014, 193, 823-829.
[http://dx.doi.org/10.1016/j.snb.2013.12.052]
[38]
Thomaz, D.V.; de Oliveira, M.T.; Lobon, G.S.; da Cunha, C.E.P.; Machado, F.B.; Moreno, E.K.G.; Leite, K.C.D.; Ballaminut, N.; Alecrim, M.F.; de Carvalho, M.F.; Isecke, B.G.; de Macedo, I.Y.L.; do Couto, R.O.; Rodrigues, E.S.B.; Carvalho, L.A.D.; Avila, L.F. Development of laccase-TiO2@carbon paste biosensor for voltammetric determination of paracetamol. Int. J. Electrochem. Sci., 2018, 13(11), 10884-10893.
[http://dx.doi.org/10.20964/2018.11.61]
[39]
Wang, S.F.; Xie, F.; Hu, R.F. Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens. Actuators B Chem., 2007, 123(1), 495-500.
[http://dx.doi.org/10.1016/j.snb.2006.09.031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy